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Abstract

There are numerous Enterprise Information System
(EIS) engineering methodologies in the literature, each cov-
ering different aspects. However, in order to integrate them
in an Enterprise Architecture, model-based engineering can
be adopted. In such a case, a central system model is de-
fined supporting all engineering activities. Zachman’s ma-
trix may be used as a basis for constructing such a model.
Based on this assumption, we propose a systematic ap-
proach for the support of model-based EIS engineering pro-
cess using Zachman matrix as EIS central model. Basic
EIS engineering activities and the way they may be served
by specific rows is explored, while the contribution of each
system aspect (matrix column) is also taken into account. A
conceptual model for model-based EIS engineering is also
introduced. To explore the proposed concepts in practice,
the System Network cell is used as an example. Correspond-
ing engineering tasks and sub-models are formed based on
the proposed guidelines in a technology and methodology
independent fashion. A case study based on the proposed
concepts is also presented.

1. Introduction

Enterprise Architecture (EA) frameworks ( [19], [24])
are characterized as an attempt to integrate strategies, pro-
cesses, methods, models and tools towards enterprise infor-
mation system engineering [1].There are a lot of EIS en-
gineering methodologies in the literature [8], each of them
covering specific EIS engineering aspects. However, in or-
der to integrate all of them in practice, the support of differ-
ent system models cannot be avoided. In many cases, these
models are not compatible, or even not known to others.

The desired integration of people, strategies, processes,
methods, models and tools could be accomplished by adopt-
ing model-based EIS engineering (MB-EISE). In such a

case, a central system model must be defined capturing all
system requirements and decisions that fulfill them at dif-
ferent levels of abstraction. Since central system model
serves all engineering activities, it should be technology-
neutral, multi-layered, modular and composite, facilitating
the integration of system sub-models corresponding to dif-
ferent perspectives and their progressive refinement. Rele-
vant methodologies and tools addressing discrete engineer-
ing issues may be applied to specific system sub-models.

In [20], the concept of using Zachman framework [25]
as the basis for establishing a central EIS model for MB-
EISE was introduced. As such, Zachman matrix serves as
a canvas to integrate different concerns, issues and methods
towards MB-EISE, while specific methods may use parts of
it as a reference point. We also identified some basic guide-
lines individual model-based methodologies should fulfill
in order to be integrated into the Zachman matrix, focus-
ing on how to establish the EIS sub-model corresponding to
each of them. In an effort to apply these concepts in prac-
tice in a large scale organization, it became clear that the
process of effectively forming the central EIS model was
a complex one, while one of the main obstacles identified
was the lack of a common understanding of the purpose
of the central model by different stakeholders involved in
EIS engineering. This resulted in EIS sub-models, which
served well individual methods corresponding to them, but
had poor interoperability since it was unclear how specific
methods should be interrelated.

To further establish the perception of MB-EISE based on
Zachman framework, in the following we identify primary
EIS engineering activities and explore the way they can be
supported by specific Zachman matrix rows and columns
resulting in an first level approach describing model-based
EIS engineering process. To this end, we propose:

(a) a first-level description identifying the primary EIS en-
gineering activities served by Zachman matrix rows.

(b) a conceptual model for MB-EISE according to



ANSI/IEEE 1471 standard [13], which may assist de-
signers to formulate the central EIS model.

(c) a common, first-level description of MB-EISE activi-
ties performed based on each cell-related view. Each
of these activities consists of specific tasks that may be
implemented by a specific EIS engineering method.

Special attention was paid on defining EIS views and view-
points for each cell in order to enhance information ex-
change between them.

To explore the proposed concepts in practice, the Sys-
tem Network cell of the Zachman matrix is used as exam-
ple, already discussed in [20]. Model-based EIS architec-
ture design is focused in this cell. EIS architecture design
activity is described based on common first-level MB-EISE
activity model proposed. Identified tasks may contribute to
related individual method and tool integration. System Net-
work meta-model is adjusted to support individual EIS ar-
chitecture design tasks and enhance inter-cell communica-
tion. The experience obtained when applying the proposed
concepts during the renovation of the legacy system of a
public large-scale organization is also discussed.

