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Abstract—Internet-based solutions, enhanced by Internet of
Things (IoT) and Cloud computing, are constantly driving
revolutionary approaches in multiple domains, including health-
care. Indicatively, telemedicine, real-time diagnosis and remote
monitoring of patients, are expected to transform the healthcare
domain. These systems may offer several services of different
criticality, necessitating safety-/mission-critical core components
and non-critical peripheral components; in other words, they
are complex, mixed-criticality System-of-Systems (SoS). To un-
derstand and design such systems, engineers must be facilitated
with the appropriate modeling tools.

In this work, we explore the application of model-based design,
using the Systems Modeling Language (SysML), of IoT e-Health
systems, emphasizing criticality requirements. We focus on the
Remote Elderly Monitoring System (REMS) use case, combining
IoT technologies with classic healthcare practices, to demonstrate
the potential of the proposed approach. Requirements comprise
a basic concept of a systematic model-driven methodology that
enables the successful management of the criticalities in system
design, implementation and deployment. In the REMS use case,
identified criticalities are modeled as SysML requirements, while
SysML constraints and parametric diagrams are employed to
describe and verify quantitative criticality requirements.

Index Terms—Internet of Things, Healthcare, Model-Driven
Engineering, SysML, Remote Elderly Monitoring, Criticalities,
Requirements

I. INTRODUCTION

The advent of the Internet of Things (IoT), the rapid
expansion of the Cloud and on-demand computation and
storage as well as the proliferation of sensors and ubiquitous
wireless communication, are expected to drive revolutionary
approaches in healthcare activities, such as: real-time diagnosis
of medical issues, telecare and telemedicine as well as remote
monitoring of patients.

Such approaches can be implemented via new types of
System-of-Systems (SoS), which are mainly composed of
hardware (e.g., sensors, smartphones) and software (e.g.,
specialized operating systems, Cloud services, etc) that can
execute several applications of different criticality [1]. These
systems can be modeled, studied and analyzed in the context
of model-based engineering, using well-defined modeling lan-
guages such as the Systems Modeling Language (SysML) [2].

A model-based methodology can assist the engineer to define
and evaluate the system components, the interconnection of
these components, as well as the requirements that need
to be satisfied. Furthermore, it is important to identify and
understand the criticality restrictions of an IoT system and its
subsystems.

Healthcare is traditionally a domain requiring mostly safety-
critical core systems and functionalities, since human lives
can be jeopardized by a faulty implementation. Moreover, the
complex Information and Communication Technology (ICT)
involved may also include mission-critical [3] components,
whose failure may put organizations (such as hospitals) at
great risk, or non-critical peripheral components. Managing
the criticality of a specific IoT component, application or
service in complex smart healthcare systems and the way it
might affect others, is thus of significant importance for the
effective implementation and support of such systems.

In [4], the identification of criticalities in healthcare IoT
systems was explored, as a first step to effectively manage
them in system implementation and deployment. In that paper,
we recognized fundamental mixed-criticality characteristics of
such systems, through two principal use cases, namely the (i)
Remote Elderly Monitoring System (REMS) and the (ii) Smart
Ambulance System (SAS).

As such systems can be treated as SoS, in this work, we
explore the potential of model-based design of healthcare IoT
systems using SysML. As a first step, we focus on REMS as a
case study. REMS provides remote monitoring and diagnosis
for the sensitive demographic of elderly subjects, dealing with
the real-time diagnosis of medical incidents. Its architecture
can be conceived as having a self-adapting structure, since its
subsystems (described in Section III) can self-organize, based
on specific requirements. Thus, the REMS, as a SoS, allows
operational and managerial independence of each subsystem,
evolutionary development, emergent behavior and geographic
distribution [5]. Model-based design of such healthcare IoT
systems should not only explore their structure as a hierarchy
of system components, that may be effectively supported by
the SysML, but rather enable the description and management



of criticalities, crucial for their operation. These criticalities, as
for example the privacy of the exchanged data, are associated
with IoT components (e.g., sensor devices) and should be
resolved in different levels of abstraction.

