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Abstract: Information and Communication Technologies (ICT) rapidly migrate towards the Future Internet era, which is
characterised, among others, by powerful and complex network infrastructures and innovative applications, services and
content. An application area that attracts immense research interest is transportation. In particular, traffic congestions,
emergencies and accidents reveal inefficiencies in transportation infrastructures, which can be overcome through the
exploitation of ICT findings, in designing systems that are targeted at traffic/emergency management, namely Intelligent
Transportation Systems. This study presents such a system that operates on the basis of collecting information from various
sources (vehicles and infrastructure objects) through vehicular sensor networks, intelligently processing it, integrating
knowledge and experience coming from the past and, finally, issuing directives to the driver for facilitating transportation.
The overall approach is presented in detail, whereas a novel heuristic is proposed for the algorithmic process towards reaching
decisions. Indicative simulation results showcase its efficiency, mostly with regards to proactively identifying a potential
forthcoming danger and accordingly notifying the driver.

1 Introduction

Information and Communication Technologies (ICT) have
been long standing at the forefront of international research
interest. This is reflected on efforts in international projects
and standardisation activities, as well as on discussions in
international fora, which aim, in principle, at the provision
of innovative services and applications, tailored to
individualised user needs [1, 2]. The common denominator
of the latest trends in networking technologies is the Future
Internet (FI) [3], which will be connecting people, content
and things, based on novel high throughput and low-latency
network infrastructures and related technologies. The FI
era envisages mechanisms that promise easier overcoming
of the structural limitations of telecommunication
infrastructures and their management systems, so as to
further facilitate the design, development and integration of
novel services and applications [4–7].
An area of applications where ICT find prosperous ground

in the FI era, is transportation. The motivation for this is that
many cities face a growing volume of traffic, which is
associated with several unpleasant phenomena, such as time
delays, high pollution, degradation of life quality, as well as
accidents and emergencies. The above reveal important
inefficiencies related to transportation, as identified by
research community of both, public agencies and private
industry [8, 9]. Those inefficiencies have established
transportation management as a key service that should be
offered by ICT [10–12]. In this respect, several innovative
and cost-effective mobile services and applications for

traffic networks are under investigation, emerging as the
cornerstone of the so called Intelligent Transportation
Systems (ITS) [13–16]. By enabling vehicles to
communicate with each other via vehicle-to-vehicle (V2V)
communication, as well as with roadside base stations via
vehicle-to-infrastructure (V2I) communication, ITS can
contribute to safer and more efficient roads.
In the light of the above, this paper proposes a novel

transportation management approach, namely ‘i-Drive’,
targeted at proactively managing vehicles and the surrounding
transportation infrastructure quickly and efficiently, in a
way that guarantees significant improvements in traffic/
safety/emergency management.
The proposed approach combines (i) wireless sensors

placed on the vehicles and on specific parts of the
transportation infrastructure (traffic lights, road signs), (ii)
wireless sensor networks [17, 18] formed by neighbouring
vehicles and parts of the infrastructure, thus referred to
as ‘vehicular sensor networks’ (VSNs) and (iii) a
computationally efficient heuristic for evaluating the
available information and proactively issuing directives to
the drivers and the overall transportation infrastructure,
which may be valuable in context handling.
The particular contribution of the paper mainly lies in

the utilisation of a knowledge-based decision making
algorithm, which can increase the overall levels of safety
through recognising potential emergencies a priori,
improving thus the total transportation quality. Moreover, it
laterally also addresses the integration of the advantages of
VSNs in ITS through the description of a whole framework
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that can incorporate various services/applications that can
improve the quality of transportation.
The structure of this paper is as follows. The next section

presents the motivation for this work, through an overview
on the research in ITS and some open issues. Section 3
presents the ‘i-Drive’ components in detail. Section 4
describes the i-Drive decision making algorithm, which
reflects its core. Moreover, Section 5 contains extensive
simulation results that showcase i-Drive’s effectiveness,
whereas concluding remarks are drawn in Section 6.