The rest of the paper is organized as follows: Section 2
summarizes model-based EIS engineering based on exist-
ing standards and frameworks. In section 3 the way MB-
EISE process may be systematically supported by Zach-
man framework is explored. MB-EISE activities are identi-
fied, while a conceptual model for MB-EISE process is pro-
posed. Section 4 explains how the main concepts of the pro-
posed approach can be applied in identifying engineering
tasks and EIS views for EIS architecture design performed
within System Network cell. In section 5, a case study is
presented to discuss the experience obtained when applying
the proposed concepts. Conclusions and future work are
discussed in section 6.

2. Background - Model-based EIS Engineering

System engineering is defined as “an interdisciplinary
approach and means to enable the realization of successful
systems” [16]. Model-based system engineering (MBSE)
is about elevating models in the engineering process to a
central and governing role in the specification, design, in-
tegration, validation, and operation of a system. In such a
case, activities that support the engineering process are to
be accomplished by developing models of increasing de-
tail [8]. Consequently, model-based EIS engineering can
be defined as “the process of specifying, designing, in-
tegrating, validating and operating an Enterprise Informa-
tion System based on the development of a central model,
which can be extended in different levels of increasing de-
tail”. This process is based on a process model that de-
fines the primary activities that must be performed to ac-

complish EIS engineering. Each engineering primary ac-
tivity [17], for example system design, may be further de-
composed to more specific tasks in different levels of detail.
A method is used to identify the way such tasks should be
performed, while tools may contribute to the accomplish-
ment of specific tasks/subtasks based on a specific method.
The way EIS engineering tasks, methods and tools are inte-
grated leads to different engineering methodologies. There
is no point in attempting to construct a holistic methodol-
ogy for EIS engineering due to the diverse nature of the
issues explored and the increased complexity. However, the
adoption of MBSE leads to the progressive construction of
a central EIS model, independent of specific methodologies
and tools, addressing all engineering activities in different
levels of detail.

The central EIS model can be defined as a collec-
tion of views and corresponding viewpoints, according to
ANSI/IEEE Std 1471 [13], which provides a standard way
of defining EIS models. It is efficient to define such a
central EIS Model in practice? How many viewpoints are
needed? How can it be ensured that all engineering ac-
tivities are served by defined views? What is the level
of description we should engage on? There is no unique
methodology to address EIS engineering [8]. Furthermore,
even well-established frameworks need further refinement
[24]. We argue that trying to construct such a detailed
model, accommodating all engineering tasks and discrete
aspects of EIS, for example functionality, architecture, en-
terprise goals etc, is a pointless effort, due to increased
complexity and diversity of issues, especially as the level
of detail increases. Instead, one should provide a frame-
work accommodating primary EIS engineering activities,
which targets the integration and interoperability of discrete
methodologies, tools and perspectives. Such a framework
should identify all aspects and perspectives of EIS and be
technology-neutral. Furthermore, it must provide EIS view-
points and corresponding views, define rules for their inter-
relation/interaction and at the same time facilitate model-
based exploration of discrete EIS engineering issues using
specific methodologies and tools in different levels of detail
within corresponding views.

Enterprise architecture (EA) frameworks may serve to-
ward this direction. An overview of existing EA frame-
works can be found in [11] and [19], while a wide discus-
sion on Enterprise Architecture lays on [24]. Enterprise ar-
chitecture discipline focuses on a holistic view of the En-
terprise targeting at documenting the evolution of all enter-
prise aspects in order to fulfill its goals. EA frameworks fa-
cilitate modeling of all enterprise aspects and perspectives.
Thus, they may serve for MB-EISE as well, while in this
case we focus on the integration and formal communication
of models, rather than the extensive description of all enter-
prise aspects targeted by EA efforts. We argue, that Zach-
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man framework could be most suitable for establishing a
central EIS model for MB-EISE [20]. As indicated in [24]
and [9], Zachman framework is the most popular EA frame-
work, while many of the other ones are based on it. Most of
them usually emphasize in specific issues, but they do not
introduce new perspectives or system aspects. Furthermore,
Zachman framework is technology-neutral. A plethora of
methodologies and formalisms exist ( [6], [9], [22], [7]),
each applicable to some subset of cells, while respective
system models are defined.