To this end, we extended SysML in order to:
i model the REMS infrastructure (Block Definition Diagram

(BDD) - Section III-A), and the interconnection (over
which data flow) of its subsystems and components (In-
ternal Block Diagram (IBD) - Section III-B),

ii represent and describe the REMS criticalities, identified in
our previous work, as SysML requirements (Section IV),

iii extend the system design by employing operational quan-
titative requirements, which govern SysML parametric
execution (Parametric Diagrams - Section V-B).

The rest of the paper is structured as follows: In section II
related work is briefly discussed. REMS design using SysML,
as a component hierarchy, is presented in Section III. The
adoption and extension of SysML requirements to effectively
model REMS criticalities is introduced in Section IV. The
Home component of REMS is emphasized as an example in
Section V, where the proposed concepts are used to describe
and verify criticalities as SysML requirements. Conclusions
reside in Section VI.

II. RELATED WORK

A review of the relevant literature reveals the ongoing and
increased interest in the IoT and IoT-based technologies and
solutions. In [6], an overview of the IoT is presented.

Healthcare is becoming one of the most attractive ap-
plications fields, where the IoT can offer improved access
to care, increased quality and efficiency and reduced costs.
Ambient Assisted Living (AAL) systems have the potential
to meet healthcare challenges, exploiting ICT and IoT [7].
Such systems comprise medical sensors, wireless networks and
software applications for healthcare monitoring [8], helping an
individual remain independent from medical facilities, using
ICT [9]. As the technology for collecting, analyzing and
transmitting data in the IoT continues to grow and evolve,
more IoT-driven healthcare applications, services and systems
emerge [10]. In [11], the need of an integration of IoT
technologies (e.g., RFID [12] or wearable devices) and e-
Health solutions is addressed. Focus is given on an integrated
system for the continuous monitoring of students at risk to high
blood pressure as well as a quick treatment and consultation
from medical experts from a distance. Islam et al. [13]
analyze a variety of more medical IoT applications, such as
remote health monitoring, fitness programs or elderly care. The
aforementioned applications were combined with architectures
and platforms, like the Internet of Things Healthcare Network
(IoThNet).

Relevant to the notion of remote monitoring and care, few
approaches propose the use of a mixture of embedded sensors
as diagnostic tools, Cloud-based architectures and data analyt-
ics that would improve the quality of life of a patient [14], [15].
In addition, the authors in [16] experimented with portable
devices and different communications protocols and models

for the creation of e-Health applications, like the CardioNet.
Moreover, in [17], a tested real-time monitoring platform that
uses IoT gateways and medical devices, introduces the need
of Edge Computing and shows the effectiveness of IoT in real-
time e-Health services. In a similar context, the exploitation of
Fog Computing in healthcare IoT systems is proposed in [18],
implementing a Smart e-Health Gateway (UT-GATE) suitable
for the deployment of health monitoring systems especially in
clinical environments.

As the elderly have become one of the main target groups
that need e-Health applications and solutions, there are frame-
works that focus on making healthcare technologies more
accessible to them. The Home Health Hub Internet of Things
(H3IoT) is presented in [19] as a novel architectural framework
for elderly monitoring. Furthermore, an IoT-based remote
elderly monitoring study [20] introduces and analyzes an ar-
chitecture where vital signs of elderly individuals are collected
via sensors and monitored in real-time by a remote facility
(e.g., a hospital).

The aforementioned systems were proposed and designed
based on custom empirical methodologies, specific to the
healthcare context. The need for model-driven methodologies
for healthcare services and applications is advocated by Eldabi
et al. [21]; this is exactly the need that this work covers.

We approach the problem of the analysis of healthcare sys-
tems via a general, formal model-driven methodology, based
on the SysML standardized modeling language. SysML is an
extension of the Unified Modeling Language (UML) which is
widely known and used, both in academia and industry. We
use SysML concepts and adjust them to the specific healthcare
use case [22].

Beyond the healthcare domain, in [23], manufacturing sys-
tems are modeled in UML and SysML as IoT configurations
of their mechatronic components. The IoT is important in
the development process of manufacturing systems and IoT
technologies integrated with modeling techniques required
for the specification of the systems' components, provide an
effective approach for the automation of the development
process.

In general, using a UML/SysML-based approach, systems
engineers are able to effectively represent, specify and describe
the technical aspects and structure of systems as well as
their requirements. However, it might be necessary to extend
SysML entities, such as requirements, to effectively depict
specific system properties [24], in this case Healthcare IoT.

