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Abstract: As the Internet of Things (IoT) becomes more popular, supporting
systems and their components become more complex and largely heterogeneous.
This paper discusses on a System of Systems (SoS) architecture for IoT
systems composed by autonomous components. The proposed architecture
focuses on a middleware transforming sensor services to REST services, for
the development of mixed-criticality applications. The middleware consisting
of autonomous aggregation software running on commodity multi-core devices,
such as Raspberry Pi. Self-management policies applied are discussed in the paper.
The analysis of a smart building system, developed as a use case, provides solid
evidence that such an architecture is realistic and can lead to highly competitive
systems.
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1 Introduction

In the last few years, more and more devices of everyday usage are becoming connected
to the Internet, even devices that traditionally did not have any connections. The Internet
of Things (IoT) promotes the interconnection of such devices, integrating them into a large
network capable of offering numerous services to the end user. IoT technology is applied
in different areas, from e-health [1] and transportation [2] to smart city [3] and building
operation [4].
As IoT services become more popular, clearly the systems supporting them become
more complex. There are numerous efforts [5] to promote distributed architectures for
implementing complex IoT systems, ensuring their scalability. Following recent trends
in Edge [6] and Fog [7] computing for IoT, the concept of providing an intermediate
computing layer operating closer to the sensors and user devices promotes scalability,
availability and performance. Instead of gathering raw data from sensors in centralised
processing nodes, e.g. cloud servers, and centrally making all decisions regarding the
configuration of an IoT system, there is an alternative approach to add device controlling
nodes, called aggregators or gateways, to aggregate data from all the available devices and
offer corresponding service-oriented architecture (SOA) services. [8]. The existence of an
aggregator helps heterogeneous interconnected devices to collaborate seamlessly, while the
autonomous operation of such components, utilizing the context they operate in [9], ensures
the scalability of IoT systems, thus is of great importance. These aggregator services may
run in commodity multi-core devices, e.g. Raspberry Pis, to control the sensors and the
provided services to IoT user applications. The aggregators contribute to the enhancement
of transparency, since device-specific details are hidden from the IoT application users.
In general, every portable or embedded implementation is bound by a major restrain, i.e.
limited power supply. Typically, a wireless sensor network (WSN) [10] is bounded by the
finite power source of its consisting sensor nodes. It has been proven [11] that in terms of
energy consumption it is much more expensive than data processing: the required energy
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for transmitting a single bit is equal to that needed for executing thousands of operations
inside the node [12]. In addition, the power consumption of a processing unit is directly
linked to the number of processing elements (i.e. cores) that are active.
Usually, the existence of an aggregator contributes in the energy conservation of each sensor
and the whole network itself [13]. The aggregator unit has the responsibility of collecting
data from each sensor; not necessarily following an identical procedure for all sensors.
Although, in many cases [5, 9] aggregators become intelligent and may obtain some self-
configuration features, there is a need for a generic approach towards a software architectural
framework for implementing self-management policies in a unified and extendable fashion.
The authors have previously presented the design and deployment of smart building SOA
systems consisting of autonomous, cognitive components, targeting self-configuration and
self-optimization features [14]. Moreover, in [15, 16] a context-aware, smart building
management multi-core architecture, for tackling mixed criticality applications in an IoT
context was presented.
In the currently presented work, the aggregator is implemented as autonomous, based on
specific self-X properties, via the exploitation of which the end user of the system continues
to receive all the requested services as expected; however, the aggregator controls more
efficiently the flow of information and, if possible, limits the number of transmitted data.
In a nutshell, based on the criticality of a service and the existence or absence of cached
information, the aggregator controls the way the sensor measurements are going to be read,
driven by the overall energy consumption. Within the aggregator, the number of active
computer cores significantly defines the power consumption of the aggregator itself. The
deployment of applications that follow a multi-critical scheme, allows the aggregator to
organize the requests based on their criticality and apply load-balancing techniques in an
attempt to keep the active cores as loaded as possible, while suspending needless cores.
As a proof of concept, of the proposed architecture, a case study is used, where the issue of
power consumption is tackled while maintaining the system performance at very satisfying
level. More specifically, a two-fold strategy regarding energy efficiency is followed. At the
first level, the transmission model is enhanced by limiting the number of not imperative
communications and thus increasing the power source duration. And in the second level, the
number of active cores is controlled and according to the system’s needs all non-essential
cores are not used and thus their power consumption is drastically reduced. The decrease
in power consumption is accumulated from both levels, while the quality of service is
preserved within the acceptable levels. Moreover, the decisions regarding the most energy
efficient policy are imposed automatically by the proposed implementation, in a seamless
for the user way.
Hence, in the rest of the paper the proposed architecture is throughly presented, in an attempt
to highlight its automocity, combined with the underlying self manged policies. In Section
2 a quick introduction of the necessary background is given. In Section 3 the details of the
proposed architecture are introduced from a more abstract perspective, while in Section 4
an in-depth analysis of the architecture’s core module is given. In Section 5 the proposed
implementation is described through a use-case taken from the smart building area and the
experimental results of this scenario are presented in Section 6. Finally, Section 7 concludes
the discussion on the design and deployment of the presented architecture.
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2 Related Work

In the following subsections and in order to maintain the paper as self-contained as possible,
a quick introduction of the necessary background is given, along with a brief review of the
related work.

2.1 Service-Oriented Architecture (SOA) for IoT

In the IoT era more and more devices are becoming Smart Devices, while the number
and variety of resources available in the field of IoT have increased dramatically. These
resources (deployed devices) are inevitably heterogeneous and differ in many aspects [5]
and this certainly increases the difficulty in managing the derived systems and thus makes it
inefficient to manually access and control them. A solution to this heterogeneity is the usage
of service-oriented architectures (SOA), providing an interoperable way of communication.
However, SOA concepts were originally designed for dealing mainly with few, complex and
mainly static enterprise services [17]. Therefore, the trend is to create SOA web services,
allowing the horizontal and vertical collaboration among IoT devices, online services, users,
etc. [17]. Based on the very needs, available technology and applied specifications, various
models have been presented for creating multi-layer SOAs. The model presented by the
International Telecommunication Union (ITU) consists of five different layers [18] while
other researchers propose either three layers [5] or four [19]. Typically, a web service
model consists of a service provider, a service registry and a service consumer [20]. For
a client application (service consumer) to connect to such a server, a network address
and port is essential to be known [21], as well as information on how to communicate
(protocol, language, and mechanisms to use). This information can be obtained using a
registry service, such were UDDI (Universal Description, Discovery and Integration) which
were the materialization of the SOA registry component for publishing and discovering
Web services [22] or other more recent forms of resource discovery [23].
The IoT systems are becoming cheaper, smaller in size and more capable as time passes.
One of the most promising capability that augments the potentials of the IoT is Context.
Context aware systems are systems that can handle the context information and use it to
their gain. In general, context-aware computing has been introduced as a key feature in IoT
systems over the last years and a lot of work has been done that demonstrate the importance
of context awareness. Some early works like CoolTown [24] and work by Henricksen et
al. [25] highlight the importance of context aware computing. In order to successfully
implement and manage context models, many different techniques have been presented in
the literature [26]. Another aspect of the IoT era is the multi-criticality of the applications
that will be deployed. A multi-criticality system is a system where every service, or job of
the system is characterised by a level of importance [27]. It must be noted that criticality in
IoT applications is usually not real-time but quasi real time, i.e. the responses/decisions are
not expected in milliseconds or microseconds but can be reported in quite few milliseconds
or even seconds. The latter response time is not considered a problem for most of the IoT
applications.