3. Using Zachman Matrix to accommodate
MB-EISE Activities

Zachman framework provides a holistic model of enter-
prise information infrastructure. We argue that each ma-
trix row may serve model-based implementation of a dis-
crete primary engineering activity, as defined in [17] and
proposed by INCOSE [16], addressing the needs of corre-
sponding stakeholders. (see figure 1).

The first two rows, namely Scope, denoting business
purpose and strategy, and Business Model, describing en-
terprise functionality, are intensively business-oriented and
are expressed in business oriented vocabularies [24]. They
may serve two discrete primary EIS engineering activi-
ties, namelyDefining Enterprise ObjectivesandEstablish-
ing Enterprise Functionalityrespectively. Definition of En-
terprise Objectives may comprise specific activities, such
as Policy Management, Enterprise Environment Manage-
ment, Investment and Risk Management, and others char-
acterized in IEEE 15288 as enterprise processes [17]. Es-
tablishing Enterprise functionality focuses on describing the
provided services and corresponding requirements imposed
by different stakeholders. The third row, namely System
Model, which delineates how the system will satisfy the
requirements yielding from business objectives, may serve
EIS Design(both at software and hardware level). EIS De-
sign facilitates requirements analysis and architecturalde-
sign of both applications/data and EIS architecture. The
next two rows, namely Builder Model, representing how
the system is implemented and Out-of-Context including
implementation-specific details, may serveImplementation
and Detailed Implementationrespectively [16]. The last
row, Operational, which is the functioning system, may
serveSupport and Maintenanceactivities, also included in
EIS engineering cycle. All primary engineering activities,
as described in figure 1, are interrelated and recursively exe-
cuted, since EIS engineering is an iterative process targeting
the continuous improvement of EIS [16]. Model-driven im-
plementation of these primary engineering activities based
on Zachman matrix rows, accommodates the concurrent ex-
ecution of them based on the EIS sub-model of the corre-
sponding row, provided that they may obtain the informa-

Figure 1. MB-EISE primary activities based
on the Zachman framework

tion needed by other Zachman matrix rows. Such an ap-
proach also facilitates the progressive engineering of EIS
in different levels of detail, performed in cumulative cy-
cles. Rules governing the Zachman framework, as defined
in [25], are applied during model-based EIS engineering as
well. EIS sub-models corresponding to each row are in-
terrelated. The respective requirements are progressively
refined starting from enterprise objectives to the functional
EIS supporting it.

Each primary engineering activity should be explored
taken into account related requirements identified by the
respective stakeholders. A requirement denotes a capabil-
ity or condition that must (or should) be satisfied and may
specify a function that a system must perform or a con-
dition a system must achieve [3]. Thus, requirements are
divided into two main categories, i.e. functional and non-
functional [5], [18]. The Zachman matrix consists of 6 dif-
ferent rows, identifying EIS different aspects, each of which
reveals different requirements related to the specific aspect.
We argue that for each primary engineering activity, six dif-
ferent EIS viewpoints should be defined, each one related
to a different EIS aspect. Data aspect describes the entities
involved, while Function viewpoint shows how the entities
are processed resulting to application implementation. Net-
work viewpoint indicates where the entities are located re-
sulting to EIS architecture. People viewpoint indicates users
related aspects, while Time viewpoint reveals the way iden-
tified entities are synchronized. All these viewpoints are
used to explore functional requirements, which are related
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to the functionality of the system. Non-functional require-
ments is a broadly used term. However, there is no consen-
sus about the nature of non-functional requirements since
various classifications of them exist in the literature [5] [18].
We believe that the basic aspects of non-functional require-
ments can be depicted in three sub-categories, namelyper-
formance, constraintandspecific qualityin accordance with
other researchers [10]. The Motivation row of Zachman ma-
trix relates to the reasons that lead to the specific function-
ality of an EIS. We argue, thus, that not-functional require-
ments should be handled by the Motivation viewpoint. A
similar approach was also suggested in [9].