2 Motivation: related work in ITS
and challenges

This section presents the motivation for this work, through an
overview of the ongoing related work on ITS, along with
some key open issues that the i-Drive approach aims at
covering.
The automotive world has been lately experiencing a trend

related to the extensive use of ICT inside vehicles and in
transportation infrastructures. The results of this trend are
reflected on the term ‘ITS’ (as mentioned above), which
envisages systems that are either related to road
infrastructures, making the infrastructure ‘intelligent’, or used
inside vehicles traveling on road, attributing vehicles with
intelligence [19]. For example, a vehicle equipped with an
ITS might be aided to avoid an emergency situation caused
by another vehicle that has suddenly gone out of order,
through V2V and V2I communication technologies. In this
case, after gathering the necessary information, the vehicle’s
intelligent management system that is part of its ITS, informs
the driver that he should slow down and potentially make a
turn, so as to avoid hazardous implications. Intelligence lies
in the ITS’s proactive decision upon alternatives, which
would be otherwise feasible only after the driver could see/
identify the emergency.
In general, research in ITS focuses on the following areas:

(a) Traffic assessment and management, where some
research efforts deal with traffic information systems based
on ad-hoc networks, whereas others present centralised
solutions for the traffic management and hazard recognition
[20].
(b) In-vehicle and on-road safety management, which tries to
assess the driving style via non-intrusive sensors –monitoring
of the driver. The most popular concepts are measuring the
deviation from the middle of the driving lanes or detecting
conspicuous signal characteristics of the steering wheel
angle [21].
(c) Driver modelling techniques, which try to provide
accurate analyses of cognitive processes of drivers in
semi-automated vehicles, to predict the impact of future
driver assistant systems on driver workload, behaviour and
safety [22].
(d) Emergency management, which can be divided in (i)
management of increased traffic caused by emergency
situations, and (ii) management of emergencies that directly
affect the safety of the route of individual vehicles [23, 24].
(e) Additionally ITS can affect environmental effects of
transportation by reducing emissions of vehicles although
enhanced traffic and transportation management [25].
(f) Other areas that the research community focuses on are
potential application of technologies like sensor networks or
network entities’ control techniques in the potential
development and deployment of evolutionary ITS [21, 25].

However, despite the establishment of ITS, there is still
way to go for maximising transportation efficiency and
safety. The approach proposed herein aims to contribute
towards this direction. This is justified as follows:

† Currently, the collection of context information, the
solution of optimisation problems and the application of
reconfiguration decisions is an off-line process, applied in
medium (or long) time scales. However, the traffic
conditions that should be handled by vehicles may
frequently change, in a sudden or recurring manner. So, on
the one hand, traffic needs to be assessed in real-time. On
the other hand, traffic patterns resulting from a learning
process could add accuracy to the messages communicated
to the drivers; in this context, our approach tries to assess
and exploit real-time traffic information through the
(networks of) sensors and the associated decision making
algorithm.
† Legacy traffic assessment and management systems are
mainly centralised. Moreover, the communication among
the central management entities and the vehicles is being
done through internet, satellite or cellular systems.
Specifically, vehicles dispose positioning systems and
obtain information on the traffic situation. The driver is thus
capable of deciding on the proper direction to follow. This
means that, in principle, such systems are complex, as well
as unsuitable for adapting, in short time scales, to context
changes. The i-Drive approach, in turn, operates in a
completely autonomous manner, exchanging information
amongst neighbouring vehicles without any central control
and policy making entity.
† Intelligence embedded in vehicles is still at a very low level
and there is no assessment in the vehicle of the overall safety
status that would relies on a correlation of the global traffic
condition and the vehicle and driver behaviour. i-Drive
contributes to a significant increase in the vehicle’s
intelligence, through its valuable help and support that
provides to the driver a priori.

3 i-Drive description

3.1 High level description

The whole framework, in which i-Drive operates, is shown in
Fig. 1. It comprises wireless sensors placed on the vehicles
and on specific objects of the transportation infrastructure
(traffic lights, road signs), as well as VSNs formed by
neighbouring vehicles and parts of the infrastructure. Last,
i-Drive utilises the potential of VSNs in ITS and validates
this through an efficient heuristic.
In general, the sensors are required to decide on how to

process in-vehicle data, which aggregated data are to be
sent, how often etc. Sensor measurements are processed
in a hierarchical manner with specialised reasoning
techniques, which yield information about the vehicle–
driver interactions at various abstraction levels. Moreover,
the information exchanged is classified in Section 3. The
communication is enabled in a V2V–VSN (among
neighbouring vehicles), as well as in a V2I–VSN (between
vehicles and infrastructure objects) manner and it results
in information exchange transformed into collective
intelligence. This intelligence is adopted by the i-Drive
components, with the goal to decide upon issuing directives
to the drivers and the overall transportation infrastructure.
Moreover, communication, in this respect is fast (VSNs
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impose only a few microseconds οf delay), minimising the
associated time needed to reach a decision.

