

Challenges in SysML Model Simulation

Mara Nikolaidou, George-Dimitrios Kapos, Anargyros Tsadimas, Vassilis Dalakas and Dimosthenis Anagnostopoulos

 Department of Informatics and Telematics

Harokopio University of Athens

70, El. Venizelou Str, Athens, GREECE

{mara, gdkapos, tsadimas, vdalakas, dimosthe}@hua.gr

Abstract
Systems Modeling Language (SysML) is a standard proposed by

the OMG for systems-of-systems (SoS) modeling and

engineering. To this end, it provides the means to depict SoS

components and their behavior in a hierarchical, multi-layer

fashion, facilitating alternative engineering activities, such as

system design. To explore the performance of SysML, simulation

is one of the preferred methods. There are many efforts targeting

simulation code generation from SysML models. Numerous

simulation methodologies and tools are employed, while

different SysML diagrams are utilized. Nevertheless, this process

is not standardized, although most of current approaches tend to

follow the same steps, even if they employ different tools. The

scope of this paper is to provide a comprehensive understanding

of the similarities and differences of existing approaches and

identify current challenges in fully automating SysML models

simulation process.

Keywords: SysML, simulation, automated code generation,

model transformation, model-based system engineering.

1. Introduction

SysML [1] is a language commonly used for model-based

system design (MBSD), as it facilitates modeling of any

system or system-of-systems. It is an Object Management

Group (OMG) standard that supports specification,

analysis, design, verification and validation of a broad

range of systems and systems-of-systems. It provides

discrete diagrams to describe system structure and

components, to explore allocation policies crucial for

system design and to identify design requirements. It is

widely applied for systems-of-systems (SoS) engineering

[2].

On the one hand, UML profiles can be employed to restrict

or extend SysML features to serve a specific domain, as

for example real-time and embedded systems [3] or

information systems [4]. These profiles, accompanied with

specific plugins, can be executed within UML modeling

tools (such as Magic Draw [5] or IBM Rational Modeler

[6]) and are capable of producing valid system models for

the specific domain, based on the profile specifications.

On the other hand, as simulation is a common method for

estimating the performance of systems, there is currently

strong interest in generating simulation code from SysML

models. Recent efforts (as for example [7], [8], [9])

provide the ability to generate executable simulation code

for different simulation languages or environments (as for

example Arena, Modelica or DEVS, respectively). In most

of these efforts, the UML profiling mechanism is used to

embed simulation properties into SysML models.

Simulation-specific profiles are employed in a popular

modeling tool, such as Magic Draw or IBM Rational

Modeler mentioned above, to annotate SysML models with

simulation properties appropriate for the specific

simulator. Afterwards, enriched SysML models are

transformed to executable simulation code for the specific

environment. Model transformation languages, such as

ATL [10] and QVT [11], are often utilized to transform

SysML models to simulation models represented in XMI,

an XML representation language for UML/SysML models.

In such cases, model-based system engineering techniques

are adopted and model-driven software generation is

employed according to MDA principles ([12], [13]). The

main benefit of employing such standards to accomplish

simulation code generation is that all steps leading to the

creation of executable simulation models are independent

of the tools used for SoS modeling and engineering.

Hence, the specific system domain, the methodology

employed and the created software are only restricted by

the simulation methodology/environment.

Although, in the aforementioned approaches the process of

generating simulation code is similar, it is not

standardized. Furthermore, there are still restrictions in

fully automating the simulation code generation process

related to the system domain, the existence of pre-defined

simulation libraries and the characteristics of the

simulation methodology/environment. To this end, a

thorough overview of different approaches for simulating

SysML models is presented in [14]. The approaches

studied were selected based on two criteria:

a) To be based on model-based system engineering

concepts and to apply MDA standards as discussed

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

49

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

above to ensure compatibility with current SoS

engineering standards.

b) To utilize different simulation methodologies

/environments in order to ensure the generality of the

deduced conclusions. The selected simulation

techniques may serve different system domains,

implement either discrete or continuous simulation and

utilize different SysML diagrams to integrate

simulation characteristics into SysML models.