2.2 Aggregation

Furthermore, instead of gathering raw data from sensors in centralised processing nodes,
e.g. cloud servers, and centrally making all decisions regarding the configuration of an IoT
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system, there is an alternative approach to add device controlling nodes, called aggregators
or gateways, to aggregate data from all the available devices and offer corresponding SOA
services. [8]. The existence of an aggregator helps heterogeneous interconnected devices
to collaborate seamlessly. If no aggregator was to be used, then a standardization of the
APIs used by all devices would be necessary. The latter is very difficult - if not impossible
- given the large number of different manufactures at a virgin field such as IoT, where each
additional function a manufacturer adds is considered to be added value of the specific
device [28].
The existence of aggregators or gateways has also been adopted by potential standards,
as Edge [6] and Fog [7] computing for the IoT, providing an intermediate computing
layer operating closer to sensors and user devices. Such architectures have already been
adopted by specific IoT application areas, as for example for smart-health services [29].
Following the proposed concepts of Edge or Fog nodes, aggregator services may run in
multi-core devices, (e.g. Raspberry Pis), to control sensors and provided services to IoT user
applications entering their area of control. Aggregators may contribute to the enhancement
of transparency, since they hide device-specific details form IoT application users. The
aggregator unit has the responsibility of collecting data from each sensor; not necessarily
following the same procedure for all sensors. To deal with the additional complexity
introduced, aggregators should operate in an autonomous fashion and become self-managed,
based on the context they operate in. Moreover, the existence of an aggregator may contribute
in the energy conservation of each sensor and the whole network itself [13].

2.3 Smart building management and energy efficiency

According to Eurostat, the consumption of energy in the EU that corresponds to buildings is
around 40% [30]. Thus, a large initiative of Europe 2020 strategy regards energy efficiency
measures in buildings [31]. The energy consumption is controlled via a BMS (Building
Management System) capable of controlling lighting, heating units and other energy hungry
subsystems. A major issue for such systems is the lack of standardization for the metadata
needed in identifying sensors and hence it has to be done in a great extend manually. There
are different proposals in the literature such as Zodiac [32] that automatically classifies,
names and manages sensors based on active learning from sensor metadata or the one
in reference [33] that uses knowledge from expert-provided examples. Other approaches
such as the one in reference [34], utilize linguistic and semantic techniques for computing
similarity values between labels of sensors and BMS inputs. While IMPReSS SDP [35],
aims at rendering the development of BMS less complex and more cost effective by allowing
external developers to create energy management services that exploit its architecture.
An IoT implementation that tackles with building energy efficiency must find ways to
reconcile the conflicting concepts of energy efficiency and occupant comfort. Such an
implementation commonly relies on a WSN, since WSNs have proven to be very valuable
for monitoring and surveillance in various application fields, from monitoring health [36]
and natural environment [37] to agriculture [38].
However, since a WSN is bounded by the finite power source of its consisting sensor nodes,
a major effort has been given in the direction of developing energy-saving techniques. These
techniques can be divided into two significant categories: the ones that focus on the energy
efficiency of the network itself and those that focus on finding ways to reduce the frequency
of the costly transmissions.
For the first category, various schemes exist in the literature, implementing different low-
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power communications protocols such as ZigBee [39], IEEE 802.15.6 [40], 6LoWPAN
[41] and many more. Regarding the second category, the efficiency is achieved by reducing
the energy spent by the sensors. Since it is common for measured values to change slowly
with time, one major class [42, 43] for energy efficient data acquisition aims at reducing
the number of acquisitions, especially since some sensors require considerable power
to perform their sampling or to convert them using power-hungry A/D converters [44].
Other techniques for energy efficient sampling are also abundant in the literature, such as
hierarchical [45] or model-based active sampling [46], each one with its merits and flaws
frequently contradicting with performance metrics such as latency and reliability [47].
In the following, we will be dealing with the second category in an attempt to increase
the energy efficiency of the system, while keeping the performance at the same levels. We
consider that the nature of the existing network is given at most case, i.e. the sensors used
are based on commodity hardware and hence the implemented protocol is already imposed.

2.4 IoT Architectural Frameworks

Currently hundreds of IoT platforms are offered in the market, heavily affecting our everyday
life. Since we are still at the beginning of the IoT era, neither dejure or defacto standards are
applied yet. There are various efforts on new IoT application development using existing
or newly introduced protocols for the control of the hardware, for the communication
scheme, etc. The idea of controlling and coordinating various IoT elements through an
IoT framework comes naturally, allowing a high-level implementation that hides the low-
level technical complexity from the developer and the users. However, still the commercial
frameworks offered are tightly connected with big market players, e.g. AWS IoT (Amazon),
ARM Bed (ARM), Azure IoT Suite (Microsoft), Brillo/Weave (Google), Calvin (Ericsson),
HomeKit (Apple), Kura (Eclipse) and SmartThings (Samsung) [48]. Moreover, the existence
of numerous frameworks defeats the idea itself of a framework, since still no homogeneity
is achieved.
However, IoT systems consist of numerous components of diverse complexity,
communicating using different protocols and integrated in different levels of detail. They
are built over the chaotic sensor network world. To that end, a number of orchestrators and
monitors come into play to add to the number of IoT components. On top of this, services
and applications are developed.
Eventually, IoT systems are moving towards becoming systems of systems. This trend is
apparent in [49] and [50], where multiple systems and technologies come into play when
constructing an IoT System. In [49] we can see a division of the architecture in the following
layers from lower to higher levels: Sensing Layer, Network Layer, Service Layer, Interface
Layer.
The sensing layer is integrated with existing hardware (RFID, sensors, actuators, etc.) to
sense/control the physical world and acquire data. The networking layer provides basic
networking support and data transfer over wireless or wired network. The Service layer
creates and manages services. It provides services to satisfy user needs. The Interface
layer provides interaction methods to users and other applications. Another common trend
is providing an interface to communicate with the sensors and embedded devices, over
http RESTful services. This is described in [50] where RESTful services are provided for
interacting with the sensor networks, and embedded devices. In addition, DPWS [51] is
used for network discovery of smart devices and the management of their services.
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3 IoT System Architecture