III. USING SYSML TO MODEL REMS AS A SOS

Our proposed system, namely the REMS, falls within the
AAL domain, and acts as a platform, enabling the remote real-
time monitoring of physiological signs and health parameters
(e.g., heart rate) of an elderly, from a healthcare personnel
(e.g., doctor(s)) located at a remote facility (e.g., hospital) [25].
Therefore, the REMS infrastructure comprises the following
subsystems: (i) the Home, i.e. the place where the elderly
patient resides, (ii) the Data Repository, where the collected
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data is stored, processed and analyzed, and (iii) the Remote
Facility, where the healthcare personnel is located.

In the following subsections we apply a model-driven ap-
proach, using the SysML, in order to describe the structure of
the REMS with respect to its individual components (BDD -
Section III-A) and their interconnection (IBD - Section III-B).

A. REMS Individual Components

The BDD, on which we focus in this Section, illustrates
the system hierarchy and component classifications. The basic
structural element of the BDD and the fundamental modular
unit in SysML for describing a system is the block [2]. Blocks
can be associated with each other, or be generalized; such
block relationships are also illustrated in a BDD.

A high-level approach to create BDDs is the following:
(i) identify all systems, subsystems or components of the
SoS under consideration and represent them as blocks, (ii)
annotate the aforementioned blocks with relevant properties
and operations, and (iii) draw association or generalization
relationships between the blocks.

Specifically for the REMS, we developed a BDD (see
Fig. 1), consisting of: the REMS, the Home Subsystem, the
Data Repository Subsystem, the Remote Facility Subsystem,
the Sensor, the Gateway, the Cloud Database, the Medical
Database, the Healthcare Monitoring System and the Ambu-
lance Dispatch System blocks. Each of those REMS-related
subsystems/components will be described below in detail, via
a top-down explanation.

The REMS is located at the top of the system hierarchy
and connects via composite associations with other blocks.
This conveys that the REMS comprises the Home, the Data
Repository and the Remote Facility subsystems.

Each subsystem block contains specific parts, value prop-
erties, operations and flow-ports that are shown in different
compartments of the block. Here, only the parts compartment,
containing all relevant parts which compose a block, and the
flow-port compartment, containing the interaction points of the
blocks where specific data can flow in or out, are shown.

At the Home, medical data from the elderly patient, stem-
ming from Sensors, is electronically streamed/transmitted via

secure channels to a Gateway, and then to a remote server for
further analysis. Thus, the Home Subsystem is connected via
two composite associations with the Sensor and the Gateway
blocks, respectively. The potential multiplicity of instances
of system parts (e.g., the Home Subsystem may contain
numerous Sensors and Gateways) is depicted accordingly on
the composite associations using multiplicity factors.

The Data Repository is used for the storage of the data,
transmitted from the Home, as well as their processing and
analysis. The parts of the Data Repository are the Cloud
Database and the Medical Database. Note that data can be
stored and processed directly on the Medical Database(s);
in fact, the 0..* multiplicity factor for the Cloud Database
indicates that a Cloud-assisted solution is optional. In general,
the REMS Data Repository can be one of these databases
or a combination of them. If the latter solution is chosen,
patients' Sensor-collected data that are stored in the Cloud
and patients' medical information that already exists in the
Medical Database, can be integrated and combined into a
comprehensive patient data folder. Moreover, stored data can
be transmitted and shown to end-users, such as the healthcare
personnel, at a Remote Facility.

In the Remote Facility Subsystem, patients' vital signs and
general data are monitored and remain under medical super-
vision by the healthcare personnel. In case of an emergency,
actions like: communication between doctor and patient while
the patient is at home, dispatching an ambulance, support
and medical advice to the patient, e.g., “increase dosage
of a medicine”, consultation and care, are taken from the
personnel's side to help the elderly at Home. The Remote
Facility contains the Healthcare Monitoring System and the
Ambulance Dispatch System parts.

Having described the subsystems of the REMS, we delve
one layer below into the specific parts that form each subsys-
tem. The Sensor and Gateway blocks compose the Home. The
main functions of the Sensor is to monitor, record, collect and
push measured values and data to the Gateway. In Figure 1, the
generalization relationship between the Sensor and the ECG
block conveys that an Electrocardiogram (ECG) is a Sensor
[26].