In the following, we emphasize on the challenges that

should be explored, based on the experience accumulated

from existing approaches so far, in an effort to standardize

the process of simulating SysML models, taking into

account that different tools and methods should be used.

Besides the generation process related with the simulation

code, the incorporation of simulation output into the

system after the completion of the simulation, is also

explored. In this case, simulation data are used to validate

system models. There are approaches, such as [13], [15],

providing comprehensive solutions in assisting the system

engineer to identify system design conflicts or drawbacks.

However, the automated and transparent integration of the

system validation process within the SysML model used

for the system design with the modeling tool remains a

challenge.

The rest of the paper is organized as follows: In Section 2

an overview of existing approaches for simulating SysML

models based on MDA principles is presented, while their

prominent features are summarized in a comparative study.

Challenges and future directions in automated simulation

code generation and system validation are identified in

Section 3.

2. SysML Model Simulation Overview

There are many efforts that employ SysML for model-

based system design in different domains. Recently, SLIM

[16], a commercial collaborative model-based systems

engineering workspace that uses SysML as the front-end

for orchestrating system engineering activities from the

early stages of system development, is available from

Intercax. The SysML-based system model serves as a

unified, conceptual abstraction of the system, independent

of the specific design and analysis tools that shall be used

in the development process. It is designed to provide

plugins to integrate the system model to a variety of design

and analysis tools. Integration with MATLAB/Simulink,

Mathematica and OpenModelica is planned for a variety of

commercial tools, but automated simulation code

generation is not implemented yet. SysML also provides

the means for requirement description, while there are

efforts, such as [4], [15], [17] focusing on requirement

verification described using SysML.

In any case, to validate SysML models in terms of

performance, they should be simulated first. Apparently

SysML supports a variety of diagrams describing system

structure and states, which are utilized by different

simulation approaches [18], [19]. In most cases, SysML

models defined within a modeling tool are exported in

XMI format and, consequently, transformed into simulator

specific models to be forwarded to the simulation

environment. To embed simulation-specific properties

within SysML models, profiles are introduced. In all cases,

stereotypes and constraints defined within the profile are

related to the simulation platform employed ([7], [8], [9],

[15], [18], [19]). Simulation model validity may be

ensured by applying constraints in the models produced by

the profile using declarative languages, as OCL ([7], [8],

[3], [20]) or even Java plugins ([21]).

There are general approaches ([9], [13], [18]) constrained

only by the simulation platform and facilitating simulation

of any kind of systems. In this case, simulation code

generation is usually not fully automated in terms of

system behavior, which is restricted in the profile in terms

of functionality and expressiveness. Though, most of

existing approaches are focused on a specific system

domain. In this case, corresponding profiles contain

stereotypes to describe specific domain components, while

their behavior is prescribed in simulation libraries

contained in the simulation environments selected. Popular

examples of such systems are presented for example in

[17] for embedded systems simulated using Modelica or in

[7] for manufacturing assembly systems simulated using

Arena.

Existing approaches may also be grouped in an alternative

fashion, depending on whether or not they are utilizing

current model-driven software engineering standards for

simulation code generation. Custom tools, not utilizing

existing standards, although flexible and fast, do not

promote model transformation validation, while they

restrict reusability and interoperability with other

simulation platforms ([3], [4], [20]).

In order to follow model-driven code generation

principles, the existence of a simulation meta-model is

imperative for the transformation of SysML models

described in XMI format into simulation models [9]. To

ensure compatibility with UML/SysML related standards,

MOF 2.0, the meta meta-model proposed by the OMG to

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

50

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

define them, should be used for simulation meta-model

description. MOF 2.0 compliance enables the application

of standard languages, such as ATL or QVT to define

SysML-to-Simulation model transformation. Providing a

MOF 2.0 meta-model for a simulation methodology or

tool, such as those defined for Modelica [22] or DEVS

[23], enhances the transformation process of SysML-to-

simulation models. The transformation needs to be defined

only once for a pair of domain and simulation

environment.