Based on the current trends of IoT Systems, we have designed the multi-layered system
architecture of in Fig. 1. The main layers of our architecture and the components in each
are the following:

• Sensor networks layer where sensors and as an extension sensor networks reside

• Aggregation Layer where Aggregator Units exist

• Service Routing sublayer where Registry Units exist

• Services and Entities Layer where Service Entities and End User applications are
encompassed

This layering has been tailored so as to create two separate worlds. The first world
consists of heterogeneous sensor networks. These networks that get formed in this layer,
can be either wired or wireless, and can be either sensor nodes, smart devices, embedded
devices or any other device that can provide a service and has a way of communicating with
an aggregator unit. It is the aggregator units’ obligation to be able to cater for as many of
sensor networks as possible.
Aggregator units, in turn, have the role of turning the chaotic world of WSNs into a more
structured one by providing the whole of the actions that can be performed on the WSNs,
over a RESTful API. We name our API as the “Multipurpose Unified JSON API”, since by
using this API, one can perform any action available in a WSN, regardless of the nature of
the action. An action may be a sensing of a environmental variable, an action on an actuator,
turning on or off a switch etc.
The third layer of our architecture encompasses all high-level entities that use the services
provided by an aggregator unit. These services can be plain services that call services from
the aggregators and return the result to a user, or be more complex, e.g. use other services’

Figure 1: The envisioned architecture’s high-level view
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results in order to tailor another result, which in turn can be used either as a response to
an end user or as input to another service. An important note about this layer, is that it
encompasses the end user applications as well.
Between the aggregation and the service layer, there exists a space where we include the
Registry Unit. The Registry Unit acts as a bridge between aggregator units and services. It
is in essence a service registry where aggregators register their services and service entities
can look up any information they need about aggregator services.
It has been deemed necessary [27] for a SoS System, let alone an IoT System, to be able to
cater for Multi-criticality. Multi-criticality means that service provision is prioritized based
on how important a service call is. Our architecture caters for multi-criticality, by allowing
callers of a service to define how important their call is. The aggregator units in turn, take
into consideration this extra information and use it to prioritize their service queue.
An important aspect of SoS systems as described in [52] and [53] that we wanted to research,
is the aspect of autonomicity. The benefits of autonomicity are numerous, ranging from
faster response times and higher QoS to self healing and disaster aversion. For our system
to be considered autonomous, a set of self-Configuration properties has to be fulfilled.
A stand alone feature of our architecture, as well as a part of the autonomicity features, is
load balancing. Load balancing in our architecture happens in two layers. We balance the
load of the aggregator’s CPU in its cores, and we dictate the way sensors communicate in
our sensor layer (pushing data or pulling data) in order to better distribute load and achieve
a level of energy efficiency.
We will now provide a high-level analysis of each component of our envisioned architecture,
while more details regarding the sensors and the aggregator will be discussed in section 4.

3.1 Sensors

The sensor components in our architecture are considered to be heterogeneous and
communicating with different protocols. As such, the architecture is able to cater for
heterogeneous sensor networks, while also providing a seamless experience for the end
user. The sensor networks are to communicate with one or multiple aggregator units, in
order to report their readings. An important aspect of sensor-aggregator communication is
the way the sensors report readings to an aggregator: either by constantly pushing data from
the sensor to the aggregator, or by having a call/response relation, where the aggregator
requests data from the sensor and the sensor responds.

3.2 Aggregators

The aggregator unit is the bridging component, of our SOA architecture, between the
sensor networks (WSN/SN) and the higher-level components of the system. It provides the
transparency layer that translates the actions available on the WSN, to RESTful services
over HTTP protocol. This layer of transparency is critical as it removes the extra load of
forcing users to use specific hardware, software, and communication protocols in order to
communicate with the WSN, as this is, entirely handled by the aggregator units. We define
an aggregator unit as an autonomic unit that can provide as a bare minimum the following
features:

• Ability to communicate with at least one WSN and keep constant track of it

• Register and Update Services to the Registry Unit



A SoS Architecture for the IoT exploiting Autonomous Components 9

• Effectively serve requests, according to its stated policies

In addition to the above, we also propose that an extra set of functions should be available
and provided by the aggregator unit. These include, but are not limited to:

• Provision of aggregate functions (e.g. provide the mean temperature from a group of
sensors)

• Context Reasoning (e.g. provide services per room/per item/per entity e.t.c.).

3.3 Registry

The registry unit constitutes a simplified DNS-like service as presented in Fig. 2. Any
component may poll the registry unit so as to get a list of available components (either
aggregators or application/service components). Moreover, it may ask for available services
of a specific component. A registry entry consists of: the component description, its IP, and
the component’s services, followed by a short description of each service. For example, an
application component may poll the registry with an aggregator id and a sensor id as HTTP
parameters. The registry should let the application component know about the available
services the aggregator offers for that specific sensor. Such services might be for instance,
a switch toggle, a specific sensor reading or a battery level.
Aggregators are the only components responsible for posting the data to the registry unit
via a registration procedure. This procedure is done over HTTP, using valid HTTP verbs. A
component is also responsible for renewing its registry records when a service/sensor node
is no longer available. The registry unit can opt to delete any component and the services it
offers, denoted with the unique ID, assigned to it at the register process, if the component has
not renewed its records in a while. The services provided are fully RESTfull and therefore
can easily be manipulated and used. Moreover, all reply messages are in JSON format to
allow easier manipulation of the data received. For a developer to implement an application

Figure 2: High-level communication flows between Architecture components and the
registry unit.
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using the registry unit, she can simply poll the registry for the services’ descriptions and
start using them through their endpoint component.
The registry unit acts as discovery service for the users and a registry service for the
autonomous components currently available. As such, no information about the underlying
WSN and sensor types is maintained in the registry. Aggregators are responsible for the
correct documentation of their services and that allows us to consider a layer of abstraction
over the WSN.

3.4 Services

Service components provide a service to an end user, either by directly communicating with
an aggregator unit, after consulting the registry, or by using multiple existing services to
aggregate data that are provided through these services and then compile a new service. As
such, services have a dual nature as they can be considered either as end user components
or as middleware that provide the foundation for other services. For a user to take advantage
of any of the sensors and actuators unified under the aggregator, a specific service must be
available. Every service is to be executed outside the aggregator, on an external processor,
i.e. a computer or even a smart phone. Obviously, the possible services are numerous and
only limited by the available sensors, actuators, and user creativity on how to combine them.
A typical service does not have direct communication with the WSN or any subpart of the
aggregator, but only with a dedicated component, as it will be explained in the next Section.
Hence, the user via a service can utilize any subpart of the aggregator but without directly
accessing it.
It is imperative for every service to advertise its existence by enrolling itself to the registry
unit, so that the users can locate and use it. Every service contacts the SPU making requests
with different levels of criticality, leading to various degrees of load. Thus, the aggregator
monitors all the service requests and tries to satisfy all requests while retaining self-
configuration and self-adaptation. However, under specific load condition the aggregator
may not guarantee the timely execution of every service request. Finally, the communication
between a service and the aggregator is achieved via a REST/JSON API.