3.1. EIS Viewpoint and View Definition

The conceptual model for MB-EISE using Zachman ma-
trix according to ANSI/IEEE 1471 standard is depicted in
figure 2. Enterprise architecture is described by an EIS En-
gineering framework based on the Zachman matrix. As
such, the framework focuses on 6 different perspectives
serving discrete primary engineering activities according to
Zachman matrix row rationale and 6 different aspects ac-
cording to Zachman matrix column rationale. Thus, EIS
engineering framework consists of 36 EIS views, defined
according to the combination of perspectives and aspects.
For each EIS view a viewpoint is defined serving the cor-
responding stakeholder’s perspective on a specific aspect.
For example the Design Function Viewpoint serves appli-
cation designer. EIS view defined by each viewpoint corre-
sponds to EIS sub-model related to the specific cell, while
the central EIS model is constructed by integrating all Zach-
man cell sub-models. Each aspect viewpoint (for example
function) is treated independently within the limits of the
specific engineering activity (for example design) based on
a corresponding EIS sub-model, while specific methodolo-
gies and tools may be applied within EIS viewpoint corre-
sponding to each Zachman matrix cell. For example, RUP
methodology [7] could be employed for application design
within System Function cell. To promote interoperability
and integration, it is crucial to provide a typical definition
of the meta-model describing each EIS view. In similar ap-
proaches, as in [9] which focuses on Zachman’s second row,
although some ideas are discussed, no formal meta-model is
given for the description of each cell.

Since each view is treated autonomously, EIS sub-model
describing it should contain all necessary information to
perform the respective tasks. Therefore, both internal enti-
ties related to the specific engineering activity and external
entities facilitating the integration with other cells, construct
each view sub-model. External entities indicate the infor-
mation needed by other cells, while they also indicate the
information provided to other cells. Each cell view gathers
information from all the cells of the same row (participating

in the same engineering activity) and the cells of the same
column above and beneath it, while it also may pass infor-
mation to them. Upper and lower cells participate in the
progressive refinement of enterprise requirements for the
specific aspect. EIS view integration and inter-view consis-
tency is accomplished by creating mappings between exter-
nal entities of respective models. The corresponding stake-
holder is responsible for describing internal entities of each
cell-related view.

Each cell-related view may be further decomposed into
EIS sub-views, focusing on specific issues. The correspond-
ing stakeholder should be accommodated with a black-box
(indicating requirements imposed by external factors) anda
white-box (describing the proposed solution) perception of
EIS aspects under study [7] [15]. All sub-views construct-
ing an EIS view should be related. As indicated in [4], two
basic relations are identified between views: refinement (the
internal view refines the external view on a different level of
detail) and complement (two views may complement each
other by considering complementary concerns). Sub-views
are defined according to theme-specific viewpoints refining
the respective EIS viewpoint.

For each EIS view, a corresponding representation model
should be defined, along with the necessary mappings to
EIS view sub-model. Independently of view definition
meta-model, we suggest that UML [14] or SysML [15]
should be adopted for EIS view representation, as they are
very popular standards.

3.2. First-level Description of Basic MB-
EISE Activity

The model-based EIS engineering activity correspond-
ing to any Zachman cell should support the basic tasks de-
picted in figure 3. They could be cumulatively resolved at
different levels of detail, facilitating the progressive solu-
tion of related engineering issues. The way they are imple-
mented or further analyzed is methodology-specific. The
task of collecting requirements task relates to the extraction
of external information from other cells and the refinement
of functional and non-functional requirements by the cor-
responding stakeholder. It can be served by multiple sub-
views, each of them grouping external entities related to dif-
ferent cells. The task regarding solution synthesis indicates
the construction of alternative models to solve specific en-
gineering issues. Solutions are consequently evaluated and
optimized, while, based on evaluation results, both alterna-
tive solutions and imposed requirements may be adjusted.
In the latter case, solutions synthesized in other cells (either
in the same row or column) may be affected, while solu-
tions suggested in different cells should be synchronized.
This can be accomplished by communicating external en-
tity values to the corresponding external cells. Thus, inter-
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Figure 2. MB-EISE conceptual model

Figure 3. Basic engineering tasks performed
based on each cell-related view

operability between methodologies applied within each cell
can be accomplished. These tasks should be further refined
within the limits of each Zachman cell.