A thorough overview of existing SysML model simulation

approaches is provided in [14]. In the following, we focus

on specific approaches having in mind the following

criteria: a) they adopt model-driven software engineering

and they support all the aforementioned steps, i.e. profile

definition, automated simulation code generation and b)

they utilize different simulation environments.

2.1. MARTE Profile and Related Tools

MARTE is a UML profile proposed by the OMG [24] in

2009 to support model-based design of real-time and

embedded systems. It focuses on the performance and

scheduling properties of real-time systems. Performance

and scheduling requirements are modeled as constraints

defined using VSL, a language for formulating

semantically well-formed algebraic and time

expressions.After SysML standardization, there are

numerous efforts to combine SysML and MARTE profiles

(for example [3], [25], [26], [27]). Different SysML

diagrams are utilized: block definition diagrams,

parametric and activity diagrams. Basically they focus on

integrating SysML requirements and VSL language,

employed to specify them. VSL well-defined semantics

enable the automated verification of corresponding SysML

requirements using external tools.

In [26] and [27] the presented effort focuses on generating

executable code in SystemC, a language for describing

executable software for embedded systems using model

transformation techniques. Furthermore, the same

methodology is suggested to provide executable models

for Promela/SPIN model checking environment and

MATLAB Stateflow simulation environment. No detailed

information on MOF 2.0 based meta-models for all these

environments is provided, though MDA principles are

adopted by the authors. In [27], the MDEReqTraceTool,

currently under development, is proposed to integrate

requirement verification information, obtained using

external tools, within SysML system models by updating

corresponding SysML requirement verification matrices.

Such a feature will enable the MARTE requirements

verification using external tools, in a transparent fashion

for the system designer working with MARTE/SysML

models.

2.2. CASSI Tool

In [4] SysML extensions were proposed for information

system design, which are implemented within the context

of a custom, in-house tool called CASSI. CASSI targets

information system integration, while three different design

views are facilitated, using SysML external and internal

block diagrams. The behavior of system components is

described within CASSI using sequence diagrams, which

may be transformed to a simulation model based on Petri-

nets, executed by an external simulator. Although CASSI

is based on MDA principles, existing standards and tools

are not utilized, since it is built entirely on custom tools.

As described in [28], information system configurations

defined using CASSI are evaluated using simulation to

verify performance and availability requirements.

Requirement verification is performed by the system

designer within the external simulation environment,

utilizing Service Level Objective (SOL) concept.

2.3. TTool Toolkit and Related Efforts

TTool Toolkit (http://ttool.telecom-paristech.fr) integrates

numerous tools targeting real-time embedded system

engineering. AVATAR SysML profile is one of them,

targeting safety and security properties of embedded

systems [31]. TEPE, a graphical expression language

based on SysML parametric diagrams, is introduced for

representing requirements making them amenable to

automated verification [29]. The profile also enables the

definition of system behavior through state machine

diagrams. Model verification is performed using a

constraint language called UPPAAL (based on OCL), to

ensure system model validity before simulating them [30].

DIPLODOCUS, a simulation engine targeting on System-

on-Chip design, is integrated in TTool. It is based on Y-

Chart simulation approach, using timed-automata. The IFx

toolkit3 [32] is also integrated within TTool framework for

simulation purposes.

Model-driven engineering concepts are introduced in

TTool toolkit components to automatically generate

simulation code based on predefined libraries for the

domain of embedded systems. Though, all the tools

developed are proprietary to work within TTool

environment, while no MOF 2.0 compatibl e meta-model is

defined for the simulation or model checking

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

51

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

environments. Requirement verification can be facilitated

by external tools, such as IFx toolkit3.

2.4. SysML-to-Arena Transformation Tools

In [7], manufacturing line system models are defined in

SysML and transformed using ATL to be simulated using

Arena simulation software. With the definition of a SysML

profile, Arena-specific properties modeling manufacturing

systems are incorporated within SysML block definition

and activity diagrams [33]. Corresponding ARENA

simulation libraries are incorporated with ARENA

environment, and properly instantiated to construct the

simulation model executed within ARENA tool. As far as

simulation is concerned only system structure is defined in

SysML diagrams. System simulation behavior is defined

within ARENA manufacturing system libraries. SysML-to-

ARENA model transformation is performed using ATL,

based on model-based software engineering principles,

while a corresponding MOF-based meta-model for

ARENA manufacturing system libraries is defined. The

exploitation of simulation output towards system model

validation is not discussed.