Fig. 1. Modeling REMS structure as a SysML BDD
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The Gateway operates as a Central Information Hub (CIH)
or Central Home Hub, communicating with the Sensor(s) and
receiving data. Moreover, its functionalities may include the
secure delivery of these data and their pre-analysis (e.g., a
primitive categorization of data types or their compression)
just before their transmission to the Data Repository. The
generalizations that are used here create a classification tree
that shows that the Smartphone and CIH are mobile and fixed
types of Gateways, respectively.

The structural decomposition of the Data Repository results
in the Cloud and the Medical Database blocks. The Cloud
Database will receive, process, analyze and host the Sensor-
generated data, while the Medical Database will host the
patient medical folder. In real-time, the Medical Database
will sync with the Cloud and update the patient's folder with
the fetched data and inferred characteristics/alarms. These
data will be already processed (e.g., classified and analyzed
by automated sub-routines) before they are integrated and
displayed, so that the healthcare personnel can extract meaning
out of the dataset quickly. Processing and analyzing methods
include reasoning, human-assisted classification and inference,
machine learning algorithms or pattern recognition [27].

Finally, a Hospital can be a Remote Facility, based on the
generalization relationship with the Remote Facility block. In
the following, the parts that compose it are briefly described.

The Healthcare Monitoring System receives all the data
(patients' vital signs) from the integration of the Cloud Data
Repository and the Medical Database, and shows them to
the healthcare personnel in a clear, understandable format.
Moreover, it is designed to visualize the alarms and urgently
brief the doctors in case of emergency.

The Ambulance Dispatch System operates in the REMS as
the emergency service for immediate and out-of-premises pa-
tient care. It can provide fast and accurate medical dispatching,
proper care and treatment to a patient, increasing the patient's
chances of survival when in critical condition. We note that
the treatment of the patient on the ambulance until the arrival
at the Remote Facility is out of the scope of this work; this
system deals only with the dispatching phase.

Both the Monitoring System and the Ambulance System
receive an alert signal in case of a patient emergency.

B. REMS Components Interaction

The IBD describes the internal structure of a system's block
in terms of its properties, parts, flow-ports and connectors.
For a detailed description and specification of these terms and
SysML in general, see [2].

The REMS IBD, shown in Figure 2, illustrates how each of
the subsystems is structured as well as how these and their
parts are connected with each other. Having described the
basic functionality of each block in the BDD (see Section
III-A), here we focus more on how the data flows between
the REMS internal blocks using the flow-ports. Note that while
we go into more detail in the text on how the connections are
practically formed, the diagram is on purpose kept simple in
order to illustrate what and over which ports is exchanged,
irrespectively of the particular technology used to implement
the corresponding communication channel.

Starting from the Sensor, the RawDataOut flow-port is used
for pushing the patient's vital signs in raw format to the Gate-
way. The Sensor transmits these data using fast, low-power and
short-range wireless communication protocols, like Bluetooth
Low Energy (BLE) [28] or ZigBee [29]. After reception, the
Gateway transmits pre-processed data to the Data Repository
via WiFi; in practice a secure communication channel (e.g.,
based on IPSec [30]) from the Gateway to the Data Repository
is formed over the Internet, independently from the underlying
transmission technologies employed (WiFi, Digital Subscriber
Line (DSL), optical cables, etc.).

The Cloud Database of the Data Repository sends the data
to the Medical Database for permanent storage and integration
with other –relevant– data for a complete medical patient
folder. AnalyzedDataOut and AnalyzedDataIn flow-ports are
used for the transmission and reception of the data between
the Cloud Database and the Medical Database. Moreover, the
analyzed data can be seen directly from the Cloud, in real-time,
by the healthcare personnel at the Remote Facility. In detail,
the integration of the Cloud-based storage system and the on-
site Medical Database of the Remote Facility is an important
aspect of the REMS. The Cloud will host the massive analyzed
data, while the Medical Database will host the sensitive per-
patient medical folder as described above. In real-time, the

Fig. 2. Modeling REMS component interaction as a SysML IBD
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combination of analyzed data from the Cloud, as well as the
patient's folder and inferred characteristics/alarms, extracted
from the Medical Database, is transmitted to the Healthcare
Monitoring System and shown to the healthcare personnel. The
healthcare personnel will have direct access both to the Cloud
and the Medical Database via administrative accounts; data
access can occur via a Smartphone, a tablet or a computer.