3.2 Detailed description of components

As shown in Fig. 1, i-Drive itself reflects an approach that
disposes certain inputs and outputs, described below,
whereas its description has been influenced by several
related research attempts with regards to decision making
[11, 13, 17, 21].

3.2.1 Input: Context acquisition: The input includes
contextual information acquired from the vehicle’s sensors
and the V2V–VSNs, regarding the status of the i-Drive
vehicle, its velocity, direction, neighbouring vehicles’
positions, directions and velocities. Additionally, input
information is acquired from the V2I–VSNs related to the
condition of elements or segments of the transportation
infrastructure (traffic lights, road signs, road conditions,
congestion levels, overall load in telecommunications network).
Let it be noted that sensor measurements provide i-Drive

with input information very often (once per microseconds,
as assumed herein), so as to cater for timely delivery of
crucial information to the driver. Last, information
transferred to i-Drive includes time-stamps for considering
also transmission delays, whereas, as mentioned also above,
propagation delays are of minor importance to this paper,
because of the presupposition of the reliable operation of
VSNs. For the same reason, other aspects such as handling
of errors are to be considered in future research attempts.
Profiles, goals and policies derivation: Last, the input

includes information on the driver’s profiles. To do so, a

predefined set of driver states is inferred from interpreted
driver monitoring data (this information is also retrieved
from the vehicle sensors). In this respect, plan recognition
techniques are explored to derive driver state and behaviour.
This means that sequences of interactions between the
driver and the vehicle, the raw signals about driver’s
physical condition (eye blink frequency, eyelid opening,
head movement, profile, operating the foot pedals, pressing
buttons on the instrument panel, steering wheel activity
etc.) as well as vehicle state information, are all acquired in
the form of a facial driver recognition, which allows for the
detection of differences between changing driving styles.
Plan recognition techniques use an algorithmic process
(defined in [26]), in order to compare the diver profile
parameters (mentioned below) with the set of driver states
and identify the closest one.
Finally, driver’s goals, priorities and policies are also

included. Goals and policies aim at maximising the
performance, safety, reliability and stability of the decisions
taken, from an end-to-end perspective.

3.2.2 Output: Directives issuing: The i-Drive algorithmic
process results in issuing commands (directives) towards the
driver, so as to adapt the vehicle’s road behaviour and
tackle any emergency situations, through emergency
braking or through vehicle direction correction (again based
on perception and reasoning). Commands are issued in the
form of alert notifications of various levels of significance,
as will be shown in the sequel. Moreover, congestion can
be avoided through the reconsideration of the vehicle’s
advisable route, as well as through notifying the driver
accordingly.

Fig. 1 i-Drive functional architecture
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i-Drive algorithmic process: Several approaches can be
envisaged for the decision making process. In general,
decision making should guarantee optimal safety,
performance, reliability and stability, from the end-to-end
perspective. Moreover, cost factors can also be addressed,
this being left for future reference. As will be described
below, i-Drive utilises a heuristic that can exploit the input
in terms of optimising an objective function (OF) [27],
which includes several aspects of the vehicle’s behaviour
(overall delay, mean velocity etc.).
Knowledge and experience creation: The information

acquired is processed and appropriately interpreted, so as to
infer knowledge and experience. To do so, all combinations
of input parameters and related decisions are kept in an
appropriately structured database. The knowledge model
captures the following aspects:

(a) It keeps track of certain contextual situations (recurrent or
emergencies) and the way they have been confronted is
retained, so as to serve for future decisions.
(b) It tries to estimate what constitutes a dangerous situation,
in terms of improving the specification of certain values of
parameters that would be more ‘subjective’ than others,
such as the road condition and the congestion level.
(c) It tries to estimate the importance of each parameter,
judging from previous situations encountered and decisions
taken, so as to gradually learn and improve the specification
of parameters’ weights.

