
The Role of Autonomous Aggregators
in IoT Multi-core Systems

Basil Nikolopoulos, Alexandros C. Dimopoulos, Mara Nikolaidou
George Dimitrakopoulos, Dimosthenis Anagnostopoulos

Department of Informatics and Telematics
Harokopio University of Athens

Athens, Greece

ABSTRACT
The Internet of Things constitutes a prominent field, inte-
grating smart devices and people into complex systems that
may vary in scale. To ensure the constant availability and
performance of provided services, alternative distributed ar-
chitectures should be explored, promoting system scalability.
To this end, alternative architectures for the IoT are proposed.
Commonly an intermediate layer consisting of aggregators,
controlling sensors and actuators and providing a service inter-
face to IoT applications, is incorporated in such architectures.
To promote scalability of IoT systems, aggrerators should to
operate as autonomous entities. For an aggregator to become
autonomous, self-management policies should be enforced. In
the paper, we discuss autonomous aggregator software, run-
ning on multi-core IoT systems to efficiently implement such
policies. A demonstrator for smart buildings, developed as a
proof of concept for the proposed concepts, is also presented.

ACM Classification Keywords
Hardware→ Sensors and actuators; : Applied computing→
Service-oriented architectures—

Author Keywords
Internet of Things, Mulit-core Systems, Autonomy,
Aggregators and Sensors

INTRODUCTION
The Internet of Things (IoT) promotes the integration of smart
devices and people to provide services anytime, anywhere,
changing every-day activities. The application of the IoT
technology is gaining momentum in different areas, such as
e-health, transportation, smart city and building operation. As
the IoT services become more popular, the systems supporting
them become more complex.

There are numerous efforts [7] to promote distributed architec-
tures for implementing complex IoT systems, ensuring their
scalability. Following recent trends in Edge [2] and Fog [16]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT 2017, October 22–25, 2017, Linz, Austria

© 2019 ACM. ISBN 978-1-4503-2138-9.

DOI: https://doi.org/10.1145/3131542.3131548

computing for the IoT, the concept of providing an interme-
diate computing layer operating closer to sensors and user
devices promotes scalability, availability and performance.
Corresponding components, called aggregators, gateways or
edge nodes, control sensors and render services to IoT user
applications. Autonomous operation of such components, uti-
lizing the context they operate in [40], ensures the scalability
of IoT systems, thus is of great importance.

In this paper, we discuss aggregator software for multi-core
IoT systems, enabling them to act as autonomous entities. For
an aggregator to become autonomous, self-management poli-
cies have to be enforced [33]. The properties and components
of aggregator software running efficiently on multi-core sys-
tems in order to implement such policies is discussed in the
following. The aggregators for a smart building management
system have been implemented as a proof of concept for the
proposed approach and different scenarios were explored tar-
geting the minimization of energy consumption of aggregators
and sensors, while maintaining the necessary performance
to effectively support IoT application services. The aggrega-
tor software performance was also evaluated under different
amount of load.

RELATED WORK

Energy Efficiency
WSNs have proven to be very valuable for monitoring and
surveillance in various application fields, from monitoring
health [25, 36] and natural environment [51, 14] to agriculture
[50], transportation systems [49] and military applications [46,
52].
Typically a WSN is bounded by the finite power source of its
consisting sensor nodes. Regardless of the power source’s type
and capacity, eventually it will be drained in hours, days or
years. Therefore it is of major importance to consume the en-
ergy as reasonable as possible, especially if the power source
cannot easily be replaced. It has been proven [42] that in terms
of energy consumption one of the most expensive actions, is
data transmission. Indeed, much more expensive than data
processing: the required energy for transmitting a single bit
is equal to that needed for executing thousands of operations
inside the node [41].
Hence, a major effort has been given in the direction of de-
veloping energy-saving techniques. These techniques can be
divided into two significant categories: the ones that focus
on the energy efficiency of the network itself and those that
focus on finding ways to reduce the frequency of the costly

https://doi.org/10.1145/3131542.3131548


transmissions.
For the first category, various schemes exist in the literature,
implementing different low-power communications protocols
such as ZigBee [1], IEEE 802.15.4 [13], IEEE 802.15.6 [45],
6LoWPAN [34] and many more. In addition, within each
network protocol various methods have been proposed for the
creation of the most energy efficient transmission structure,
such as the Stable Election Protocol (SEP) [47], the Developed
Distributed Energy-Efficient Clustering (DDEEC) [22], the
Efficient Three Level Energy algorithm (ETLE) [48], Genetic
Algorithms (GA) [23], etc.
Regarding the second category, the efficiency is achieved by
reducing the energy spent by the sensors. It is well known that
some sensors require considerable power to perform their sam-
pling or to convert them using power-hungry A/D converters
[5]. Since it is common for measured values to change slowly
with time, one major class for energy efficient data acquisition
aims at reducing the number of acquisitions. Such approaches
are presented in [4, 30]. Other techniques for energy efficient
sampling are also abundant in the literature, such as hierarchi-
cal [31] or model-based active sampling[18], each one with
its merits and flaws frequently contradicting with performance
metrics such as latency and reliability [24].
In the following, we will be dealing with the second category
in an attempt to increase the energy efficiency of the system,
while keeping the performance at the same levels. We consider
that the nature of the existing network is given at most case, i.e.
the sensors used are based on commodity hardware and hence
the implemented protocol is already imposed. Therefore in
the following . . .