Since, even within the purpose of a specific methodol-
ogy or viewpoint, discrete issues may be resolved using au-
tonomous, heterogeneous tools, tool integration related to a
specific task should be supported. Some of them may em-
ploy their own internal model for EIS representation. Thus,
tool coordination and internal meta-model transformation
should also be supported. According to model-based en-
gineering principles, consistency is ensured, since the EIS
view meta-model acts as a “reference point”. Prior to using
an existing tool, the partial transformation of view meta-
model into the tool’s internal meta-model must be facili-
tated. Using this transformation, the invocation and initial-
ization of any tool can be automatically performed.

4. Model-Based Enterprise Information Sys-
tems Architecture Design

To further elaborate on basic MB-EISE activity model
refinement and the proposed guidelines for constructing EIS
cell-related view and the interaction with external cells,the
System Network cell of the Zachman matrix is used as ex-
ample.

According to INCOSE [16], determining system ar-
chitecture (i.e. the way autonomous system components
should be synthesized) is a complex process. EIS archi-
tecture design is the process of defining and optimizing the
architecture of the information system (both hardware and
software) and exploring performance requirements, ensur-
ing that all software components are identified and prop-
erly allocated and that hardware resources can provide the
desired performance. This activity is performed based on
the EIS view corresponding tosystem networkcell, which
should facilitate: (a) definition of EIS architecture (e.g.a
system-oriented view of distributed applications), (b) defi-
nition of system performance and availability requirements,
(c) definition of system access points, (d) description of
platform-independent distributed infrastructure (e.g. net-
work architecture and hardware configuration) and (e) asso-
ciation of software components to network nodes (resource
allocation), in order to ensure performance and availability
requirements.

EIS architecture design was also discussed in [20]. In the
following, we provide a methodology-independent, model-
based EIS enterprise design activity model and describe the
corresponding EIS architecture design sub-views as well as
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Figure 4. EIS Architecture Design basic engi-
neering tasks

way they are interrelated to external cells.

4.1. First-level Description of EIS Architec-
ture Design MB Activity

The basic tasks identified during the EIS architecture de-
sign activity are depicted in figure 4. These tasks are in
alignment with basic engineering tasks performed for each
Zachman matrix cell, as depicted in figure 3.Collect Re-
quirementstask (as depicted in figure 3) is accomplished
through two discrete stages i.e.Functionality Definition
andRequirements Definitionwithin System Network cell.
The former depicts functional requirements extracted from
People, Data and Function cells of the system model row.
The latter concerns non functional requirements related to
EIS architecture design, extracted from the Motivation cell
of System Model row. Requirements included in this cell
are either propagated from the upper layers of Zachman
framework or specifically defined for system design and
may relate to issues not relevant to EIS architecture design.
Only architecture design related requirements are propa-
gated within EIS System Network view.

Next, the solution is synthesized through two interactive
steps i.e.Topology DefinitionandNetwork Infrastructure
Definition ( [7], [12]). Topology Definition facilitates re-
source allocation and replication. This task is performed
taken into account the definition of system access points in
terms of hierarchically related locations performed in up-
per Network cells (Business row network cell in particular).
The termsite is used to characterize any location (i.e. a
building, an office, etc.). As such, a site is a composite en-
tity which can be further analyzed into sub-sites, forming
thus a hierarchical structure.

Network Infrastructure Definition refers to the aggregate
network, described through a hierarchical structure com-
prising LANs. Devices, such as servers and workstations

Figure 5. EIS Sub-Views corresponding to the
System Network cell

are associated with LANs at the lowest level of the hier-
archy. Network nodes are either workstations allocated to
users or server stations running server processes. Topol-
ogy and Network Infrastructure Definition tasks are inter-
related. Both should be performed in the same hierarchical
levels of detail. At the lowest level, network nodes should
be related to processes/data replicas. In essence, interaction
between these two tasks represents an interdependence in
terms of derived requirements. Requirements derived dur-
ing Topology Definition affect Network Infrastructure Def-
inition and vice versa. Therefore, Requirements Definition
is performed in parallel with Topology and Network Infras-
tructure Definition as well. Developing requirements and
architectural artifacts in parallel has already been addressed
in the literature [23].

After the solution deployment, validation is performed
using simulation. Solution evaluation will determine
whether the overall process will end in case the solution
is satisfied or readjustments will be performed through the
recurrence of the previous steps.