Several context matching and reasoning techniques can be
envisaged for this part of i-Drive, whereas the algorithm
proposed in [26] is utilised herein. In particular, whenever a
specific contextual situation is encountered, i-Drive
performs an initial search in the appropriate part of the
(classified) database, so as to check whether a similar
situation has been encountered also in the past and how it
has been tackled (through an optimal or suboptimal
solution). In affirmative, the algorithm proposed herein does
not need to run and the previous decision is applied again.
Otherwise, the i-Drive algorithm needs to run and reach a
decision, through the process described in the following.
Since sensor measurements provide i-Drive with input
information continuously, through the exploitation of
knowledge and experience, the algorithm needs to run only
when something changes (when the present contextual
information has not been addressed before). In this respect,
valuable time is saved and the overall complexity is reduced.

4 Decision making algorithm

This section describes in detail the algorithmic process
utilised by i-Drive, in order to discuss the usability of the
proposed approach.
The algorithm has been structured following past research

attempts in the optimisation of reconfigurable and cognitive
network segments, applied in transportation [2, 13]. It is
thus divided into phases, for facilitating its operation.

4.1 First phase: information acquisition and
classification

As mentioned also above, the number of vehicles in range is
defined through the sensors that are embedded in vehicles. Let
the set of vehicles in range be N. i is defined for representing a
vehicle and can take values from 1 to N. Moreover, we

assume that the set of vehicles in-range moving in the same
direction and ahead of the i-Drive vehicle (which will be
denoted as vehicle i, is Na (thus na represents a vehicle of
this kind and can take values from 1 to Na), the set of
vehicles in-range moving in the same direction and behind
vehicle i is Nb (with nb representing a vehicle of this kind
and taking values from 1 to Nb), and the set of vehicles
in-range moving in the opposite direction is Nc (with nc
representing such a vehicle and taking values from 1 to Nc).
Therefore Na +Nb +Nc =N.
Based on what was previously mentioned, the algorithm is

based on input parameters gathered (a) from the infrastructure
through the V2I–VSNs, (b) from vehicle i’s own sensors and
(c) through the V2V–VSNs. The set of parameters is denoted
as M. Each parameter, j ( j = 1, …, M ), can refer to a specific
aspect. The value of parameter j of vehicle i is denoted as vij
(e.g. notation vivelocitydenotes the current velocity of vehicle i).
The parameters are summarised in Fig. 2a and further

categorised on Table 1. The categorisation on the table has
been extracted from combining common sense with several
relevant research attempts [26–28], whereas an additional
normalisation process is used (see below) to cater for the
further justification of this type of categorisation.
Finally, the importance of each parameter, j ( j = 1, …, M )

is indicated by a weight value wj. In principle, the sum of the
wj weights, over all j = 1,…,M, will be one. The wj values can
constitute a vector of weights w̃.

4.2 Second phase: normalisation and processing

In order to proceed with the decision making process, it is
necessary to quantise the aforementioned input parameters,
so as to homogenise versatile parameters and collectively
use the information they offer in issuing commands
(decisions). This is the subject of this phase.
The information acquired from vehicle i’s sensors and from

the V2I–VSN is normalised to 1, so that the values closest to
1 depict a more ‘dangerous’ situation. In this respect,
norvj represents the normalised value of parameter j.
It holds that

norvj =
vj
5
, j = 1, . . . , M (1)

assuming that i-Drive has been pre-set to match parameter
values with five quantisation levels (see also Table 1 – an
increase in the number of levels would add even more
accuracy to i-Drive).
In order to normalise the values of the input parameters

acquired through the V2V–VSN), we use three sets of
values (arising from sets Na, Nb and Nc) and produce three
‘danger factors’, denoted as Fi, i = Na, Nb, Nc.
In order to calculate Fi, i =Na, Nb, Nc, we need to estimate

the level of danger arising from certain combinations of
parameter values. For example, regarding the vehicles that
move in the same direction with the i-Drive vehicle and are
in front of it (set Na), it is critical to examine if each one’s
velocity is less than the ith vehicle velocity and if each
one’s acceleration is negative (i.e. dangerously decelerating).
Based on that information, we estimate the factor FNa

that
is then used for the final decision.
On the other hand, concerning the vehicles behind the ith

vehicle, it is critical to examine if each one’s velocity is
higher and each one’s acceleration is positive (i.e.
dangerously accelerating). So, according to that data, we
estimate the factor FNb

.
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Fig. 2 Parameters are summarised

a i-Drive input parameters
b Process to compute Fi
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Finally, regarding vehicles moving in the opposite
direction, the combination of high velocity and positive
values of acceleration may be dangerous and is used to
estimate the relative factor FNc