Old
In the IoT era more and more devices are becoming Smart
Devices, while the number and variety of resources available in
the field of IoT have increased dramatically. These resources
(deployed devices) are inevitably heterogeneous and differ in
many aspects [7] and this certainly increases the difficulty in
managing the derived systems and thus makes it inefficient to
manually access and control them.

A solution to this heterogeneity is the usage of SOA, provid-
ing an interoperable way of communication. However, SOA
concepts were originally designed for dealing mainly with few,
complex and mainly static enterprise services [28]. Therefore,
the trend is to create SOA web services, allowing the hori-
zontal and vertical collaboration among IoT devices, online
services, users, etc. [28]. Based on the very needs, available
technology and applied specifications, various models have
been presented for creating multi-layer SOAs. The model pre-
sented by the International Telecommunication Union (ITU)
consists of five different layers [39] while other researchers
propose either three layers [8] or four [35].

Typically, a web service model consists of a service provider,
a service registry and a service consumer [21]. For a client
application (service consumer) to connect to such a server,
a network address and port is essential to be known [27], as
well as information on how to communicate (protocol, lan-
guage, and mechanisms to use). These information can be
obtained using a registry service, such were UDDI (Universal

Description, Discovery and Integration) which were the mate-
rialization of the SOA registry component for publishing and
discovering Web services [17] or other more recent forms of
resource discovery [44, 15].

The systems of the IoT are becoming cheaper, smaller in size
and more capable as time passes and one of the most enabling
aspects for these augmented capabilities is Context. Context
aware systems are systems that can handle the context infor-
mation and use it to their gain. In general, context-aware
computing has been introduced as a key feature in IoT sys-
tems over the last years and a lot of work has been done that
demonstrate the importance of context awareness. Some early
works like CoolTown [32] and work by Henricksen et al. [29]
highlight the importance of context aware computing. In order
to successfully implement and manage context models, many
different techniques have been presented in the literature [3].

Another aspect of the IoT era is the multi-criticality of the
applications that will be deployed. A multi-criticality sys-
tem is a system where every service, or job of the system is
characterised by a level of importance [9]. It must be noted
that criticality in IoT applications is usually not real-time but
quasi real time, i.e. the responses/decisions are not expected
in milliseconds or microseconds but can be reported in quite
few milliseconds or even seconds. The latter response time is
not considered a problem for most of the IoT applications.

All of the above characteristics should be integrated in order
to effectively implement IoT SOA infrastructures.

Furthermore, instead of gathering raw data from sensors in
centralised processing nodes, e.g. cloud servers, and centrally
making all decisions regarding the configuration of an IoT
system, there is an alternative approach to add device control-
ling nodes, called aggregators or gateways, to aggregate data
from all the available devices and offer corresponding SOA
services. [19]. The existence of an aggregator helps hetero-
geneous interconnected devices to collaborate seamlessly. If
no aggregator was to be used, then a standardization of the
APIs used by all devices would be necessary. The latter is
very difficult - if not impossible - given the large number of
different manufactures at a virgin field such as IoT, where
each additional function a manufacturer adds is considered to
be added value of the specific device [6]. The existence of
aggregators or gateways has also been adopted by potential
standards, as Edge [2] and Fog [16] computing for the IoT,
providing an intermediate computing layer operating closer
to sensors and user devices. Such architectures have already
been adopted by specific IoT application areas, as for example
for smart-health services [54]. Following the proposed con-
cepts of Edge or Fog nodes, aggregator services may run in
multi-core devices, as for example Raspberry Pis, to control
sensors and provided services to IoT user applications enter-
ing their area of control. Aggregators may contribute to the
enhancement of transparency, since they hide device-specific
details form IoT application users. Moreover, the existence
of an aggregator may contribute in the energy conservation of
each sensor and the whole network itself [53]. The aggregator
unit has the responsibility of collecting data from each sensor;
not necessarily following the same procedure for all sensors.



To deal with the additional complexity introduced, aggregators
should operate in an autonomous fashion and become self-
managed, based on the context they operate in. Although, in
many cases [7, 40, 21] aggregators become intelligent and may
obtain some self-configuration features, there is a need for a
generic approach towards an aggregator software architectural
framework for implementing self-management policies in a
unified and extendable fashion.

THE ROLE OF AGGREGATORS IN A SOA FOR MULTI-
CORE IOT SYSTEMS
A Service-Oriented Architecture for multi-core IoT Systems in
the context of EMC2 ARTEMIS Joint project (grant agreement
no 621429) is proposed in [38]. Although it focuses on smart
buildings, it may be applied for the support of different IoT
systems. Aggregator services (similar to Edge or Fog nodes)
run in multi-core devices, as for example Raspberry Pis, to
control sensors and provided services to IoT user applications
entering their area of control. The concept of context-aware
IoT [40] is also adopted, enabling aggregators and IoT user
services to operate in an autonomous fashion.

Aggregators act as a middleware between sensors and IoT
user services programmed and operated based on the service-
computing paradigm (SOA). An aggregator’s specialized hard-
ware and software enables the communication with diverse
WSNs based on different technologies, while at the same time,
sensor’s APIs are exposed as a set of REST services to be used
by user services. Moreover, aggregators may provide extra
services that derive from the available context of the system.
For example, if we consider the system set in a building en-
vironment, a user may be interested in the mean temperature
of a specific room. In another example, if the system is set in
a car, a user may be interested in the mean fuel consumption
or the minimum tyre pressure of the wheels. Sensors create
clusters, and each aggregator is responsible for one cluster.
The communication within this clusters is based on specific
protocols compatible with the sensor devices (e.g. Zigbee). It
is apparent that as the WSNs grow in heterogeneity, the num-
ber of aggregator units will grow, and this will create service
discovery problems.