2.5. SysML4Modelica Project

The SysML4Modelica profile endorsed by the OMG [8]

enables the transformation of SysML models to executable

Modelica simulation code. To embed simulation

capabilities within SysML, ModelicaML profile is

introduced [22]. QVT is used for the transformation of

SysML models defined using ModelicaML profile to

executable Modelica models. A corresponding MOF 2.0

meta-model for Modelica is defined. The overall approach

is fully compatible with model-driven engineering

concepts, making it suitable of efficient SoS engineering.In

[17] focus is given on how to use SysML4Modelica profile

for embedded systems engineering. In the proposed

extensions, SysML requirement entity is enriched with

testable characteristics. Testable requirements are

associated to conditions under which the requirement is

verified with the use of experiments or test cases.

Verification conditions are defined as part of a test case,

which in turn may be simulated using Modelica simulation

language in external simulators to ensure that a design

alternative satisfies related requirements [13].

Requirement verification is performed in an external

Modelica simulator (MathModelica) through visual

diagrams created during simulation. One possible

limitation of this approach related to the fact that

embedded system designer must be familiar with both

SysML tools and MathModelica environment, since

requirements are defined in SysML and verified in

MathModelica.

2.6. DevSys Framework

The authors have proposed DEVSys framework for the

simulation of SysML models using DEVS [9]. A DEVS

SysML profile is defined for the enrichment of SysML

models with all required properties to generate the

classical DEVS simulation models [34]. Block definition

and internal block diagrams are utilized to describe system

structure, while state machine, activity and parametric

diagrams are utilized to define system behavior for

simulation purposes. To this end, a MOF 2.0 meta-model

for DEVS is proposed and applied for the definition of a

standards-based QVT transformation of enriched SysML

models to DEVS models that are consequently transformed

to executable DEVS code [35]. The profile is not restricted

to a specific system domain, enabling the simulation of any

system described in SysML following DEVS behavioral

model. Thus, the main restriction of this approach is that

the system designer should be aware of DEVS

methodology and concepts to properly define system

behavior. Constraints defined in OCL and Java plugins are

available in the profile to ensure model validity before

simulation.The combination of DEVSys framework with

EIS profile for information system design is presented in

[21]. In this case, information system simulation

component libraries were implemented within DEVS,

while SysML-to-DEVS QVT transformation was utilized

only to generate the simulation code corresponding to

system structure. System behavior was already

implemented in DEVS libraries. Additionally,

performance-related attributes defined for all system

components are calculated during simulation and

integrated within the SysML EIS model after the

completion of the simulation.

2.7. Summary

The basic features of the reviewed approaches are

summarized in Table 1.

A variety of simulators are utilized, selected usually based

on the system domain and their popularity. Custom

solutions tend to be avoided. Furthermore, the adaptation

of model-based engineering principles and the utilization

of standard languages to transform SysML-to-simulation

model is clearly gaining momentum. Most of the

approaches, even if defined to be general, focus on a

specific system domain and provide corresponding model

libraries within the simulation environment to simplify the

transformation process.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

52

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Table 1: Overview of SysML Simulation Approaches

The automated simulation code generation capabilities

offered are constantly increasing, usually taking advantage

of the support of model libraries. Most of the approaches

attempt to tackle requirements verification as well, even

though in many case this process is performed outside the

SysML modeling tool.

3. Challenges and Future Directions

Having in mind existing approaches, it is evident that there

is a strong interest in simulating SysML models in an

automated fashion to serve SoS engineering and especially

SoS design. Since different system domains should be

effectively supported, it is expected that different

simulation methods and tools will be employed. Though, it

is imperative that a standardized methodology/framework,

based on OMG standards, should be proposed to guide

experts to develop tools targeting specific domains and

simulation environments. Most recent approaches seam to

follow the same basic steps:

a) Definition of the simulation/domain specific profiles.