4 Aggregator

The most important aspect of the aggregator unit is its autonomicity. The aggregator unit
is an autonomous entity, in the sense that it is capable of making decisions that improve its
performance and functionality. In order to achieve its autonomicity, it takes into account the
context it is able to gather for the environment it is operating in, such as available nearby
units, sensors’ status etc. For the autonomicity to be actually achieved and implemented,
we have defined a number of policies to be enforced by the aggregator unit, that can be
grouped under two categories Self-Configuration Policies and Self-Adaptation Policies.
Self-X properties are the sum of properties that define the aggregator unit as autonomous.
With Self-X properties being the goal, the Self-X policies are the means with which to
achieve the goal. Each of the aforementioned set of policies aims at achieving a different
aspect of autonomicity, as suggested by the names. We will refer to the set of policies stated
to pertain autonomicity as Self-X policies.
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4.1 Self-X properties and Self-X policies

Each set of Self-X policies, aims at implementing a Self-X property of the aggregator. The
combination of these Self-X properties, give the aggregator unit its autonomicity. In order to
be able to properly implement and enforce the policies, the aggregator unit needs to manage
a number of resources. The main resources the aggregator manages are

• The aggregator’s energy consumption and/or battery power

• The sensors’ energy consumption and/or battery power

• The aggregator unit’s CPU cores

• The sensors under the aggregator’s influence themselves (i.e. accept or remove sensor
from the aggregator’s influence)

In addition, in order to be able to manage these resources, the aggregator unit must be able
to self-monitor itself. To that end, a number of variables is monitored by the aggregator unit
constantly, named “Monitored Variables”. In the following, each Self-X property will be
presented and establish why it is important for the autonomicity of the aggregator unit.

4.1.1 Self-Configuration

According to [54] self-configuration is defined as a system whose “components should
either configure themselves such that they satisfy the specification or capable of reporting
that they cannot”. To achieve a level of self-configurability, the aggregator unit monitors
a number of variables, relating to itself, its components, and the sensors it is managing
at the time. The aggregator unit should be able to self-monitor itself and reconfigure its
hardware, its software, and the way it operates on the fly. Described in the following are
three self-configurability policies we propose and define:
The first policy is the Criticality Level Management policy. This policy defines priorities
for all received service requests from users, by using “Criticality levels”. The requests are
then to be prioritized according to their criticality level and therefore, it is ensured that
requests with a higher-level of criticality are to be serviced with a higher priority compared to
requests with lower priority. Based on the work of [55], one way to tackle the aforementioned
quantization is to define discrete levels of criticality. The authors of [55] define 5 levels of
criticality in their work, Level-A to Level-E, with E being the lowest.
For our policy we will be quantizing the criticality of the requests in six levels level 1 to
level 6, with level 1 being the lowest. In accordance with [55], we use the five proposed
criticality levels, and add an extra criticality level of highest importance, that is to be used
only by the aggregator units, to communicate emergency messages.
By applying the same logic explained in [55], six distinct lists were implemented that map to
the six different criticality levels. At the event of the aggregator receiving a service request,
the latter is sorted and added to the appropriate criticality level list. For each list a different
scheduling algorithm is implemented for managing the requests in it: for levels 6 and 5 the
partitioned preemptive EDF is proposed, for levels 4 and 3 the global preemptive EDF, and
finally global best-effort for levels 2 and 1. The lists are checked for tasks from highest to
lowest criticality and tasks are processed according to the respective scheduling algorithm.
We name this algorithm for managing criticality levels as CAFIFO, or criticality aware
FIFO.
The second Self-Configuration Policy regards the “Resource Management”. The policy
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aims at minimizing the energy footprint of the aggregator units. To that end, the aggregator
unit constantly monitors the Monitored Variables. The main resource the aggregator
manages by enforcing this policy is the per CPU core load. As it is apparent, one of the
Monitored Variables is the per CPU core load. The policy is based on the premise that each
request to be serviced, is serviced in a separate thread, and that each thread spawned to
service a request is of similar complexity and thus stresses the CPU core in a linear manner.
If a core’s load is above a specific threshold, then it is regarded as overloaded. If, on the
contrary, it is below a specific threshold then it is considered under-utilized. Based on the
above, the aggregator unit takes the following actions:

• If a core is underutilized, then it should be shut down to preserve energy. Note that it
is shut down when its last remaining threads have finished executing.

• If a core is overloaded, then any incoming threads will be dispatched to another core
of the CPU. If no other core is running, then if possible turn one on.

• The next thread to be assigned to a core, is to be assigned to the core with the least
processing load on execution time.

• If all cores are overloaded, the aggregator enters “overloaded mode”. The aggregator
exits “overloaded mode” when at least one core’s load drops below the overloaded
threshold.

The third policy of the Self-configuration Policies, is the “Aggregator Service QoS
Preservation”. This policy aims at maintaining the quality of service (QoS) provided by the
aggregator units across our architecture. The policy is activated, and thus enforced, when the
unit is in overloaded mode. Then the aggregator unit is under great stress and the provided
QoS starts to decline. To prevent this, the aggregator can decide to ask nearby aggregator
units, if they can take over a sensor that was initially under the original aggregator’s
supervision.
To decide on which sensor is to be “migrated” over to a neighboring aggregator unit, a
simple metric is used. The metric takes into consideration the highest criticality level a
sensor was called to service recently and the amount of calls it received in that time. The
amount of time that this metric uses is the period the aggregator unit monitors its variables,
which is called a “monitoring quantum”. Monitoring quantum will be discussed in detail in
the following section.
After a sensor unit to be migrated is found, then the aggregator unit communicates with
neighboring aggregator units, using the criticality level 6, to inquire if they are able to
handle the sensor unit it decided to migrate. The neighboring aggregator units are then to
assess their load levels and decide upon whether they can handle accepting the sensor in
question or not. After a decision has been made, the aggregator units are to reply to the
originator aggregator unit. Should a suitable candidate be found, the aggregator unit will
inform the sensor of the change, if it needs to, and pass the needed information to the other
aggregator unit. If a candidate is not found, then the aggregator tries again with another
sensor unit, until it exhausts its sensor list. This will continue until the aggregator unit exits
the “overloaded mode”, at which point it will continue its normal operation.