In order for an IoT user service to ask for a sensor service
from an aggregator, it should know how to contact the said
unit, or know where to find a specific service. For this reason, a
Registry Unit is integrated in the architecture. The registry acts
as a service discovery entity, where aggregators are required
to register their services and users can poll the registry unit for
information about services or aggregators. In order to cater
for the multi-criticality aspect, the service requests come with
some extra contextual parameters. Each call to a service is
accompanied by a criticality level that the user would like this
request to be treated with. The criticality level defines how
important a service call is, and will be discussed in detail later
in the paper. By using the criticality level of each request, the
aggregator unit is able to treat each request differently.

AUTONOMOUS AGGREGATOR SOFTWARE
In the following, we focus on policies enforced towards aggre-
gator’s autonomy in the context of the proposed architecture

Figure 1: SOA for Multi-core IoT Systems

of Figure 1 and the way they may be implemented by aggre-
grator software in a generic fashion. To retain autonomy, the
aggregator has to manage its resources in order to adopt to the
current state of the IoT system.

to adopt to current context (for example service load) and
in order to achieve self-configuration [33], self-adaptation
[43] and self-healing [26]. The resources the aggregator has
to manage are: The aggregator energy consumption and/or
battery power, the sensor energy consumption and/or battery
power, the aggregator cores and the sensors managed by the
aggregator. For the management of these resources a set of
policies is imposed for achieving self-healing, self-adaptation
and self-configuration.

Self-configuration policies

Multi-critical request management
In order to manage a multi-critical system, one should ensure
that higher criticality requests are serviced faster than lower
ones. In [12] 5 levels of criticality are proposed. Level 1 is the
lowest criticality level, 2 and 3 mid criticality, and finally 4 and
5 the highest criticality levels available. The aggregator should
decide upon the scheduling algorithm assigning jobs to cores,
taking into consideration their criticality level. Numerous
algorithms may be applied as discussed in [12].

Aggregator Resource Management
This policy aims at minimising the energy consumed by the
aggregator unit by efficiently managing its cores by constantly
monitoring its load per core. Upper and lower thresholds
are defined during the aggregator configuration for each core
utilisation. Thresholds may be determined for specific ag-
gregator and hardware pairs after performing stress tests.
Each core may be characterised as utilised, over-utilised and
under-utilised and may be activated or deactivated accordingly.
Under-utilised cores are deactivated to preserve energy. When
active cores are over-utilised, another one is activated. In
case all cores are over-utilised, the aggregator unit is deemed
in “overloaded mode”, then in addition to the next policy de-
scribed, the aggregator assigns requests to cores in a round



robin manner up until requests are dropped because they can-
not be served. The aggregator exits “overloaded mode” when
at least one core is not over-utilised anymore.

Aggregator Service QoS Preservation
The aim of this policy is to maintain the quality of service
provided by the sum of the aggregator units as a system. In
order to do so, aggregator units can ask other aggregator units
to manage a sensor, provided that the aggregator receiving
the sensor, can actually receive data from it, i.e. is in range.
Whenever the aggregator enters “overloaded mode” it can
start asking other aggregator units, if they can handle a sensor
unit that was originally in its influence. The aggregator will
choose the sensor unit by measuring how many requests each
sensor unit receives, and choose the first in the list. After
finding the sensor unit that should be passed over to another
aggregator unit, the aggregator unit will then ask all aggregator
units available through the registry unit if they can handle the
specific sensor. The aggregator units will have to assess their
load levels and whether they can receive that unit, by issuing
a poll and checking if they can receive data from it, and reply
accordingly to the aggregator unit that initiated the request.
Should a suitable candidate be found, the aggregator unit will
inform the sensor of the change, if it needs to, and pass the
needed information to the other aggregator. If a candidate is
not found, then the aggregator tries again with another sensor
unit, until it exhausts its sensor list.

Self-healing Policies
Erroneous Data Filtering
The aim of this policy is to be able to filter out readings that
are erroneous in order to provide correct data to the users. In
order to accomplish that we have to add some extra context to
the requests. The aggregator can provide the data requested
in two ways: either by requesting the variable measured from
a sensor, or by requesting a variable that is measured within
a contextual or conceptual space, for our case, e.g. a specific
room, but this can be expanded to include any contextual or
conceptual grouping idea that can correlate sensors’ readings
among them for the same environmental variable.

Sensor Health Monitoring
The aim of this policy is to maintain a fresh list of sensor units
that are up and running. To achieve this, the aggregator runs
a periodic poll in the WSN that has to be answered by every
sensor. In addition the aggregator can timestamp every time
a sensor has communicated with it, and save it in its memory.
This includes sensor reading answers and poll answers. If a
sensor unit fails to communicate with the aggregator unit for
a specific time interval, it is deemed as not any more in the
influence area of this aggregator, and removed from the active
sensors list. In order to renew its lease with the aggregator, a
sensor unit has to respond to the periodic poll, or send a sensor
reading within that timeframe.

Self-adaptation Policy
Sensor Communication Mode
The aim of this policy is to conserve energy by minimizing
the communication needed to be made by the sensor units.
Although this may seem straightforward at first, with a very

Figure 2: Autonomous Aggregator Software Compoments

basic logic being that the sensor unit should only communicate
when polled to do so, a more sophisticated approach would
be that depending on the situation, the sensor unit could push
data or have its data pulled, or not polled at all for a reading
and have a cached version of its data returned to user. Having
said the above, the aggregator unit is able to ask a sensor to
either use a push or a pull protocol for data retrieval. While
in push mode the sensor emits readings and data at a constant
rate, in order to provide fresh data to the aggregator unit. On
the other hand, in pull mode, the aggregator unit queries the
sensors for readings and expects an answer from the sensors.
Both choices have their merits and drawbacks and should be
used under the correct circumstances.