. Let it also be noted that for
estimating the level of danger of frontal collision, it would
be desirable to evaluate also the directions of the vehicles,
with this forming part of our future activities. However,
FNc

is used here only for an indicative assessment of danger.
Moreover, we assume again that values close to ‘1’ indicate

higher levels of danger (as considered also for the own
vehicle and the V2I–VSN extracted parameters).
Based on the above, the values of the Fi, i =Na, Nb, Nc

factors used in order to make the final decision are
calculated as follows

FNa
=

∑

∀na[Na

kna
(vivelocity − vnavelocity)

vivelocity + vnavelocity
(2)

where kna = 1, if vehicle na is decelerating (measured through
the velocities in two consecutive sensor measurements), or
else kna = 0, if vehicle na is accelerating.
In the same manner, we calculate factors FNb

and FNc

FNb
=

∑

∀nb[Nb

knb
(vnbvelocity − vivelocity)

vnbvelocity + vivelocity
(3)

where knb = 1, if vehicle nb is accelerating (measured through
the velocities in two consecutive sensor measurements), or
else knb = 0, if vehicle nb is decelerating

FNc
=

∑

∀nc[Nc

knc
(vncvelocity − vivelocity)

vncvelocity + vivelocity
(4)

where knc = 1, if vehicle nc is accelerating (measured through
the velocities in two consecutive sensor measurements), or
else knc = 0, if vehicle nc is decelerating.
An instance of the above, for facilitating understanding the

algorithm operation, is provided on Fig. 2b.

4.3 Third phase: calculation of OF and evaluation

After gathering the necessary data, the algorithm produces its
output, which is depicted on a decision that is taken based on
these parameters and has the following alternatives:

1. ‘Idle’
2. ‘Warning’
3. ‘Low importance alert – front’
4. ‘Low importance alert – rear’
5. ‘High importance alert – front’
6. ‘High importance alert – rear’

For reaching the output, the heuristic operates through
evaluating an OF [27]. The OF is as follows

OFtotal= OF1 + OF2 (5)

where

OF1 =
∑

j

wjnorvj (6)

and

OF2 =
FNa

Na
+ FNb

Nb
+ FNc

Nc
(7)

The first part of the OF (OF1) refers to V2I–VSN parameters,
as well as to the i-Drive vehicle own parameters, which can be
directly normalised through the process described in the
second phase of the algorithm.
The second part of the OF (OF2) is extracted from the

information acquired from the other vehicles in-range
(through the V2V–VSNs) and calculated through the Fi

danger factors defined also in the second phase.
In total according to our approach there are ten input

parameters for the algorithm.
The decision to be made depends on the desired

application’s characteristics. In this paper, we assume the
case where i-Drive has been configured to reach a decision
based on the alternatives mentioned before. In particular:
If 0 < OFtotal < 0.25, then the alert level is supposed to be

‘Idle’.
If 0.25 < OFtotal < 0.5, then the alert level is set to

‘Warning’ and the driver is notified.
If 0.5 < OFtotal < 0.75, then the ‘Low-importance’ alert is

triggered and the driver is notified accordingly.
If OFtotal > 0.75, then the ‘High-importance’ alert is

triggered and the driver is more persistently notified.
In all cases, a separation in the alert is made depending on

the origin of danger (front/rear).

Table 1 Indicative values of various input parameters

Parameter Parameters’ values

5 4 3 2 1

driving style aggressive normal-aggressive normal normal-passive passive
fuel level marginal low medium high full
road type village road (small,

maybe sand)
small city/area road,
one direction

small city/area road,
two directions

big road, at least two
lines per direction

national road

vehicle
condition

bad condition/needs
service immediately

quite bad condition/
about to need
service

average condition quite good condition very good condition/
just had service/new

road condition snowy and windy foggy wet/slippery with obstacles/
abnormalities

good

congestion
level

very high quite high average quite low very low

Velocity > 150 km/h 120–150 km/h 90–120 km/h 60–90 km/h < 60 km/h
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5 Results and discussion