In this process, efforts should concentrate on defining

simulator-specific profiles that may be combined with

domain specific profiles. Furthermore, the

exploration of a simulator-agnostic profile is

suggested for discrete-event and continuous

simulators respectively, taking into account that

 Features Offered

Profile System

domain
Simulator Profile Characteristics Transformati

on language
MDA

conformance
Code

generation

support

SysML model validation/

requirement verification

MARTE

Profile
Real-Time

Embedded

Systems
Non-

Specified

- Performance and time requirements

description and verification

utilizing VSL

- System behavior is described using

activity and parametric diagrams

Non

Specified Medium Non

Specified

MDEReqTrace integrates

requirement verification

data from external tools

within SysML

CASSI Tool Information

Systems Petri-Nets
- Description of performance

requirements

- System behavior is described using

Sequence diagrams

Non

Specified Low Semi

automated
Performed within external

simulation tool

TTool

Toolkit
Real-Time

Embedded

Systems

Y-Chart,

Timed-

Automata

- Requirements description using

TEPE

- System behavior is described using

State Machine diagrams

Non

Specified
Medium Fully

automated Performed by external tools

SysML to

Arena

Tools

Manufacturin

g Line

Systems
Arena

- Description of the specific domain

incorporating Arena simulation-

related characteristics
ATL High Fully

automated Not Specified

SysML4

Modelica

General

(emphasis on

real-time

systems)
Modelica

- Description of performance

requirements

- System behavior under exploitation

is defined as Test Cases using

Modelica ML

QVT High Fully

automated Performed by external tools

DEVSys

Framework

General

(case study:

Information

Systems)
DEVS

 - Facilitates the integration of

simulation output with SysML

models

- System behavior is described using

State Machine, Parametric and

Activity diagrams

QVT High Fully

automated
Performed within SysML

models in the case study

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

53

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

existing approaches utilize the same SysML

diagrams.

b) Transformation of SysML to simulation models in a

standardized fashion, utilizing languages as QVT and

ATL. Simulator-specific profiles should be

accompanied by corresponding MOF-based meta-

models for the corresponding simulators. The

definition of such meta-models openly available may

also promote simulator interoperability.

Corresponding initiatives, as those employed by

Modelica and DEVS community are already

successful.

c) Utilization of the simulation output to validate

SysML models and verify corresponding

requirements defined in such models. In order to

simplify requirement verification process, we endorse

the suggestion of SLIM to conduct requirement

verification within SysML modeling tools,

independently of the simulation methods and tools.

The incorporation of simulation results within the

SysML model should be facilitated for this purpose.

Such enhancements simplify the evaluation process,

allowing the system designer to focus on the

examination of the unverified requirements and,

consequently, the detection of the necessary solution

re-adjustments.

As derived from the examination of existing approaches,

there are two key issues in requirements verification during

model-based system design that have not been fully

addressed: (a) the estimation of system models behavior in

a generic and -at the same time- automated manner, and (b)

the designation of the requirements that have not been

verified in the original system model.

Regarding the estimation of system models behavior,

SysML provides a set of diagrams for describing a single

system's behavior (use case, activity, sequence, state

machine). However, each diagram focuses on a different

aspect of the system's behavior and the syntax of SysML

does not enforce a strict combination of these aspects

towards a unified executable behavioral model. On the

other hand, simulation profiles for SysML focus on the

semantics and structures of specific simulation

frameworks, leading to solutions that cannot be applied in

general. A systematic approach to assess these issues has

not been proposed or adopted yet.

To this end, the details of existing simulation profiles for

SysML should be examined thoroughly and processed to

derive common concerns and structures. The latter should

be further explored against the inherent concepts and

attributes of the behavioral SysML diagrams, to conclude

to a set of extensions and restrictions for SysML (i.e. a

profile) that would enable the general, but conceptually

precise and machine-usable definition of the behavior of

systems.

Regarding requirements specification, simulation has been

identified as an appropriate technique for the estimation of

system models’ performance. Hence, the obtained

simulation results should be incorporated within the

original system model and a comparison against the

predefined, performance-related, requirements should be

performed within the SysML modeling environment.