4.1.2 Self-Adaptation

According to [56], self-adaptive software is software that “evaluates its own behavior
and changes behavior when the evaluation indicates that it is not accomplishing what the
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software is intended to do, or when better functionality or performance is possible”. As
defined in [57], the self-adaptation of a system has to do with the system’s ability to
accommodate resource variability, changing user needs, and system faults. Our proposed
system is self-adaptable in the sense that it can change the way it communicates with the
sensor units depending on the current needs.
To meet the goal of self-adaptation we propose one policy, the “Sensors’ Communication
Protocol”. Sensor modules usually support data collection through push and pull methods,
having the active method determined by users of the WSN. Push method means that the
sensor module constantly pushes data to the WSN, and the aggregator unit collects the
data as they are emitted. On the contrary, a pull method of communication means that
the sensor module only emits data when polled to act so. Each method has its advantages
and drawbacks, with push method being more energy consuming but providing fresh data
constantly, and push vice versa.
The aggregator unit is able to command a sensor module to change its communication
method based on the current context. On the event of a request with criticality level 5, the
aggregator will command the sensor involved to switch to push mode. Since push mode is
energy costly we have implemented a leasing scheme for how long a sensor will stay in
push mode. When a sensor changes to push method, the sensor is asked to use the push
method of communications for a certain time period, up to a minute. After that time period,
the sensor reverts back to pull method of communications. If a request is received with a
criticality level 5 for the same sensor within the mentioned time period, then the lease is
renewed for double the previous time span, up to a minute.
The pull method is the default option for our WSN and is utilized by medium and low
criticality requests. Requests of criticality Levels 1 to 4 will be serviced by using a
pull method of communications. In essence the aggregator unit processes a request, it
communicates with the sensor responsible for providing the data needed and then the sensor
responds with the data. Although this is more energy efficient, it adds some delay overhead,
as the user has to wait for the sensor to respond in order to get the fresh data.
Finally, another available option for requests of Criticality Levels 1 and 2 is a caching
method. Caching can be used to tackle the communication overhead of the pull method for
low criticality requests. The aggregator is able to cache data of every reading and timestamp
them. Whenever a sensor sends data to the aggregator, retrieved either by pull or push
methods, these data are stored in the shared memory module of the aggregator. On the event
of receiving a request of Criticality level 1 or level 2, and the data requested have already
been retrieved within a certain time span, then the cached data will be reported to the user.
By employing caching techniques, we achieve greater energy preservation both on the side
of the sensor modules and the aggregator unit while simultaneously maintaining a healthy
level of QoS.

4.2 Architectural Implementation

The software architecture used for the implementation of the aggregator unit, is comprised
of a number of modules, each of which provides a different utility to the aggregator. Not
all of the modules are essential for the aggregator’s basic operations. The extra modules
contribute to the self-management, the autonomicity, and the self-monitoring of the unit.
The modules function independently and communicate one another employing a common
memory space. The software modules that provide the minimum needed functionality are:

• Control Unit (MCU)
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• Service Provision Unit (SPU)

• Sensors Communication Unit (SCU)

• Shared Memory Unit (SHM)

On top of the above, there exists a software entity that is not literally a module but is essential
for the operation of the unit: the Request Execution Threads (RET). The units that cater for
the autonomicity of the unit are:

• Monitoring Unit (MON)

• Decision Making Unit (DMU)

All modules are depicted in Fig. 3, where a high-level representation is given, as well as
the way they communicate. As it is easily seen from Figure 3, all modules communicate
through the SHM; the direction of each arrow shows if the communication between the
SHM and a given module is one or both ways.
Moreover, a conceptual structure of the modules and the communication flows among them
can be seen in the class diagram of Fig. 4. The idea behind the modularisation of the software
of the aggregator unit originates on our premise to create an aggregator unit that would
easily adapt to any WSN with minimal changes. Given our proposed architecture, the only
sensor dependent module is the Sensors Communication Unit. In the following paragraphs
we will provide descriptions of the functionalities provided by each module, starting with
the modules needed for the basic functionality, and then carrying on to the more complex
modules catering for the autonomicity of the aggregator.

Control Unit (MCU)

The MCU is the unit that initializes and brings up the rest of the software modules and
generally controls aspects of the aggregator unit, e.g. turn on/off cores etc. An added
responsibility of the Control Unit is to keep the data fresh regarding the aggregator unit on the

Figure 3: High-level representation of the proposed implementation
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registry. This entails registering, updating, and deleting services available as well as update
any relevant information regarding provided services on the registry. The Control Unit
spawns Request Execution Threads which implement the asynchronous communication
between the Control Unit and the Sensors Communication Unit. Finally, the Control Unit is
responsible for queueing requests received from the SPU in their respective Request Queue
according to their Criticality Level.

Service Provision Unit (SPU)

The SPU provides a public interface to be used by users. This public interface, named
Multipurpose Unified JSON API, is common across all aggregator units, and should be
enforced, in order to provide a single method of communication in our architectural system.
By using the API, a user is able to request a service from an aggregator unit. The service
provided requests by the API can be categorized in three groups:

• Sensing: Sensing requests are requests that ask for an action to be performed on the
WSN. This action can be either a sensing request, as in to ask a sensor to sense an
environmental variable, or for an actuator to be engaged etc. The aggregator should
handle the overhead of simplifying complex requests that ask for a sensing request of
a conceptual area. Grouping areas include rooms, floors, buildings, and so on. On the
event of a complex request an aggregator may need to contact a number of sensors
instead of simply contacting one.

• Description: Description Requests provide the user with a description of a available
service. The answer is in accordance to the API and can be used by other autonomous
entities to further improve their provided services, or from end user devices to provide
a human readable description of the service.

• Entity: Entity requests provide users with information about the existence, or lack of
sensors and smart devices under the aggregator unit’s influence area.

All requests received by the SPU have a Criticality Level, defined at request time by the
user. After a request has been received and processed, it is forwarded to the Control Unit
to be sorted and handled accordingly. When a request has been properly handled and an
answer has been provided, then the SPU handles the communication with the user to provide
a response.

Sensors Communication Unit (SCU)

The SCU is the only software module that is sensor dependent. Its implementation varies,
depending on the way the WSN communicates, but the interface provided to the rest of
the modules must be common, regardless the underlying implementation. The Unit must
be able to report any incoming messages to the Control Unit, as well as push any outgoing
messages towards the WSN. The messages’ nature and variety is defined by the WSN. The
unit is not constantly executed in an attempt to preserve energy; it remains dormant until
an action is required on its side.