5.1 Scenarios and simulation setup

This section presents some indicative results from the i-Drive
software prototype that is currently being implemented using
the Matlab software package. The implementation enables the
user to easily input and modify the critical parameters, as well
as to properly visualise the outcomes of the algorithm.
The scenarios have been constructed using information and

being influenced by several research attempts [26, 29]. They
derive from the inputs of the functionality, namely, the
context, personal and service profiles and policies. Their
goal is to show how fast the proposed functionality can
reach decisions that could be exploited by drivers when
anticipating emergency situations. Two scenarios are thus
used for this process. The scenarios are differentiated by
means of the danger levels as well as the conditions that
cause the danger. The first scenario is a lower danger level
scenario that studies the impact of the road type on the
i-Drive decisions, whereas the second scenario investigates
the impact of the road condition on the i-Drive outcomes.
Moreover, it has to be mentioned that in this paper we

assume that the parameters regarding the road condition and
type are of quite high importance, while the parameters
regarding the other vehicles’ moving in the same direction
are of very high importance. In that framework, and having
in mind that there are ten input parameters in total, the
weights of the first two parameters are set to 0.1, and the
weights of the two latter are set to 0.2. All the other

weights are set to 0.067, so the sum of all weights is equal
to 1, as also mentioned above. Last, it is left as part of our
future activities to invent intelligent methods to estimate the
parameters’ weights, such as with the use of neural
networks or through Bayesian networking techniques.
Finally, the results have been obtained using the Matlab

software package.

5.2 Scenario 1 – impact of road type

The goal of the first scenario is to showcase the i-Drive
efficiency when a vehicle in front of the i-Drive vehicle
exhibits changes in its velocity. Two road type cases are
considered, that is, a highway and a village road, so as to
test the response of i-Drive concerning the different levels
of danger that arise there from. The input to the scenario is
described by the parameter values presented in Fig. 3a.
As shown in figure, most parameters remain constant,
except for the road type and the velocity (and acceleration)
of a vehicle na∈Na. Moreover, regarding the last three
paremeters of Fig. 3a, they are computed based on the
information shown in Fig. 3b. In this figure the velocities as
well as the accelerations of the vehicles in range are
depicted. Velocities are measured in km/h, while
accelerations are presented in m/s2. As shown, the velocity
of one vehicle in range – and specifically ahead of our car –
is not constant, but varying from 0 to 100 km/h, and the
same applies for its acceleration, varying from − 4 to 5 m/s2.
Regarding most factors, this scenario represents a relatively

‘low danger’ situation. Hardly any parameter is over 0.5.

Fig. 3 Input to the scenario is described by the parameter values

a Scenario 1 – input parameters
b Velocities and accelerations of vehicles in range
c OF evolution, highway case
d OF evolution, village road case
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Therefore the danger that results from the altering situation of
a vehicle ahead of our car, is going to be clearly depicted.
Let us now investigate how i-Drive operates as the velocity

and acceleration of a vehicle in front of the i-Drive one
changes, assuming the case of a highway. The OF values
are shown in Fig. 3c. In particular, as long as the
acceleration of the vehicle in question is positive, then
the OF’s value is under 0.5 and therefore the output of the
system is ‘Warning – front’. This means that the i-Drive
vehicle driver just needs to be aware of this fact. On the
other hand, when the front vehicle’s acceleration becomes
negative, then OF = 0.52, if the velocity is over 50 km/h,
and OF = 0.55, if the velocity is under 50 km/h. This
implies that the vehicle decelerates. In both cases, the
i-Drive output is a ‘low importance – front’ alert.
In general, the scenario showcases a rather low level of

danger, due to the fact that a vehicle in front of the i-Drive
vehicle decelerates slowly and all vehicles move in a
highway. However, i-Drive can provide the driver with a
significant information, which is even more significant
when the decelerating vehicle is not directly in front of the
i-Drive one, but maybe a couple of vehicles further. This
means that the driver is informed a priori about a
forthcoming potential danger.
We apply the i-Drive algorithm now in the same scenario

but in a village road. The results are depicted in Fig. 3d.
With respect to the previous case, we now see that the OF
value is over 0.5 even if the acceleration of the second

vehicle ahead is positive. When the acceleration becomes
negative, then OF = 0.58, if the velocity is over 50 km/h,
and OF = 0.62, if the velocity is under 50 km/h. As a result,
in all cases the output of the system is a ‘low importance –
front’ alert, implying the existence of a dangerous situation
in front of our vehicle that should be taken into account by
the driver. In the last case, the OF value is even closer to
the ‘high importance alert – front’. In this respect, i-Drive
considers the same situation more dangerous, because of the
nature of road (village road).