However, many approaches perform requirements

verification using external tools, due to acquaintance with

them and also due to the lack of quantified requirements

handling in the SysML requirements diagram.

In a similar manner as above, approaches proposing

solutions for quantified requirements specifications should

be examined in detail and in regard with the concepts of

different SysML modeling elements (e.g. blocks, states,

ports, actions). This would enable the definition of a

general profile, capable of defining precise and quantified

requirements. Therefore, generic and automated

requirements verification within the SysML model could

be enabled, once system performance estimation has been

added in the model.

An overview of a generic architecture, incorporating all the

aforementioned features is presented in Figure 1.

Figure 1: Proposed Architecture of SysML Model Simulation

As indicated in the figure, the main benefit of such an

approach relays to the fact that the simulation environment

will become agnostic for the system designer, since the

designer will only interact with the SysML models through

the corresponding modeling tool. In this case, the designer

is not obligated to learn how to interact with the simulation

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

54

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

environment, as all simulation related activities shall be

fully automated. The main restriction of the proposed

approach is that it would be domain and simulator specific,

in order to efficiently support automated simulation code

generation. Though, in fact all of existing approaches

obtain these characteristics, so it is not considered as a

significant obstacle.

Towards this direction, the authors indent to develop a

simulator and domain agnostic MBSE methodology to

perform SysML model simulation based on the proposed

architecture and construct an integration framework for

different tools and approaches.

4. Conclusions and Future Work

SysML became a valuable tool for system-of-systems

modeling establishing a growing community of system

designers using it. As simulation execution features are not

integrated within SysML there is a need for transforming

SysML models to simulation models. This effort is

hindered by two factors: a) the lack of standardization in

the automated simulation code generation process and b)

the support of simulator-specific SysML profiles to enable

the automated generation of simulation code.

Taking into account the approaches presented in the paper

and the vision most of them promise to implement, we

proposed a generic architecture, based on MBSE

principles, for automating the simulation code generation

process. Many approaches, as SysML to Arena Tools,

SysML4 Modelica and DevsSys framework, are

compatible with the proposed architecture.

The development of a simulator-agnostic framework to

support SysML model simulation remains a challenge. The

existence of a generic discrete-event and continuous

simulation XMI meta-model is the first step towards this

direction. Each of them may be initialized, utilizing the

transformation of different SysML diagrams. Such a meta-

model may also serve as an integration framework for

different simulation tools and approaches.

References
[1] OMG, Systems Modeling Language (SYSML)

Specification, Version 1.3 (June 2012).

URL http://www.omg.org/spec/SysML/1.3/PDF

[2] INCOSE, Systems Engineering Handbook, version 3.2.2

Edition, International Council on Systems Engineering,

San Diego, CA, USA, 2012.

[3] Quadri, I.R., Sadovykh, A, Indrusiak, L.S, MADES: A

Mixed SysML/MARTE methodology for real-time and

embedded avionics systems, in: Proceedings of ERTS 2012

Conference in Toulouse, France, Feb. 2012.

[4] S. Izukura, K. Yanoo, T. Osaki, H. Sakaki, D. Kimura, J.

Xiang, Applying a model-based approach to IT systems

development using SysML extension, in: Proceedings of

MoDELS, Vol. 6981 of Lecture Notes in Computer

Science, Springer, 2011, pp. 563–577. URL

http://dx.doi.org/10.1007/978-3-642-24485-8

[5] NoMagic, SysML Plugin for Magic Draw. URL

http://www.nomagic.com/products/magicdraw-addons/

sysml-plugin.html

[6] IBM, Rational Software Modeler. URL

http://www.ibm.com/developerworks/rational

[7] O. Batarseh, L. F. McGinnis, System modeling in SysML

and system analysis in ARENA, in: Proceedings of the

Winter Simulation Conference, WSC ’12, 2012, pp. 258:1–

258:12.

[8] OMG, SysML-Modelica Transformation (SyM) (Nov.

2012). URL http://www.omg.org/spec/SyM/1.0/PDF/

[9] G.-D. Kapos, V. Dalakas, M. Nikolaidou, D.