Request Execution Thread (RET)

The RET is not a module but rather a formal representation of the software structure handling
the asynchronous communication between the Control Unit and the Sensors Communication
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Unit. RETs are spawned by the Control Unit whenever a request is received from the SPU,
and its existence symbolizes the existence of an outstanding, and yet to be serviced, request
from a user. When a RET is spawned, it is not immediately executed, rather queued, as
described in section 4.1.1, according to the criticality level of the request. When the Request
Execution Thread is to be executed, it is then removed from the queue. On execution the
Request Execution Thread will check the nature of the request and act accordingly, by
communicating with the Sensors Communication Unit, or retrieving data from the Shared
Memory Unit. When the Request Execution Thread has collected all the necessary data it
will contact the SPU with the response to be relayed to the initiator of the request.

Shared Memory Unit (SHM)

The SHM acts as a common information repository for all modules. Different modules are
able to store information in Key Value pairs, which remain public within the aggregator
unit, and is available for every other module to access and modify. It is possible to store the
policies that the unit has to enforce in the SHM during startup of the system, and therefore
modify the said policies on runtime.
The SHM plays an integral role in enabling self-management for the aggregator unit, as the
Monitoring Unit and the Decision Making unit, which will be discussed in the following
paragraphs, both use the SHM in order to monitor the status of the system, as well as
monitor and analyze historic data that may be needed in order to implement policies. Since
the nature of the system is multicore and multithreaded, it is apparent that the control over
the access and modification of the information in the SHM is important. In systems as the
one proposed, race conditions and deadlocks are a major concern. To tackle this issue and
retain the integrity of the information, a semaphore system is proposed with a common
FIFO queueing mechanism for each action to be performed on the data. Further research on
the way the queue is to be handle could be done, implementing a CAFIFO-like algorithm
where memory access requests are sorted based on the importance of the request. The scope
of the research should include performance aspects and system stability among others.

Monitoring Unit (MON)

The MON monitors the overall status of the aggregator, and creates metrics that help with
the management of the unit. These metrics are taken into consideration by the Decision
Making Unit in order to conduct its operations. This module measures available resources
and a number of other system variables of interest, as per policies’ directives. The resulting
data are stored in the Shared Memory Unit. The Monitoring Unit conducts its monitoring
on a preset time quantum, the Monitoring Quantum, which we propose as 1 second. The
proposed monitored variables,as derived by the set of policies we enstate, are shown in
Table 1.
As Monitored Variables are closely related to the enstated policies asked to be implemented
by the aggregator unit, they are subject to change, with policy changes. Adding to the
monitoring capabilities, the monitoring unit is responsible for invoking the Decision Making
Unit, on severe unit status changes defined by enstated policies.. The thresholds for when
the Decision Making Unit should be invoked is defined by the System Policies.

Decision Making Unit (DMU)

The DMU is an advisory unit that given a system status, will advise on actions that should
be taken. It must be emphasized that the actions themselves are carried out by the Control
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Unit, the DMU only advises on which actions to perform. The actions to be performed,
are dictated by the policies that the aggregator unit follows. As previously hinted, the Unit
is not constantly running, but rather invoked by the Monitoring Unit when needed. After
taking into consideration the system status, a set of actions is to be given as feedback to
the Control Unit, the advice is packed in a single, JAVA in our implementation, object and
given to the Control Unit to use. In order to decide on a course of action, the Unit has its
policies implemented in CEP form.

Example of policy invocation

In order to better understand how the self-management enabling units work, we will now
describe how an aggregator unit implements the resource management policy we have
described in section 4.1.1 by focusing on the actions taken by the MON the SHM and the
DMU. The resource management policy, is the policy that is responsible for turning on and
off CPU cores, according to the system load. If a core’s load is above a specific threshold,
then it is regarded as overloaded. If, on the contrary, is below a specific threshold then
it is considered under-utilized. If a core is underutilized, then it is shut down to preserve
energy. On the other hand, if a core is overloaded, then any incoming threads will be set
to be executed on another core of the CPU. If no other core is running, then if possible,
one is turned on. If all cores are overloaded, the aggregator enters “overloaded mode”.
The aggregator exits “overloaded mode” when at least one core’s load drops below the
overloaded core level threshold.
In each monitoring quantum the MON monitors a number of monitoring variables. We
have proposed a monitoring quantum of 1 second, although this is up to the implementer’s
choice. In this example we will examine the actions taken by the aggregator’s units when
a core is overloaded. By monitoring these variables, the MON is able to render a core as
Overloaded. If during a monitoring check a core is found to be overloaded, then the DMU
is awaken given as information that it was awaken because core X is overloaded. After that,
the monitoring unit continues its operations normally, and will recheck the system’s status
on the next monitoring quantum.
The variables that are monitored as well as the limits that will be checked against are listed
in Table 2. The limits and values stated in the table have been deduced after executing stress

Current System Load
Current Running Cores

Current Overloaded Cores
Current Available Cores

Number of requests per minute
Available hardware

Available hardware’s status (i.e. Battery levels)
Available sensors (including all directly deduced information i.e. communication method)

Available services
Sensor’s health and sanity (battery levels, validity of data produced)

Neighboring Aggregator Units
Overloaded Mode

Under-Utilized level
Overloaded Level

Table 1 Proposed monitored variables as derived by the set of policies we enstate
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Variable name Value
Current System Load [CoreId,Load] [(1,85%),(2,90%),(3,0%),(4,0%)]
Current Running Cores 2
Current Overloaded Cores 2
Current Available Cores 4
Overloaded Mode false
Under-Utilized level 7%
Overloaded Level 80%

Table 2 Monitored Variables and limits established from the aggregator stress tests.

tests on the configuration discussed in section 5.
When the DMU receives the message from MON, it will try to enforce the resource
management policy. Internally, the policies are written in CEP Syntax. The resource
management policy, for example, in CEP is the following:

for(x) x.getLoad>OverLoadLevel :- controlUnit.setAsOverloaded(x)
for(x) x.getLoad<UnderUtilizedLevel :- controlUnit.setAsUnderUtilized(x)
for(x) (x.isUnderUtilized) and (x.RunningThreads = 0) :-
controlUnit.shutdown(x)
(OverloadedCores = RunningCores) and (RunningCores !=
AvailableCores) :- controlUnit.activateNewCore
(OverloadedCores = RunningCores) and (RunningCores =
AvailableCores) :- controlUnit.enterOverloadedMode
(Overloaded = true) and (OverloadedCores != RunningCores) :-
controlUnit.enterOverloadedMode

After the DMU is done checking the system status, it regards that there are 2 overloaded
cores, and 2 idle cores. Given this scenario, the DMU will decide that another core should
be commissioned and the load between the cores should be rebalanced.information is then
forwarded to the MCU. After this course of action, the DMU returns to its hibernation.
The MCU receives the advice from the DMU and performs the actions described. It then
continues its operations as normally.