5.3 Scenario 2 – impact of road condition

The goal of the second scenario is to showcase the i-Drive
efficiency when a vehicle behind the i-Drive vehicle
exhibits changes in its velocity. Two road conditions are
considered, that is, a good condition road and a snowy/
slippery road. The input parameters to this scenario are
depicted on Fig. 4a. As the figure indicates, it is a scenario
that is characterised by quite high levels of danger. For
example, all parameters apart from one have normalised
values over 0.5.
The scenario assumes that there is a constant changing in

the velocity and acceleration of a vehicle behind the i-Drive
vehicle. In total, the situation regarding the vehicles in
range is summarised in Fig. 4b. In that table, the velocities
as well as the accelerations of the vehicles in ragne are
depicted. As previously mentioned, velocities are measured

Fig. 4 Input parameters to this scenario

a Scenario 2 – input parameters
b Velocities and accelerations of vehicles in range
c OF evolution, good road condition case
d OF evolution, slippery/snowy road condition case
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in km/h, while accelerations are presented in m/s2. In this
scenario, the velocity and acceleration of a vehicle behind
our car is changing.
Fig. 4c shows the OF values in the case of good road

condition. As the i-Drive vehicle drives at 80 km/h and the
vehicle behind reaches values that are over 80 km/h, the OF
value increases. The same applies when the acceleration of
the other vehicle is positive. For all cases, the value of OF
is between 0.5 and 0.75, which means that there is a ‘low
importance alert – rear’ for the driver, whose attention is
drawn to the fact that there is a vehicle behind that
accelerates. This alert is mainly due to the sum of all the
other danger factors, expressed through the increased
normalised values of all the parameters.
On the other hand, Fig. 4d depicts the OF values in the case

of a snowy/slippery road condition, where we see that when the
velocity of the vehicle behind the i-Drive vehicle is over 80
km/h, then the OF value reaches 0.74, which is the limit for
‘high importance alert – rear’. When the vehicle’s
acceleration also becomes positive, then this value goes over
0.75 and the driver obtains a ‘high importance alert – rear’.
In general, this scenario reveals the capability of i-Drive to

provide useful information to the driver regarding potential
oncoming danger that originates in the rear of the vehicle
and is therefore maybe hard to perceive otherwise.
In conclusion, both scenarios show that i-Drive constitutes

an important, helpful tool in the hands of a driver regarding
his a priori notification of potential forthcoming dangers.
This is achieved because of fast and reliable decision
making regarding the origin and the intensity of the danger.

6 Conclusions and future work

Latest trends in ICT refer to their migration towards the FI
era, which promises easier overcoming of the structural
limitations of telecommunication infrastructures and their
management systems, facilitating the design, development
and integration of novel services and applications. One
important area of applications lies within the area of
transportation, mainly by promoting the seamless integration
of information of various types from transportation networks,
to benefit drivers and provide several innovative services.
This paper in particular has presented a proactive,

knowledge-based intelligent transportation system based on
VSNs, namely i-Drive. i-Drive is capable of benefiting from
V2X communication in order to acquire collective
information, transfer it into knowledge and experience and
proactively issue significant directives to drivers. Indicative
simulation results have shown that i-Drive is capable of a
priori identifying potential dangers and, as such, can
contribute to the goal of increasing integrated safety
/emergency management in the future world of
transportation. In this respect, the particular value of the
contribution of this paper lies in the utilisation of a
knowledge-based decision making algorithm, which can
increase the overall levels of safety through recognising
potential emergencies a priori, improving thus the total
transportation quality. Moreover, the paper has also
managed to address the integration of the advantages of
VSNs in ITS through the description of a whole framework
that can incorporate various services/applications that can
improve the quality of transportation.
Concerning potential extensions of this work, an important

step will be to support enhanced frontal collision danger
recognition, through the evaluation of the vehicles’ relative
angles and directions through their coordinates.

Another area of interest will include the utilisation of neural
network techniques as well as Bayesian networking concepts,
in order to estimate the values of the parameters’ weights in a
manner that is knowledge-based, which will add more
accuracy and reliability in the i-Drive concept.
Moreover, i-Drive could be integrated in a larger ITS that

would include the provisioning of services such as ‘live
co-driver comments’ regarding forthcoming turns, traffic
conditions expected ahead etc., which would convert
i-Drive to an integrated ‘all-in-one’ solution addressing both
safety (frontal collisions detection, dangerous turns) and
comfort (directions to avoid traffic congestion).
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