Anagnostopoulos, An integrated framework for automated

simulation of SysML models using DEVS, Simulation 90

(6) (2014) 717–744.

[10] Atlas Transformation Language. URL

https://eclipse.org/atl/

[11] OMG, MOF 2.0 Query/View/Transformation Language

ver. 1.1, Jan. 2011. URL

http://www.omg.org/spec/QVT/1.1

[12] OMG, Model-Driven Architecture. URL

http://www.omg.org/mda/

[13] W. Schamai, P. Helle, P. Fritzson, C. J. J. Paredis, Virtual

verification of system designs against system requirements,

in: Proceedings of the 2010 international conference on

Models in software engineering, MODELS’10, Springer-

Verlag, Berlin, Heidelberg, 2011, pp. 75–89.

[14] A Tsadimas, GD Kapos, V Dalakas, M Nikolaidou, D

Anagnostopoulos, Simulating SysML models: Overview

and challenges, in: Proceedings of IEEE 10th Conference

on SoSE, San Antonio, Texas, May 2015.

[15] J.-F. Petin, D. Evrot, G. Morel, P. Lamy, Combining

SysML and formal methods for safety requirements

verification, in: 22nd International Conference on Software

& Systems Engineering and their Applications, Paris,

France, 2010.

[16] M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. Scott, M.

Wilson, Slim: collaborative model-based systems

engineering workspace for next-generation complex

systems, in: Proceedings of Aerospace Conference, 2011

IEEE, 2011, pp. 1–15.

[17] Kerzhner, J. M. Jobe, C. J. J. Paredis, A formal framework

for capturing knowledge to transform structural models

into analysis models, Journal of Simulation 5 (3) (2011)

202–216.

[18] L. McGinnis, V. Ustun, A simple example of SysML-

driven simulation, in: Winter Simulation Conference

(WSC), Proceedings of the 2009, IEEE, 2009, pp. 1703–

1710.

[19] O. Schonherr, O. Rose, First steps towards a general

SysML model for discrete processes in production systems,

in: Proceedings of the 2009 Winter Simulation Conference,

Austin, TE, USA, 2009, pp. 1711–1718.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

55

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

[20] Chouali, A. Hammad, H. Mountassir, Assembling

components using sysml with non-functional requirements,

Electronic Notes in Theoretical Computer Science 295 (0)

(2013) 31 – 47, Proceedings the 9th International

Workshop FESCA.

[21] A Tsadimas, GD Kapos, V Dalakas, M Nikolaidou, D

Anagnostopoulos, Integrating Simulation Capabilities into

SysML for Enterprise Information System Design, in:

Proceedings of IEEE 9th Conference on SoSE, Adelaide,

Australia, June 2014.

[22] W. Schamai, Modelica Modeling Language

(ModelicaML): A UML Profile for Modelica, Tech. rep.

(2009).

[23] S. Mittal and J. L. Risco Martín, Netcentric System of

Systems Engineering with DEVS Unified Process, CRC

Press, 2013.

[24] OMG, UML profile for MARTE: Modeling and analysis of

real-time embedded systems specification, version 1.0, Nov

2009.

[25] H. Espinoza, D. Cancila, B. Selic, S. Gerard, Challenges in

combining SysML and MARTE for model-based design of

embedded systems, in: Proceedings of ECMDA-FA, Vol.

5562 of Lecture Notes in Computer Science, Springer,

2009, pp. 98–113.

[26] Rota Sena Marques, M.; Siegert, E.; Brisolara, L.,

Integrating UML, MARTE and SysML to improve

requirements specification and traceability in the embedded

domain, in: Proceedings of Industrial Informatics (INDIN),

2014 12th IEEE International Conference on, pp.176,181,

27-30 July 2014.

[27] Marcello Mura, Amrit Panda, Mauro Prevostini,

Executable Models and Verification from MARTE and

SysML: a Comparative Study of Code Generation

Capabilities. MARTE Workshop (2008).

[28] D. Kimura, T. Osaki, K. Yanoo, S. Izukura, H. Sakaki, A.