Aggregator Software Components
Applying self-management policies is not a trivial task, rising
performance and complexity management issues in aggregator
software implementation. Suggested aggregator components
are depicted in Figure 2. Each software component provides
a different utility to the aggregator. Some modules are essen-
tial for its operation, even if no self-management policies are
enforced. Some others, as Monitoring and Decision Making
units, utilise self-monitoring and self-management. The soft-
ware components work independently and communicate with
each other through a shared memory space, when needed.

The Control Unit is responsible for initialising the other soft-
ware modules, and in addition has some basic control over the
aggregator unit as a whole. It can spawn Request Execution
Threads in order to serve requests, received via http by Service
Provision Unit and is able to receive messages directly from
the Sensor Connectivity Unit, responsible for handling sen-
sors. None of them, on its-own contributes to the aggregator
autonomy.

Service Provision Unit provides a JSON REST API to serve
a) Sensing requests, forwarded to the WSN, b) Description
requests, providing the description of a service provided, c)
Sensor list requests, for currently available sensors and d)
conceptual grouping area list requests, identifying available
conceptual grouping areas (rooms) serviced by this aggregator
and their according services provided. All requests have a
criticality level (from 1 to 5). Sensor Communication Unit



is the only part of the aggregator that is sensor dependent. It
is responsible for communicating with the underlying WSN,
and as such, for each different type of WSN sensor units,
corresponding management and communication libraries have
to be developed.

Shared memory provides the management of monitoring vari-
ables, describing the status of the resources managed by the
aggregator and policies enforced for their management. Sta-
tistical data related to completed service requests, focusing
on criticality data, are also maintained. Monitoring variables
provide information for the aggregator to all its components
and offer the context to enable a) the Decision Making Unit to
enforce self-management policies and b) the Monitoring Unit
to monitor the status of all the resources.

The Monitoring Unit monitors metrics that help with the over-
all management of the aggregator unit. It is invoked on prede-
fined monitoring intervals and determines whether the status
of the aggregator has changed within the last interval. If so, it
invokes the Decision Making Unit to suggest changes in the
aggregator configuration, for example turning on/off a core.
It should be noted that the Decision Making Unit is respon-
sible for suggesting configuration changes according to the
policies enforced. The Control Unit is responsible for making
the changes. The policies enforced are implemented within
the Decision Making Unit in a form of event-action rules [10].

As an example, the rules corresponding to Aggregator Re-
source Management policy, enforced for each core, are listed
in the following:

all (Current per core load >= Maximum per
core load) :- controlUnit.activateCore for
(x) (Current per core load >= Maximum per
core load) :- controlUnit.shutdownCore(x)
(all (Current per core load >= Maximum
per core load) and (Active Cores = Number
of Cores)) :- controlUnit.EnterOverloaded
Mode() (any (Current per core load >= Maximum
per core load) and (OverLoadedMode=On)) :-
controlUnit.ExitOverloadedMode

Events are depicted using Complex Event Processing (CEP)
notation [37]. Simple events consist of simple comparisons
between monitoring variables. Complex events are created
based on simple ones utilising CEP operators. Actions indicate
Control Unit interfaces to be invoked.

SMART BUILDING DEMONSTRATOR
The proposed autonomous aggregator software was adopted to
implemented aggregators integrated within SOA infrastructure
for smart building applications, constructed in the framework
of EMC2 ARTEMIS Joint project . The overall architecture of
the system is depicted in Figure 3.

Two discrete sensor technologies were integrated within Smart
Building SOA: sensors from the MicaZ family, and the
IMA/Ambar Sensors. The sensors are setup to monitor a
single room. The provided functionality from the MicaZ sen-
sors includes: a) sensing room temperature, b) sensing levels
of ambient light and c) the ability to turn on and off devices.

Figure 3: Smart Building Architecture

For demonstration purposes, the switches were used to emu-
late a number of devices, which are, a ventilation system, an
alarm, and fire sprinklers. IMA/Ambar sensors provide the fol-
lowing functionality: a) sensing room temperature, b) sensing
humidity levels, c) sensing atmospheric pressure, d) sensing
CO2 levels, and e) sensing of Bluetooth Tags. Sensors of each
category use different protocols for communication purposes:
MicaZ uses a proprietary protocol and the IMA/Ambar uses
Zigbee.

To seamlessly integrate both technologies within Smart Build-
ing infrastructure, two aggregator units were deployed, as
shown in Figure 3, each running on different hardware. The
aggregator software was developed in JAVA and is not hard-
ware dependent. The first aggregator unit was deployed on a
Raspberry Pi 3 (4 CPU cores @1.2 GHz, 1 GB of RAM and
Integrated WiFi). The second aggregator unit was deployed
on a Raspberry Pi 2, which is similar to Pi 3 but with the 4
CPU cores running at 900 MHz and without integrated WiFi
capabilities. Both of the units ran Raspbian distribution of
GNU/Linux. The Raspberry Pi 3 was used to provide aggrega-
tion to the MicaZ WSN while the Raspberry Pi 2 was used for
the latter WSN. In addition, for the communication with the
rest of the network, the MicaZ aggregator used WiFi commu-
nications while the IMA/Ambar Aggregator relied on Ethernet
networking. The sensor communication unit is responsible of
applying a pull or push protocol for communication purposes.
Which to choose is part of the aggregator’s self-adaptation
Sensor Communication Mode policy, depending on the criti-
cality level of the request served. The number of cores used is
part of self-configuration Aggregator Resource Management



Figure 4: Room temperature control Service

policy, while forwarding the control of a sensor to a neigh-
bour aggregator relate to self-configuration QoS Preservation
policy. The implementation of these policies is demonstrated
in the following, as an example of the provided autonomy
features. All self-management decisions have a twofold goal:
reduce energy consumption and ensure the overall system per-
formance and seamless operation. Details on the provided
aggregator API and the implementation of the Registry Unit
can be found in [11] and [20]. In the following, we focus on
the implementation of the aggregator module and its autonomy
features.