The final component interactions take place at the Remote
Facility where the Healthcare Monitoring System is con-
nected with the Ambulance Dispatch System, sending potential
patient alerts to immediately dispatch an ambulance to the
elderly's home in case of an emergency; the emergency is
inferred via the aforementioned analysis of the received data
and the corresponding alarms that the databases generate.

IV. MODELING CRITICALITIES AS SYSML
REQUIREMENTS

In our previous work [4], three criticality categories were
identified for Healthcare IoT systems, i.e. safety-critical, im-
portant for the human life, mission-critical [3], essential to
business operations or organizations, and non-critical.

According to Object Management Group (OMG) [31], “a
requirement specifies a capability or condition that must (or
should) be satisfied, or a function that a system must perform
or a performance condition a system must achieve”. Thus,
criticalities may be modeled utilizing the SysML requirement
concept.

The description of the SysML requirement is restricted
by two properties: a unique id and a textual-formed self-
description. A requirement is assigned to a model element
through the satisfy relationship, while the verify relationship
defines how the element verifies the requirement [2]. Since
requirement description is restricted by two properties, the
refine relationship, associating requirements to other model
elements, may contribute to their analytical description.

Requirements can be extended through the stereotype con-
cept [32]. Stereotypes allow the definition of new types of
SysML model elements, derived from existing ones, that
have additional properties, suitable for the examined system
[33]. The stereotypes also enable the addition of constraints,
restricting the types of model elements the corresponding ele-
ment may be related to [33] (e.g., an operational requirement
may be constrained so that it can only be satisfied by a specific
SysML block).

In the case where requirements reflect operational or perfor-
mance constraints (e.g., “energy consumption < 5 watt-hour”),
they may be refined by the constraint. When this applies, the
requirement should be verified by an expression resulting in
either “true” or “false”, analytically described in a Parametric
Diagram (PD) [34]. The PD is used to integrate the design
model (i.e. a BDD) with engineering analysis models (e.g.,
calculation of a device's energy consumption), including the
usage of constraint blocks to specify constraints representing
mathematical or logical expressions [35], constraining the
properties of other blocks [36]. Moreover, this specific diagram

is suitable for specifying assertions about valid system values
in an operational system.

Table I illustrates how the identified criticalities [4] can be
modeled using the SysML and its requirements. To explore
such potential, we focus on the Home Subsystem of the
REMS.

TABLE I
HOME SUBSYSTEM CRITICALITY REQUIREMENTS

Stereotype SysML entity Constraint
Safety-critical Requirement Satisfied by any block.

Time Req. Safety-critical

Satisfied by Home block.
Satisfied by Sensor block.
Satisfied by Gateway block.
When satisfied by Sensor or Gateway block,
refined by a constraint,
verified by a corresponding Parametric Diagram.

Mission-critical Requirement Satisfied by any block.

Security Req. Mission-critical
Satisfied by Home block.
Satisfied by Gateway block.

Non-critical Requirement Satisfied by any block.

EnergyConsumption Req. Non-critical

Satisfied by Home block.
Satisfied by Sensor block.
When satisfied by Sensor block,
refined by a constraint,
verified by a corresponding Parametric Diagram.

SWaP Req. Non-critical

Satisfied by Sensor block.
When satisfied by Sensor block,
refined by a constraint,
verified by a corresponding Parametric Diagram.

The Time Req, Security Req, EnergyConsumption Req, and
SWaP Req are custom SysML stereotypes, defining basic
Home Subsystem requirements-criticalities.

Time is a safety criticality for both Sensors and Gateways,
and the Home in general. The measurements and recordings
have to be generated and transmitted within a given time
interval, otherwise the real-time behavior of the system is
jeopardized and considered faulty.

The Security is mission-critical as it may affect the credi-
bility of the Home Subsystem. There is a need of communica-
tions between devices (Sensors to Gateway, etc.) that ensure
the confidentiality and integrity of transmitted data without
any fault or modification by an adversary.