The tasks of figure 4 corresponding to Requirements
Collection and Solution Synthesis (which presented in fig-
ure 3) are described through a discrete view. As such, four
relative views are defined, namely,Functional View, Topol-
ogy View, Network Infrastructure Viewand Requirements
View. These views constitute sub-views of the System-
Network view of Zachman framework. Solution valida-
tion and evaluation is performed using information included
in all of them. Interrelations between corresponding tasks
are reflected upon the introduced views. These interrela-
tions along with the dependencies between the introduced
views and the related models of the corresponding Zach-
man cells are depicted in figure 5. Dependencies with ex-
ternal Zachman cells are bidirectional. Functional view ob-
viously is influenced by and influences People, Data and
Function cells of System Model row, while Requirements
view interacts with System Motivation view. Topology view
is bidirectionally related to Business Network view, while
Network Infrastructure view to Technology Network view.
System Network views are illustrated in figure 5 in a black-
box manner. A white-box perspective of them will un-
fold through the description provided in the following para-
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graph, further elucidating view interdependencies.

4.2. Meta-model describing System Net-
work View

The meta-model of System Network view, e.g. entities
constituting each sub-view and their interrelations, is ad-
justed to support the identified tasks.

As depicted in figure 6, Functional view encompasses
functional requirements derived by external system cells.It
focuses on functional specifications (e.g. application archi-
tecture, user behavior and data structures). Applicationsare
considered to be based on multi-tiered, client-server mod-
els. Each application tier, calledmodule, comprises ser-
vices. Application tiers and provided services should be in
accordance to the model defined in Function cell, thus they
act as external entities. User behavior is modeled through
roles defining the behavior of different user groups. They
act as external entities for People cell (e.g. they could be re-
lated to user role entities).Data entitiesare defined to indi-
cate portions of data used by applications. They also act as
external entities for Data cell. For each service, a servicede-
scription sub-view is defined indicating network infrastruc-
ture resources needed for its execution. The load imposed
to network infrastructure resources each time the service is
executed is expressed usingoperationsselected from a pre-
defined set called Operation Dictionary [21].Service De-
scription andOperation Dictionary sub-viewswill be fur-
ther described latter after discussing Requirements view.

Topology view facilitates allocation of software, data
and people resources. It comprises sites, defined in upper
Network cells, processes defined as instances of server or
client modules, user profiles as instances of roles, and data
entity replicas as instances of data entities defined in Func-
tional View. The allocation of them to sites corresponds to
software architecture design. Sites are organized in a hier-
archical structure. Those belonging to the lowest level of
the hierarchy are characterized as atomic.

Network Infrastructure view comprises the overall net-
work decomposed to sub-networks. Devices, such as
servers, workstations and other network devices are asso-
ciated with LANs at the lowest level of the hierarchy. De-
vices may include a processing unit and a storage unit.
Networks and network nodes are characterized by capac-
ity indications, for example throughput, storage speed or
processing power, which should be matched with load re-
quirements, related to Topology view entities. As a result,
networks are associated to sites defined in Topology view,
while processes, data entity replicas and user profiles lo-
cated in atomic sites are allocated to server or workstation
devices included in the corresponding LAN.

Requirements view comprises non-functional require-
ments derived from the System Motivation cell relevant to

EIS architecture design or progressively defined during the
execution of the EIS Architecture Design tasks. Require-
ments defined within requirement view are satisfied by spe-
cific entities included in Functional, Logical and Network
Infrastructure views and contribute to inter-view interrela-
tions. In the following we provide a further classification
of non-functional requirements based on our objectives in
respect to EIS architecture design. Three main categories
are supported:performance, constraintandspecific qual-
ity [10].

Regarding constraint requirements, we focus on those
concerningcapacity. Capacity, which has to do with the
limitations of the hardware and their impact to the system,
is related to Network Infrastructure view. Regarding spe-
cific quality requirements, we consider onlyavailability re-
quirements. They are associated with Network Infrastruc-
ture view, where availability deals with hardware aspects.
Availability requirements may be either derived from up-
per level requirements, within System Motivation cell, or
defined with System Network cell during EIS architecture
design. Requirements defined within System Network cell
during EIS architecture design should be passed to EIS Sys-
tem Motivation view.