IoT Services operating in Smart Building Demonstrator
To demonstrate the operation of autonomous aggregators un-
der different load and criticality requirements, a few services
were implemented. The services operate on a simple laptop
computer or smart phone under conditions that may generate
mild or heavy load to monitor aggregator behaviour under
conditions leading to self-configuration or self-healing. For
each service a simple UI was created in order to be able to
see the actions taken from service side and enable to easily
capture footage for the demonstration. They are:

Room Temperature Control
It controls the heating of a specific room. The user can set a
desired temperature and the services applies it with the aid of
one or more temperature sensors and one or more actuators
that control heating units at the premises. The service is not
considered of high criticality and all corresponding aggregator
request are invoked by it with criticality level 2. One can see
an example of the service running in Figure 4. As shown in the
figure, for the demonstrator purposes, an initial temperature,
lower than the room temperature was set as the temperature
setpoint. This causes the service to invoke the corresponding
request from the MicaZ aggregator which would turn on the
ventilation system, and ask the action to be performed. In
order for the ventilation to turn off, the room temperature has
to drop at least 2 degrees below the wanted temperature. After
turning on the ventilation system, a new temperature setpoint
is set. The new temperature was at least two degrees higher
than the current temperature in order to trigger the action of
turning off the ventilation system (see Figure 4).

Figure 5: Fire Watchdog Service

Fire Watchdog
This service retrieves data from both aggregator units in order
to sense the room temperature, the CO2 levels of the room and
the ambient light. The service constantly monitors the room
temperature levels using criticality level 3 (medium). If the
temperature rises above a preset threshold, then the service
starts using a higher criticality level on all of its requests (4)
asking for CO2 data. Should CO2 rise above a certain level as
well, then the service once more increases the criticality level
of its calls and uses the high criticality level, 5. In addition it
starts asking for ambient light data. Should this rise above a
certain threshold, then an alarm is sounded and the sprinklers
are activated. Should at any point a variable fall below the
preset threshold, then the service stands down and resumes
normal operation (see Figure 5).

When both services are operating simultaneously in different
devices, the aggregators have to serve temperature sensing
requests of different critically levels. Each temperature sensing
request computes temperature as the average of all temperature
sensors controlled by the aggregator.

Person’s Whereabouts Service
The service searches for a person based on a Bluetooth tag
the person bears, or the person’s cellphone’s Bluetooth. In its
primitive form, it will search for a Bluetooth signal from a
specific source, and report if the person is in the aggregator’s
influence, which means inside the room. The service can
operate in two modes: 1) it seeks the Bluetooth Tag just once
(criticality level 4) or 2) it constantly looks for the Bluetooth
Tag and once found, it informs the user (criticality level 2).

Autonomous Aggregator’s Operation
Within the rooms the two aggregators were controlling, their
operation was tested under conditions of heavy load. Differ-
ent scenarios of service operation were explored, generating
different amount of load and criticality requirements. In the
following, we focus on the Raspberry Pi 2 aggregator for
demonstration purposes. The aggregator status screen is de-
picted in Figure 6. The unit’s overall status and the total
number of sensors managed by this unit is recorded. The
horizontal bars show the load of each core, and next to that
you can see whether the core is reserved, is running and the
load level of the core. In the log window one may see self-
configuration decisions suggested by Decision Making Unit,
that would otherwise be transparent.



Figure 6: Aggregator Operation - System is beginning to work

Figure 7: Aggregator Operation - Push protocol is activated

As shown in the figure, one core is reserved to execute the
aggregator software itself, while only one core is utilised to
serve service requests. Two sensors are currently active. In
Figure 7, the aggregator receives enough load to cause the
first core to be overloaded. A second core is turned on, and
starts receiving requests. Decision Making Unit makes these
decision taking into consideration the following monitoring
variables, stored in Shared Memory: Current per core load,
measuring active threads, and Maximum and Lower per core
load, indicating the boundaries marking when a core is over-
or under-utilised. In the second case, the core is turned off. In
the first case boundaries are set during the aggregator’s setup
and are based on core stress test performed when configuring
the aggregator. In this particular case, utilisation boundaries
are measured as the max. and min. of threads that may run
on a specific core. One should take into account that all the
requests supported by the sensors in the demonstrator need
almost the same processing power to be completed. Thus,
active threads may be used as the indication of core load.

Another self-configuration option is also depicted in Figure
7. As recorded in the log, the Fire Watchdog service detected
temperature rising and is requesting additional measurements
(CO2, ambient light) with a hight criticality level. This causes,
the Decision Making Unit to be invoked and change the sensor
communication protocol mode from ’Pull’ to ’Push’. Push
protocol enables request to be served faster, since updated sen-
sor measurement values are stored in the aggregator’s cache,
but increases the energy consumption of sensors, working on
batteries. The communication mode used is stored in Com-
munication Mode monitoring variable. The communication
protocol mode is set back to ’Pull’ in the next monitoring in-
terval (the Monitoring Unit is invoked periodically), whether

Figure 8: Aggregator Operation - Turning off cores

Figure 9: Aggregator Operation - Handover Sensor

no service request with criticality level≥4 has been
received.