The Energy Consumption of all devices can be considered
as non-critical, and must remain low. Although, the problem
with low energy consumption protocols, like BLE, is that the
security criticality might be affected in a negative way [37].

The Size, Weight and Power (SWaP) [38] is also a non-
criticality that helps ensure that devices are easier to carry
and have larger autonomy.

The aforementioned stereotypes are applied to their respec-
tive Safety-, Mission-, or Non-critical SysML Requirement.

The constraints column depicts the restrictions related to
the requirement stereotypes. For example, the Safety-critical
Time Req stereotype can only be satisfied by the Home block,
as well as its parts, i.e. a Sensor or a Gateway. Due to the
fact that it is an operational quantitative requirement, when
the Time Req is satisfied by the Sensor or the Gateway, it is
refined by a constraint, and thus, verified by a corresponding
PD. Other, non-operational requirement stereotypes, e.g., the
Security Req, are constrained to only be satisfied by specific
blocks, e.g., Home and Gateway, without any PD presence.
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Fig. 3. Modeling REMS Home Subsystem components and criticality requirements using SysML

V. MODELING HOME SUBSYSTEM USING SYSML

A. Home Block Definition Diagram

Applying the proposed SysML criticality requirements to
the REMS, we aim to achieve the following systems engi-
neering activities: structure design, requirements definition and
performance analysis based on respective constraints. Figure 3
illustrates the assignment of criticality requirements to REMS
components –white-colored–.

As a case study, we focused on the Home Subsystem,
containing two basic Sensors, i.e. an ECG and a Fall Detection
Sensor, as well as a central Gateway. These components are
connected with the Home via directed compositions and, as
parts of a larger system –Home–, are shown at the Home
Subsystem block's parts compartment, along with their corre-
sponding multiplicity factor (e.g., one or more Sensors).

The ECG Sensor, the Fall Detection Sensor, and the Gate-
way blocks contain specific value properties, operations and
flow-ports. The value properties specify the quantitative prop-
erties of their containing block. For example, the ECG Sensor
holds its type, battery capacity, energy consumption and other
operational parameters that describe it.

The operations compartment includes all the functions of
the respective entity, e.g., the Fall Detection Sensor powers
on/off, records acceleration or orientation of the patient, pairs/-
connects with the Gateway and pushes measured (fall) data.

The ECG Sensor block contains an extra compartment,
namely constraints, showing that a property of this block
(here, the energy consumption) is calculated parametrically,
as described in the following Section (Section V-B).

Each requirement, illustrated at Figure 3, is explicitly
marked as one of the four requirement types (i.e., Time –dark
yellow-colored–, Security –blue-colored–, Energy Consump-
tion and SWaP – green-colored–), according to the SysML
stereotyping mechanism described in Table I.

The Home block satisfies the Home-Time Req, Home-
Security Req, Home-Energy Consumption Req, and Home-
SWaP Req. Home's components, namely the Sensors and the
Gateway, are satisfying more specialized requirements.

Both Sensors are connected via satisfy relationships to
the Sensor-Time Req requirement that constrains the Sen-
sors' operational time. In addition, the operation of a Sen-
sor should be adjusted, minimizing the energy consumption
without hindering efficient operations. Therefore, the Sen-
sors must also satisfy the Sensor-Energy Consumption Req.
In particular, this requirement states that the Sensor' s en-
ergy must be under 5 watt-hour for a continuous efficient
operation. The Energy Consumption Verification block be-
longing to the ECG Sensor is used to check a verification
value property, indicating “true” or “false” (“1” or “0”),
against the energy consumption requirement. For the Sensor-
Energy Consumption Req, we have also created a constraint
block, described in detail in the following Section (Section
V-B).

The Gateway component satisfies a Gateway-Time Req and
a Gateway-Security Req requirement. The latter is used to
highlight the security levels that the Gateway's operations must
conform to.

Note that the aforementioned components' requirements re-
fine the upper level Home requirements, e.g., the Sensor-, and
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Fig. 4. Sensor block equation as a SysML Parametric Diagram

Fig. 5. Verification block expression as a SysML Parametric Diagram

Gateway-Time Req requirements refine the Home-Time Req
by placing it in their respective specialized context. In addi-
tion, the Gateway-Security Req is connected with the Home-
Security Req, while the Sensor-Energy Consumption Req re-
fines the Home-Energy Consumption Req requirement.