As depicted in figure 6, performance requirements are
further decomposed tobehavior, load andutilization. Uti-
lization requirements are associated with Network Infras-
tructure view and regard the proportion of network infras-
tructure resources used by applications during normal op-
eration or extreme conditions. Behavior requirements deal
with service behavior and are time-related (e.g. response
times). They affect Functional view, as indicated in figure
6. Load requirements concern the load imposed to EIS re-
sources by system entities, as processes and data replicas,
defined in Topology view, for example average data trans-
fer load or data processing load imposed by a specific pro-
cess. These requirements are derived ones, which should be
calculated for execution of each specific service based on
behavior requirements and service decomposition described
in Service Description sub-view.

The execution of each service relates to specific load re-
quirements imposed to network infrastructure. To identify
such requirements the amount of information processed,
stored or transferred during its execution should be esti-
mated. The Service Description sub-view is introduced for
this purpose, defined for each service included in Functional
view. Since service functionality can be complex, it is not
easily described in terms of the amount of information pro-
cessed, stored or transferred during its execution. To facil-
itate the progressive estimation of load parameters, a set of
operations are defined for the description of service load re-
quirements [21]. Operations are selected from a predefined
set defined in Operation Dictionary sub-view, which com-
prises application and elementary operations. Application
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Figure 6. EIS System Network View Meta-model

operations are those used for service description and must
be ultimately decomposed into elementary ones (i.e. data
processing, storing and transferring). Load requirements
are estimated through parameter values that are propagated
by service invocation parameters to parameters describing
application operations constituting the service description,
which are further propagated to parameters describing ele-
mentary operations.

4.3. EIS Architecture Design Task Imple-
mentation

EIS Architecture Design tasks may be supported by ex-
isting tools [20]. Systems Modeling Language (SysML)
[15] is considered as the most appropriate for EIS Sys-
tem Network model representation and requirement engi-
neering, since it supports the concepts of requirements and
resource allocation. As a direct consequence, SysML al-
lows the representation of requirements as model elements,
which means that requirements are part of the system archi-
tecture. For representation purposes, a SysML profile for
EIS System Network meta-model (figure 6) is being imple-
mented as a plugin to MagicDraw modeling tool [2]. In
order to facilitate model exchangeability, EIS System Net-
work model is being realized in XML, which is a standard
exchangeable format. In order to exchange data with spe-
cific software tools, model transformations will be accom-
plished through appropriate XSLTs developed for each tool,
for example as the one transforming XMI to the EIS System
Network document type description (DTD) and vise-versa.

5. Case Study

In the following we discuss the case of renovating a
legacy information system supporting a large-scale public
organization based on the proposed concepts. The organiza-
tion supports more than 350 interconnected regional offices
and its main purpose is to provide services to the public,
both citizens and businesses. Regional offices are divided
into three categories according to their size and informa-
tion infrastructure requirements (large, medium and small).
More than 15.000 employees work in the organization hav-
ing on-line access to the legacy system. There are more than
300 different services provided to the public, while each cit-
izen is required to register in the one belonging to his/her
residential area, calledresidential office. Some of them re-
quire the actual presence of citizens in their residential of-
fice.

Existing system architecture is based on a fat client-
server architecture. All application logic is programmed
within the client platform, while data is distributed in lo-
cal database servers located in each regional office. A Cen-
tral database is supported in the Datacenter for data syn-
chronization and lookup purposes. The Datacenter and all
regional offices participate in a private TCP/IP network to
facilitate efficient data replication. Most data related toa
specific citizen are maintained as local data in his/her resi-
dential office. Client programs access the local database to
store data, while they access the central database mostly for
lookup purposes. Local data are asynchronously replicated
in the central database using a transaction management sys-
tem (TMS). TMS clients are installed in client workstations
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to facilitate communication with the central database. The
central database provides the overall view of each citizen’s
record.

To enhance the level of services provided by the organi-
zation, we decided to establish an enhanced e-services en-
vironment through an e-government portal. The main target
of the portal is to minimize the need for citizen’s presence
in regional offices and intents to deal with all the drawbacks
of the current e-service platform. It provides easy access
to citizens and businesses twenty four hours per day, seven
days per week. It also promotes the increase of e-services to
users, facilitating the organization to accomplish its strate-
gic goals. The portal facilitates on-line transactional ser-
vices and ensures on-line access to the databases of the
legacy information system.