Load balancing option is depicted in Figure 8, as the load is
balanced on 3 cores. The two cores with low loads (green ones)
would be shut down in the next monitoring interval. Finally,
in Figure 9 on may see what happens when all cores are
overloaded. This causes the Overloaded flag to become true,
and the self-healing properties come in effect. The aggregator
starts asking its neighbors to accept a sensor of its, in order
to relieve load. Currently, the sensor to migrate is chosen
randomly. Other policies may be applied as well.

Discussion
The demonstrator serves two purposes: a) to explore the po-
tential of implementing complex self-management policies,
building adoptable aggregator software running on multi-core
devices, that may serve as aggregators and b) to explore ag-
gregator software performance issues, under different circum-
stances (configuration, load, etc).

In more detail, for the first purpose, the software development
should be cost-efficient, while the software itself should be
easily deployed in many devices. This is the reason why,
it was decided to be implemented in Java. Efficient memory
management techniques were adopted (using existing libraries)
to ensure its performance. Another issue at hand was to design
it in order to be easily extendable. The concept of monitoring
variables associated with specific policies and the modular
implementation of monitoring and, especially decision making
unit, introduced to achieve self-management, enable different
policies for discrete design issues to be integrated within a
single implementation. For example, different algorithms
may by applied for scheduling multi-critical requests in active
cores. To integrate such feature the following steps should



be taken: 1) Implement discrete algorithms as libraries, 2) A
corresponding Monitoring Variable is maintained to indicate
selected policy, 3) Corresponding self-configuration policy is
implemented by adding proper rules in the Decision Making
Unit.

While for the second purpose, the demonstrator indicated that
the operation of the autonomous aggregator was efficient under
heavy load created by supported service, though IoT configu-
ration complexity was not explored at this stage. Neither the
number of sensors nor the number of aggregators was exten-
sive. However, the fact that aggregator software performance
was efficient and not affected by different load conditions, indi-
cated the potential of the proposed approach. The numbers of
controlled devices is limited by the aggregator’s own resources
and affected by service load. Furthermore, the demonstrator
focused on the aggregator operation itself. Neighoring aggre-
gator efficient interaction should be further investigated.

The next step in evaluating autonomous aggregator software is
to test its performance in large-scale IoT architectures, using
both simulation tools and real-world case studies.

CONCLUSION
Promoting autonomous operation of aggregators integrated
within SOA for the IoT multi-core systems was discussed in
this work. The aggregator itself is designed as a system con-
sisting of independent components. Self-management policies
were introduced and the implementation of monitoring and
decision making components, promoting their enforcement
was discussed. Future work is concentrated in extending the
decision making functionality, allowing neighboring aggrega-
tors to share their policies and experiences without enforcing
any centralized control in decision making. Also performance
issues should be explored in large-scale IoT systems.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement no

621429.

REFERENCES
1. ZigBee Alliance. www.zigbee.org. (????).

2. A. Ahmed and E. Ahmed. 2016. A survey on mobile edge
computing. In 2016 10th International Conference on
Intelligent Systems and Control (ISCO). 1–8.

3. Unai Alegre, Juan Carlos Augusto, and Tony Clark. 2016.
Engineering context-aware systems and applications: A
survey. Journal of Systems and Software 117 (2016),
55–83.

4. Cesare Alippi, Giuseppe Anastasi, Cristian Galperti,
Francesca Mancini, and Manuel Roveri. 2007. Adaptive
sampling for energy conservation in wireless sensor
networks for snow monitoring applications. In Mobile
Adhoc and Sensor Systems, 2007. MASS 2007. IEEE
International Conference on. IEEE, 1–6.

5. Giuseppe Anastasi, Marco Conti, Mario Di Francesco,
and Andrea Passarella. 2009. Energy conservation in

wireless sensor networks: A survey. Ad hoc networks 7, 3
(2009), 537–568.

6. Satoshi Asano, Takeshi Yashiro, and Ken Sakamura.
2016. Device collaboration framework in IoT-aggregator
for realizing smart environment. In TRON Symposium
(TRONSHOW), 2016. IEEE, 1–9.

7. Luigi Atzori, Antonio Iera, and Giacomo Morabito.
2010a. The Internet of Things: A survey. Computer
Networks 54, 15 (oct 2010), 2787–2805.

8. Luigi Atzori, Antonio Iera, and Giacomo Morabito.
2010b. The internet of things: A survey. Computer
networks 54, 15 (2010), 2787–2805.

9. Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo
D’Angelo, Haohan Li, Alberto Marchetti-Spaccamela,
Nicole Megow, and Leen Stougie. 2012. Scheduling
real-time mixed-criticality jobs. IEEE Trans. Comput. 61,
8 (2012), 1140–1152.

10. Claudio Bettini, Oliver Brdiczka, Karen Henricksen,
Jadwiga Indulska, Daniela Nicklas, Anand Ranganathan,
and Daniele Riboni. 2010. A survey of context modelling
and reasoning techniques. Pervasive and Mobile
Computing 6, 2 (2010), 161–180.

11. George Bravos and et.al. 2015. An autonomic
management framework for multi-criticality smart
building applications. In 13th INDIN Conference. IEEE,
1378–1385.