5 The proposed Implementation

The proposed autonomous aggregator architecture was adopted to implement the
aggregators integrated within SOA infrastructure for smart building applications,
constructed in the framework of EMC2 ARTEMIS Joint project. For a thorough presentation,
the reader is referred to [15].
In a nutshell, two discrete sensor technologies using different communication protocols
were integrated within Smart Building SOA architecture. The different families provide
both similar and unique functionality and were set up to monitor a single room. To
seamlessly integrate both technologies within Smart Building infrastructure, two aggregator
units were deployed on different hardware (a Raspberry Pi 2 and a Raspberry Pi 3). Both
units run the same distribution of GNU/Linux Raspbian Stretch. The aggregator software
was developed in JAVA and therefore, the only prerequist for porting our implementation
on a different platform than that of Raspberry Pi, is the existence of a Java Virtual Machine
(JVM) implementation. Hence, our proposed implementation is hardware independent and
can be executed without any alterations on virtually any hardware having a JVM and a
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network adapter.
The aggregator software acts as a middleware, hiding from the services all sensor related
features, such as communication protocols, and support a common REST API over HTTP
protocol for all sensors. The same aggregator software is running on both Raspberry
devices, independently of the sensors controlled by it since the sensor communication unit
integrated the same libraries for both sensor families, thus any sensor regardless its family,
may be controlled by both aggregators in real-time. The requests each aggregator may
serve, utilizing its sensors, are registered to the Registry Unit, which in turn, is used by IoT
Services running in the Registry’s zone to find the proper aggregator to execute the service
request. The Registry Unit was deployed on the Raspberry Pi 2 and communicated over
Ethernet with the rest of the network. In this paper we focused mainly on the implementation
of the aggregator module and its autonomy features, for more details on the provided
aggregator API and the implementation of the Registry Unit see [14] and [15].

5.1 Services for the Smart Building Demonstrator

In order to highlight the potential offered by the presented architecture, a couple of Smart
Building services were implemented. Real-life services and at the same time easy to walk
through, in this attempt to demonstrate them. For each of the presented services a simple
UI was implemented, which displays all the actions taken from the service side and allows
their logging.
The services presented in-depth in the following are:

• S1 - Temperature control: the temperature at a specific location is set to a designated
value

• S2 - Fire watchdog: a constant check for fire in a specific location

• S3 - Person’s whereabouts: a specific person is located based on the unique Bluetooth
Tag of a device she is carrying

S1 - Temperature control

This rather straightforward service offers the ability to control the temperature of a specific
location during the winter. The user can set a desired temperature and the client will ensure
it will be applied, with the aid of one or more temperature sensors and one or more actuators
that control heating units at the premises; obviously if the heating units are replaced with
cooling ones, a similar service can be used during the summer. The specific service is not
assigned high criticality, since the changes in temperature do not take place suddenly but
instead gradually. Moreover, the late response in a temperature change does not lead to
irreversible effects; hence S1 invokes the aggregator applying criticality of level 2. In this
scenario, the current temperature is displayed on the UI and the user sets a higher desired
temperature. This procedure - from the client point of view - follows the steps described
below:

1. Request all available services using GetAvailableServices() and verify
that the temperature measurement and control of the specific location
is indeed among the provided services

2. Request the current temperature from the SPU with criticality level 2,
via the GetTemp() method
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(a) If the temperature is below the user defined threshold, connect to
the SPU and send the request for turning on the heating units

(b) Else, request from the SPU to turn off the heating units.

It is noted that for efficiency reasons, there is a minimum threshold of at least 1 degree
Celsius in the difference between the desired and the actual temperature, for the service to
start or stop the operation of the heating units.
From the aggregator point of view, the steps followed for the procedure are:

1. In response to the client GetAvailableServices() request, the SPU
connects to the SHM and using the Get() method collects all the
offered services and returns them to the client, via the SetResponse()
method

2. In response to the client request for the current temperature, the SPU
follows a series of steps in order to return to the client the mean
temperature of the specific location:

(a) The SPU forwards the request to the CU, which in turn communicates
with the DMU, asking advice on how to handle the request

(b) Based on the DMU response, the CU will start a Request Execution
Thread which will communicate with the SCU and eventually with the
WSN

(c) The SCU unit forwards the WSN response to the Request executing
thread, which in turn returns the response to the CU

(d) Finally, the CU renews any Shared Memory variables needed, then
wraps the response as needed and forwards it to the SPU

3. The client request to turn on/off the heating units will be forwarded
to the CU, that will start a new thread which will order (via the SCU)
the actuators to turn on/off the heating units

S2 - Fire watchdog

The specific service S2 constantly searches for indications of fire, by measuring CO2

concentration, temperature levels and ambient light levels in a specific location. The rational
is that if the CO2 levels are above a specific threshold and at the same time the temperature
is abnormally high and the light levels are also high then it is safe to assume that a fire has
started.
The specific service operates in three distinct criticality levels, between a medium (3) and
a high (5) criticality level, since it is crucial for the watchdog not to be delayed, especially
when there are indications of fire. When no sign of any irregularity is read, the service
runs at criticality level 3, monitoring the room temperature. If the temperature rises above
a preset threshold, the service increases its criticality level to 4 and starts monitoring CO2

levels as well. If the CO2 levels also exceed a preset threshold, then once more the service
increases its criticality level to 5 and starts to also read the ambient light levels. Should
the latter also rise above a preset threshold, the fire alarm is sounded to warn the user and
the sprinklers are activated. In case any of the measured values fall below the designated
threshold, then the service returns to the initial criticality level of 3.
Similar to service S1, the calls from the client point of view are serviced as follows:

1. Request all available services using GetAvailableServices() and verify
that the temperature, CO2, and ambient light level measurements as well
as the control of the fire alarm and the sprinklers are indeed among
the provided services
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2. Request the max temperature using the GetTemp() method and criticality
level 3

(a) If the temperature is below the user defined threshold, go to step
3 and request the max temperature once more

(b) Else, request the CO2 levels using criticality level 4

i. If the CO2 levels are below the user defined threshold, go to
step 3 and request the max temperature once more

ii. Else, request the ambient light levels using criticality level 5

i. If the ambient light levels are below the user defined
threshold, go to step 3 and request the max temperature
once more

ii. Else, sound the alarm and activate the sprinklers using
criticality level 5

S3 - Person’s whereabouts

The S3 service tries to locate a person’s whereabouts, through the usage of the Bluetooth
sensors, by locating the Bluetooth Tag (e.g. cellphone’s Bluetooth) of a specific device
paired with that person. The Bluetooth sensors can constantly scan their vicinity for available
Bluetooth devices, which are distinguished based on their Bluetooth Address (BD_ADDR),
similarly to MAC address in computer networks. The service can operate in two modes:

• mode 1, where the Bluetooth Tag is sought just once

• mode 2, where the Bluetooth Tag is sought constantly and once found, the S3 user is
informed