Kobayashi, Evaluation of IT systems considering

characteristics as system of systems, in: Proceedings of 6th

International Conference on System of Systems

Engineering (SoSE), 2011.

[29] D. Knorreck, L. Apvrille, P. de Saqui-Sannes, TEPE: A

sysml language for time-constrained property modeling and

formal verification, SIGSOFT Softw. Eng. Notes 36 (2011)

1–8.

[30] G. Behrmann, A. David, K. Larsen, J. Hakansson, P.

Petterson, W. Yi, M. Hendriks, UPPAAL 4.0, in:

Quantitative Evaluation of Systems, 2006. QEST 2006.

Third International Conference on, 2006, pp. 125–126.

[31] G. Pedroza, L. Apvrille, D. Knorreck, Avatar: A SysML

environment for the formal verification of safety and

security properties, in: Proceedings of NOTERE 2011,

11th Annual International Conference on, 2011, pp. 1–10.

[32] Ober, S. Graf, I. Ober, Validating timed UML models by

simulation and verification, International Journal on

Software Tools for Technology Transfer 8 (2) (2006) 128–

145.

[33] L. F. McGinnis, E. Huang, K.S. Kwon, V. Ustun,

“Ontologies and simulation: a practical approach”, Journal

of Simulation, 08/2011; 5:190-201.

[34] B. P. Zeigler, H. S. Sarjoughian, Introduction to DEVS

Modeling and Simulation with JAVA (2003).

[35] G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, D.

Anagnostopoulos, Model-based system engineering using

SysML: Deriving executable simulation models with QVT,

in: in: Proceedings of Systems Conference (SysCon), 2014

8th Annual IEEE, IEEE, 2014, pp. 531–538.

Mara Nikolaidou is a Professor in the Department of
Informatics and Telematics at Harokopio University
of Athens. Her research interests include SoS
engineering, system modeling and simulation,
service-oriented architectures and BPM. Over the
last years she actively participated in numerous
projects on system engineering, service-oriented

architectures, digital libraries and e-government. She is currently
participating in research project focusing on SoS engineering,
Internet of Things and Smart Cities. She has published more than
100 papers in international journals and conferences.

George-Dimitrios Kapos is currently performing
research for his PhD thesis at the Department of
Informatics and Telematics, Harokopio University of
Athens, Greece. In parallel, he works as an analyst
and software developer at the IT Department of the
Greek Consignment Deposit & Loans Fund. He
obtained his BSc in Informatics and an MSc degree

in Advanced Information Systems, both with honors from
Informatics & Telecommunications Department, National
Kapodistrian University of Athens, Greece. His research interests
include model-based systems engineering, simulation and meta-
modelling.

Anargyros Tsadimas since 2004 is working at the
Harokopio University as a research associate where
is currently Ph.D. Candidate at the Department of
Informatics & Telematics. He received his B.Sc. in
Applied Informatics from the University of Macedonia
in 2002 and his MSc in Advanced Information

Systems from the Department of Informatics &
Telecommunications of the National and Kapodistrian University
of Athens in 2005. His research interests lie in the field of Systems
Engineering and Modeling. He has several publications in
international conference proceedings and he has been
participated in numerous R&D projects.

Vassilis Dalakas obtained a BSc in Physics, a MSc
degree (honors) in digital signal processing, and a
PhD degree in digital communications, all from the
University of Athens (UoA), Greece, in 1998, 2002,
and 2010, respectively. Since 2001, he has been
affiliated with the Harokopio University of Athens

(HUA), Greece, as a Research Fellow (since 2001) and as a
network and system administrator since 2005. His research
interests include wireless digital communications, as well as
modeling and simulation standardization methods. In these areas,
he has co-authored several papers and two book chapters.

Dimosthenis Anagnostopoulos is a Professor in the
Department of Informatics and Telematics at
Harokopio University of Athens. He also currently
serves as the Rector of Harokopio Univerisity of
Athens and Head of the Department. He has
published more than 100 papers in international
journals and conferences. His research interests

include discrete event simulation, faster-than-real-time simulation,
modeling and simulation of distributed information systems. He
has actively participated in numerous projects related to
simulation, e-government and information systems.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

56

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