12. Alan Burns and Robert Davis. 2013. Mixed criticality
systems-a review - 8th edition. Department of Computer
Science, University of York, Tech. Rep (2013).

13. E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M.
Naeve, B. Heile, and V. Bahl. 2002. Home networking
with IEEE 802.15.4: a developing standard for low-rate
wireless personal area networks. IEEE Communications
Magazine 40, 8 (Aug 2002), 70–77. DOI:
http://dx.doi.org/10.1109/MCOM.2002.1024418

14. M Castillo-Effer, Daniel H Quintela, Wilfrido Moreno,
Ramiro Jordan, and Wayne Westhoff. 2004. Wireless
sensor networks for flash-flood alerting. In Devices,
Circuits and Systems, 2004. Proceedings of the Fifth
IEEE International Caracas Conference on, Vol. 1. IEEE,
142–146.

15. Guanling Chen, Ming Li, and David Kotz. 2008.
Data-centric middleware for context-aware pervasive
computing. Pervasive and mobile computing 4, 2 (2008),
216–253.

16. M. Chiang and T. Zhang. 2016. Fog and IoT: An
Overview of Research Opportunities. IEEE Internet of
Things Journal 3, 6 (Dec 2016), 854–864.

17. Marco Crasso, Alejandro Zunino, and Marcelo Campo.
2008. Easy web service discovery: A query-by-example
approach. Science of Computer Programming 71, 2
(2008), 144–164.

www.zigbee.org
http://dx.doi.org/10.1109/MCOM.2002.1024418


18. Amol Deshpande, Carlos Guestrin, Samuel R Madden,
Joseph M Hellerstein, and Wei Hong. 2004. Model-driven
data acquisition in sensor networks. In Proceedings of the
Thirtieth international conference on Very large data
bases-Volume 30. VLDB Endowment, 588–599.

19. Anind K Dey, Gregory D Abowd, and Daniel Salber.
2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware
applications. Human-computer interaction 16, 2 (2001),
97–166.

20. Alexandros C Dimopoulos and et.al. 2016. A multi-core
context-aware management architecture for
mixed-criticality smart building applications. In 11th
SOSE Conference. IEEE, 1–6.

21. Schahram Dustdar and Wolfgang Schreiner. 2005. A
survey on web services composition. International
journal of web and grid services 1, 1 (2005), 1–30.

22. Brahim Elbhiri, Rachid Saadane, Driss Aboutajdine, and
others. 2010. Developed Distributed Energy-Efficient
Clustering (DDEEC) for heterogeneous wireless sensor
networks. In I/V Communications and Mobile Network
(ISVC), 2010 5th International Symposium on. IEEE, 1–4.

23. Mohamed Elhoseny, Xiaohui Yuan, Zhengtao Yu, Cunli
Mao, Hamdy K El-Minir, and Alaa Mohamed Riad. 2015.
Balancing energy consumption in heterogeneous wireless
sensor networks using genetic algorithm. IEEE
Communications Letters 19, 12 (2015), 2194–2197.

24. Zesong Fei, Bin Li, Shaoshi Yang, Chengwen Xing,
Hongbin Chen, and Lajos Hanzo. 2017. A Survey of
Multi-Objective Optimization in Wireless Sensor
Networks: Metrics, Algorithms, and Open Problems.
IEEE Communications Surveys & Tutorials 19, 1 (2017),
550–586.

25. Tia Gao, Dan Greenspan, Matt Welsh, Radford R Juang,
and Alex Alm. 2006. Vital signs monitoring and patient
tracking over a wireless network. In Engineering in
Medicine and Biology Society, 2005. IEEE-EMBS 2005.
27th Annual International Conference of the. IEEE,
102–105.

26. Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and
Shambhu Upadhyaya. 2007. Self-healing systems —
survey and synthesis. Decision Support Systems 42, 4 (jan
2007), 2164–2185.

27. Tao Gu, HC Qian, Jian Kang Yao, and Hung Keng Pung.
2003. An architecture for flexible service discovery in
OCTOPUS. In Computer Communications and Networks,
2003. ICCCN 2003. Proceedings. The 12th International
Conference on. IEEE, 291–296.

28. Dominique Guinard, Vlad Trifa, Stamatis Karnouskos,
Patrik Spiess, and Domnic Savio. 2010. Interacting with
the soa-based internet of things: Discovery, query,
selection, and on-demand provisioning of web services.
IEEE transactions on Services Computing 3, 3 (2010),
223–235.

29. Karen Henricksen, Jadwiga Indulska, and Andry
Rakotonirainy. 2002. Modeling context information in
pervasive computing systems. In International
Conference on Pervasive Computing. Springer, 167–180.

30. Ankur Jain and Edward Y Chang. 2004. Adaptive
sampling for sensor networks. In Proceeedings of the 1st
international workshop on Data management for sensor
networks: in conjunction with VLDB 2004. ACM, 10–16.

31. Tracy Kijewski-Correa, Martin Haenggi, and Panos
Antsaklis. 2006. Wireless sensor networks for structural
health monitoring: A multi-scale approach. In Structures
Congress 2006: 17th Analysis and Computation Specialty
Conference. 1–16.

32. Tim Kindberg and John Barton. 2001. A web-based
nomadic computing system. Computer Networks 35, 4
(2001), 443–456.

33. Jeff Kramer and Jeff Magee. 2007. Self-managed
systems: an architectural challenge. In 2007 Future of
Software Engineering. IEEE Computer Society, 259–268.