The logic behind the illustration is similar for all the REMS
subsystems; the Home and its components are only shown here
for brevity.

Using SysML, a consistent component-requirement model
can be defined, forming the examined system's infrastructure.
Modeling the hierarchy of the components and the satisfied
and refined requirements as well as explicitly mapping the
relationships between them, helps in dealing with the system's
complexity. The advantage is that in large, complex systems,
having a hierarchy of components and requirements and orga-
nizing them into various levels, the complexity of systems is
managed from the early beginning of their development.

B. Parametric Diagrams

Parametric execution added to SysML design models can
help evaluate the performance (and other parameters) of a
system design as well as verify its requirements.

The constraint block comprises two compartments, i.e.
constraints and parameters [39]. The constraints compart-
ment contains an equation, expression or rule that combines
the parameters from the parameters compartment. Constraint
properties –specifying the constraints of other properties in
their containing block–, constraint parameters, as well as block
value properties are displayed inside a PD. The constraint
parameters provide connection points, connected via binding
connectors, to specific block properties or to other constraint
parameters on the same or other constraint properties.

In Figure 3, we have created two constraint blocks
–red-colored–; the Energy Consumption Equation is suit-
able for the calculation of the energy consumption
of a Sensor (here, the ECG Sensor), while the En-
ergy Consumption Verification Equation is used for express-
ing the Sensor-Energy Consumption Req textual requirement
as a conditional mathematical expression.

The Energy Consumption Equation contains a simple en-
ergy consumption equation:

energy consumption = days ∗ hours ∗ watts (1)

based on its parameters.
The PD illustrated in Figure 4, was created inside the

ECG Sensor block. This block's value properties, i.e. Op-
eration Hours, Operation Days, Operation Watts, and En-
ergy Consumption are connected to corresponding constraint
parameters, i.e. hours, days, watts, and energy consumption
of the constraint property. Note that a block property and the
respective constrained parameter must have the exact same
value type (e.g., “Wh” for watt-hour).

Figure 5 shows the PD, created inside the En-
ergy Consumption Verification block, in order to evaluate
the energy consumption against the desired energy usage,
returning “true” or “false”, “1” or “0”. The defined expression
is the following:

if(energy consumption < 5, 1, 0) (2)

In this PD, the constraint relationship is complex,
since one of the parameters in the relationship is tied
to a value property owned directly by an other block.
For example, parameter energy consumption is tied
to value property Energy Consumption, owned by the
ECG Sensor block (i.e. ECG Sensor.Energy Consumption).
The energy consumption ver is related to the
Energy Consumption Ver property of the verification
block.

C. SysML Tools

The BDDs, illustrating structural information of the ex-
amined system, the IBD, representing the interconnections
between the system's components, and the PDs, showing
the mathematical relationships among the elements of the
system, were developed in the MagicDraw UML tool [40]. In
particular, the ParaMagic plugin [41], imported in MagicDraw,
is suitable for the parametric execution, using OpenModelica
[42] as math solver.
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VI. CONCLUSIONS

Our case study, namely the REMS, is a novel IoT-based SoS
for the remote monitoring of elderly subjects; this system be-
longs in the expanding category of mixed-criticality healthcare
systems that are enhanced by ICT technologies. We employed
and extended SysML in order to apply a model-based design
approach to illustrate the: (i) structure and interconnection of
the REMS, in terms of individual subsystems and components,
(ii) the diverse criticalities of the REMS Home Subsystem
in the form of –manageable– SysML requirements, and (iii)
mathematical relationships and validation expressions among
the components and operational requirements of the examined
system. This is the first concrete step towards formal SysML
models for IoT healthcare systems. Based on reasonable
system-wide abstractions, it can be quite useful for systems
engineers, seeing that it can shed light to the design and man-
agement of complex mixed-criticality healthcare systems. This
is necessary to understand these systems (via comprehensive
models), before implementing and deploying them in the real
world. Additional novel healthcare oriented applications can
be investigated, through the proposed mixed-criticality model-
driven approach.
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