The specific service operates in two distinct criticality levels, depending on the operation
mode. In mode 1 criticality level 4 is used since the user in question may be on the move
and hence, it is wanted to be located as fast as possible in order to avoid the undesirable
situation to read multiple times the same Bluetooth Tag by different sensors along its route.
Contrary, in mode 2 criticality level 2 is used in the rationale that it is more efficient once
the Bluetooth Tag is located, then the user to re-initiate S3 at operating mode 1 and actively
locate the Bluetooth Tag. For the needs of the specific service, running at mode 1, the client
utilizes the following calls:

1. Request all available services using GetAvailableServices() and Verify
that the Bluetooth sensors readings are indeed among the provided
services

2. Request from the SPU the Bluetooth readings using the GetBTInfo()
method and criticality level 2

6 Experimental Results

In order to assess the capabilities of our system and highlight its efficiency, a case study
using all three presented services was tested, evaluating both the system’s performance and
energy efficiency. Various experiments were executed on the demonstrator hardware, with
different loads, criticalities and number of parallel services executed, in order to test the
proposed system. The results of a typical execution that thoroughly depicts the system’s
behavior are presented in the following subsections.
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6.1 Resource Management

The first policy presented is related to the switching on and off of CPU cores, as defined by
the Resource Management policy, in regards to the system’s load. The policy requires for
preset levels of load in order to set thresholds for states. In order to measure the max load
per core, we conducted stress tests on our hardware, and defined that each core was capable
of running 40 threads concurrently at max. With this metric defined as the 100% of load a
core can achieve, we defined the Under-Utilized level at 3 threads and the Overloaded level
at 32 threads. In Fig. 6 the relation between the percentage of energy saved on the Raspberry
Pi and the active cores is depicted. As expected, the more cores that are active, the more
power is consumed and hence once all cores are active no energy saving is achieved. The
maximum achieved savings were 75% of the Raspberry’s CPU power consumption.
In Fig. 7, the relation between the response times and the performance is shown, which
follows an interesting pattern. On the top chart, the solid gray line represents the average
high criticality request response time per interval and the solid black line the average per-
interval response time for all request. The dashed lines represent the total average response
time for high-criticality requests in black color as well as the average response time for
all requests in gray color. On the bottom figure, the number of active cores along with the
number of overloaded cores is shown. While the system remains in normal status, i.e. not
overloaded, response times remain mostly constant, and around a similar time span. It is
only when the system becomes overloaded that it becomes unstable and response times start
rising fast. Moreover, a spike exits in the requests’ response time after the overload of the
system. That is due to leftover low-level requests, that have arrived before the overload of
the system, and could not be handled until after the system was back to normal status.

6.2 Sensor communication protocol

The second presented policy, regards the way the sensors communicate. The policy chooses
between a push or pull communication model. The results of this policy are presented in Fig.
8. In the top chart, the pushing or pulling mode of the sensor is depicted by the background of
the chart; the dark background indicates pushing while the lighter one pulling. Additionally,
the average response time for high criticality requests as well as the per-interval response
time for high criticality requests is shown. On the bottom chart, the number of active
cores along with the number of overloaded cores is presented. When the sensor turns to
pushing mode, the average response time drops significantly, and only increases as the
system overloads and becomes unable to handle the load. It is important to note that pushing
is costlier than pulling data, i.e. while the sensor is pushing data it consumes on average
75-100% more power.

6.3 Criticality Level Management

The third presented policy regards Criticality Level Management. In this policy, the
aggregator responds to low criticality requests with cached responses. In Fig. 9 it is
depicted that under normal circumstances cached responses comprise more than 50% of the
communication while, when the system starts becoming overloaded, cached responses drop
to about 40% of total communications. Hence, the relation between cached responses and the
average response time for all requests is shown. In Fig. 10 the number of completed requests
is presented in relation to the number of completed requests from cache, per interval, and
the per-interval savings of the WSN in percentages. It is noted that sensor power savings
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from cached responses reached a peak of more than 400% and averaged at about 71% per
interval.

7 Conclusions

A System of Systems (SoS) architecture towards the Internet of Things exploiting the
autonomous operation of aggregator devices was presented in the paper. The heart of the
system, i.e. the aggregator, offers transparency, by hiding sensor-specific details from the
IoT application users and thus allowing the successful interconnection of heterogeneous
IoT devices. The aggregator is autonomous in the sense that self-configuration and self-
optimization features are supported, while aggregation software may run on commodity
multi-core devices, such as the Raspberry Pis.
A smart building system was built using the proposed architecture as a case study. The
analysis of the use case provided solid evidence that such an architecture is realistic and can
lead to highly competitive systems. Indeed, the system provides the desired performance,
while reducing the overall system’s energy consumption, both in terms of the existing WSN
and the aggregator component itself. To achieve these goals, the aggregator is integrated with
SOA, makes efficient usage of IoT multi-core systems, and applies multi-critical policies.
By ranking the offered services, according to their criticality, the aggregator controls the
sensors behavior, in an attempt to reduce the overall energy consumption. Moreover, the
power consumption of the aggregator itself is controlled via using the optimal number of
active computer cores, using load balancing techniques and keeping the active cores as
loaded as possible, while suspending needless ones.
Our next endeavor will be the extension of the system, allowing different aggregators
to share even more data, such as their policies and experiences without enforcing any
centralized control in decision making. Moreover, the usage of context aware algorithms
such as CAFIFO will be explored, for tasks such as accessing the Shared Memory Module.
Undoubtedly, larger scale scenarios will be sought from various areas - not exclusively from
smart building system.
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Figure 4: Class Diagram depicting the communication flows between the Aggregator’s
modules
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Figure 5: Screenshot of the UI used for the fire watchdog. In the specific service, no user
input is needed and only debug messages regarding the service execution and sensors levels
are outputted on the UI

Figure 6: Relation between the percentage of energy saved on the CPU, and the
currently running cores.
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Figure 7: Relation between the percentage of energy saved on the CPU, and the
currently running cores.
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Figure 8: Relation between the sensor protocol, the high criticality response times and
the system’s load status .

Figure 9: Relation between the percentage of cached responses, and average response
times.
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Figure 10: Relation between the cached responses, and sensors’ energy savings.
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Abbreviations

BMS Building Management System
DMU Decision Making Unit
IoT Internet of Things
ITU International Telecommunication Union
JVM Java Virtual Machine MCU
Control Unit
MON Monitoring Unit
QoS Quality of Service
RET Request Execution Thread
SCU Sensors Communication Unit
SHM Shared Memory Unit
SOA Service Oriented Architecture
SoS System of Systems
SPU Service Provision Unit
WSN Wireless Sensor Network

List of abbreviations used in the text
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