34. Kyung Sup Kwak, Sana Ullah, and Niamat Ullah. 2010.
An overview of IEEE 802.15. 6 standard. In Applied
Sciences in Biomedical and Communication Technologies
(ISABEL), 2010 3rd International Symposium on. IEEE,
1–6.

35. Chi Harold Liu, Bo Yang, and Tiancheng Liu. 2014.
Efficient naming, addressing and profile services in
Internet-of-Things sensory environments. Ad Hoc
Networks 18 (2014), 85–101.

36. Konrad Lorincz, David J Malan, Thaddeus RF
Fulford-Jones, Alan Nawoj, Antony Clavel, Victor
Shnayder, Geoffrey Mainland, Matt Welsh, and Steve
Moulton. 2004. Sensor networks for emergency response:
challenges and opportunities. IEEE pervasive Computing
3, 4 (2004), 16–23.

37. David Luckham. 2015. Event Processing for Business:
Organizing the Real-Time Enterprise. Wiley Publishers.

38. Basil Nikolopoulos and et.al. 2016. Embedded
intelligence in smart cities through multi-core smart
building architectures: Research achievements and
challenges. In 10th RCIS Conference. IEEE, 1–2.

39. Ismael Peña-López and others. 2005. ITU Internet report
2005: the internet of things. (2005).

40. C. Perera, A. Zaslavsky, P. Christen, and D.
Georgakopoulos. 2014. Context Aware Computing for
The Internet of Things: A Survey. IEEE Communications
Surveys Tutorials 16, 1 (First 2014), 414–454.

41. Gregory J Pottie and William J Kaiser. 2000. Wireless
integrated network sensors. Commun. ACM 43, 5 (2000),
51–58.

42. Vijay Raghunathan, Curt Schurgers, Sung Park, and
Mani B Srivastava. 2002. Energy-aware wireless
microsensor networks. IEEE Signal processing magazine
19, 2 (2002), 40–50.



43. Mazeiar Salehie and Ladan Tahvildari. 2009.
Self-adaptive software: Landscape and research
challenges. ACM transactions on autonomous and
adaptive systems (TAAS) 4, 2 (2009), 14.

44. Michael F. Schwartz, Alan Emtage, Brewster Kahle, and
B. Clifford Neuman. 1992. A comparison of internet
resource discovery approaches. Computing Systems 5, 4
(1992), 461–493.

45. Zach Shelby and Carsten Bormann. 2011. 6LoWPAN: The
wireless embedded Internet. Vol. 43. John Wiley & Sons.

46. Gyula Simon, Miklós Maróti, Ákos Lédeczi, György
Balogh, Branislav Kusy, András Nádas, Gábor Pap, János
Sallai, and Ken Frampton. 2004. Sensor network-based
countersniper system. In Proceedings of the 2nd
international conference on Embedded networked sensor
systems. ACM, 1–12.

47. Georgios Smaragdakis, Ibrahim Matta, and Azer
Bestavros. 2004. SEP: A stable election protocol for
clustered heterogeneous wireless sensor networks.
Technical Report. Boston University Computer Science
Department.

48. Norah Tuah, Mahamod Ismail, and Kasmiran Jumari.
2011. Energy efficient algorithm for heterogeneous
wireless sensor network. In Control System, Computing
and Engineering (ICCSCE), 2011 IEEE International
Conference on. IEEE, 92–96.

49. Malik Tubaishat, Peng Zhuang, Qi Qi, and Yi Shang.
2009. Wireless sensor networks in intelligent

transportation systems. Wireless communications and
mobile computing 9, 3 (2009), 287–302.

50. George Vellidis, Michael Tucker, Calvin Perry, Craig
Kvien, and C Bednarz. 2008. A real-time wireless smart
sensor array for scheduling irrigation. Computers and
electronics in agriculture 61, 1 (2008), 44–50.

51. Geoffrey Werner-Allen, Konrad Lorincz, Mario Ruiz,
Omar Marcillo, Jeff Johnson, Jonathan Lees, and Matt
Welsh. 2006. Deploying a wireless sensor network on an
active volcano. IEEE internet computing 10, 2 (2006),
18–25.

52. Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal.
2005. Analysis of a prediction-based mobility adaptive
tracking algorithm. In Broadband Networks, 2005.
BroadNets 2005. 2nd International Conference on. IEEE,
753–760.

53. Huseyin Ugur Yildiz, Kemal Bicakci, Bulent Tavli,
Hakan Gultekin, and Davut Incebacak. 2016. Maximizing
WSN lifetime by communication/ computation energy
optimization of non-repudiation security service: Node
level versus network level strategies. Ad Hoc Networks 37
(2016), 301–323.

54. YIN Yuehong, Yan Zeng, Xing Chen, and Yuanjie Fan.
2016. The Internet of Things in Healthcare: An Overview.
Journal of Industrial Information Integration 1 (2016),
3–13.


	Introduction
	Related Work
	Energy Efficiency
	Old

	The Role of Aggregators in a SOA for Multi-core IoT Systems
	Autonomous Aggregator Software
	Self-configuration policies
	Multi-critical request management
	Aggregator Resource Management
	Aggregator Service QoS Preservation

	Self-healing Policies
	Erroneous Data Filtering
	Sensor Health Monitoring

	Self-adaptation Policy
	Sensor Communication Mode

	Aggregator Software Components

	Smart Building Demonstrator
	IoT Services operating in Smart Building Demonstrator
	Room Temperature Control
	Fire Watchdog
	Person's Whereabouts Service

	Autonomous Aggregator's Operation
	Discussion


	Conclusion
	Acknowledgments
	References 