Provision of transactional e-services reflects the opera-
tion of the legacy system and thus results in its renova-
tion. In order to effectively support both systems (e.g the
portal and the legacy system), the organization should be
able to apply the same policies and minimize maintenance
cost. Thus, it was decided to explore the renovation of
the legacy information system by adopting modern techno-
logical trends, such as multi-tiered application architecture,
server-based computing and light clients. It was decided
also to rewrite application code based on J2EE architecture
to develop a web interface for the legacy information system
in order to support a unified environment for both the legacy
system and the portal. This decision affected the legacy sys-
tem architecture, described in System Network View. Some
of issues raised included: (a) Should there be a change in the
database architecture? It is currently distributed. Should it
become centralized? What are the implications in the net-
work infrastructure? (b) Can hardware consolidation be ac-
complished to minimize maintenance cost?

Though EA was never fully described, the organization
had already decided to establish an EA based on Zachman
framework a few years ago. RUP methodology was used for
software development, thus application description models
were developed within Rational Rose platform. In order
to be able to apply the proposed tasks identified in section
4, relative information had to be extracted from the corre-
sponding cells. Application description (e.g. applications
and modules) as well as data structures were manually ex-
tracted from corresponding Rational Rose files. Though the
process was not automated, the provision of System Net-
work meta-model, helped architecture designer to identify
the information needed to obtain from software designers.
Detailed service description in terms of load requirements
could not be extracted from software description. This was
crucial in order to decide upon Intranet and Datacenter ar-
chitecture. This information was collected by interviewing
software developers.

The new system has to deal with a number of require-
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Figure 7. Topology View - Existing System

ments, with security and availability being the most impor-
tant ones. Security issues have to do with the security of the
network, security of data, authentication control, etc. Avail-
ability requirements deal with the backup subsystem, the
recovery system and high availability UPS. Privacy must
be enforced with the use of cryptography and compression
techniques. All these requirements were identified during
the System Architecture design process and consequently
exported in System Motivation cell where all system re-
quirements are gathered using a simplified text-based re-
quirement description method.

System Architecture design tasks were performed by ex-
isting tools already described in [20]. The existence of Sys-
tem Network meta-model and its implementation in XML
facilitated tool integration and interoperability. The identifi-
cation of primary EIS engineering activities served by Zach-
man matrix rows and columns facilitated a better under-
standing between software developers, architecture design-
ers and organization management and enhanced discrete
methodology integration. Existing and renovated applica-
tion architecture of the legacy system defined by Topology
View are presented in figures 7 and 8 respectively. The
screenshots are from the MagicDraw [2] tool, enhanced
with EIS profile to provide the appropriate functionality.

6. Conclusions & Future Work

MB-EISE process based on Zachman framework was
explored in the paper. The designer may adjust ba-
sic MB-EISE activity model for each cell, formulate a
methodology-independent EIS cell-related view, and finally
identify methods and tools appropriate for implementing
each specific task. One could argue that in such a case, 36
distinct EIS sub-views should be defined, each of them be-
ing rather complex, while basic MB-EISE activity should be
adjusted 36 times, resulting in a very complicated process.
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However, EIS engineering process, as enterprise architec-
ture, is itself complex. The benefit of the proposed approach
is that all aspects (simple or complex) are handled in a uni-
form and modular fashion. Cell-related sub-views and cor-
responding meta-models, as well as cell-related MB-EISE
activity model may be progressively formed according to
the designer’s priorities and perspectives.

Having a black-box view of each Zachman cell, the pro-
posed approach focuses on EIS view integration and inter-
view consistency. The notion of external entities when
defining EIS cell-related views provides the means for in-
teroperability with external cells, while at the same time
facilitates atomicity within the limits of each cell. We are
currently emphasizing Business and System rows, and espe-
cially Function and Network cells, exploring in parallel Mo-
tivation column and the way non-functional requirements
are managed.

Having a white-box view of each Zachman cell, it is
evident that the definition of a technology neutral meta-
model and the identification of basic engineering tasks, cor-
responding to EIS cell-related views, contributes to the in-
tegration of different methodologies and tools. A library of
EIS System Network models has been already implemented
in XML. Emphasis is given to requirements management
and especially requirements derivation.
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