
Extending SysML to explore Non-Functional
Requirements: The Case of Information System Design

Anargyros Tsadimas, Mara Nikolaidou, Dimosthenis Anagnostopoulos
Department of Informatics & Telematics, Harokopio University of Athens

70 El. Venizelou Str, 176 71 Athens, Greece
{tsadimas, mara, dimosthe}@hua.gr

ABSTRACT
Model-driven system design is facilitated by SysML lan-
guage, which provides distinct diagrams to describe sys-
tem structure and components, explore allocation policies
and identify system requirements. While non-functional re-
quirements play a significant role in system design, their are
not effectively supported by SysML. This paper emphasizes
on a SysML extension to facilitate the effective description
and verification of non-functional quantitative requirements.
The introduction of a distinct SysML diagram to explore
evaluation results enhances requirement verification capa-
bilities, while the visualization of verification process helps
system engineers to explore design decisions and properly
adjust system design. Based on the proposed SysML exten-
sion, a profile for Enterprise Information System architec-
ture design was developed. To demonstrate the potential
of the proposed approach, the description and verification
of software performance requirements using this profile are
discussed, as an example.

Categories and Subject Descriptors
H.1 [Information Systems Applications]: Models and
Principles; D.2.1 [Software Engineering]: Requirements/
Specifications

Keywords
Non-functional Requirements, Requirement Verification, SysML,
Model-based System Design, Information System Architec-
ture

1. INTRODUCTION
System design is an important phase of system engineer-

ing, determining system architecture (i.e., the way system
components should be synthesized) to satisfy specific re-
quirements. It is commonly performed in a model-based
fashion, where activities constituting the design process are
accomplished by developing models of increasing detail [2,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

11] and can be effectively accommodated by Systems Mod-
eling Language (SysML) [5], defined as an extension of the
UML metamodel [3].

Non-functional requirements (NFRs) [10] play a signifi-
cant role during system design, since they depict the con-
ditions under which specific system components should op-
erate, leading to alternative design decisions [14]. Further-
more, proposed design decisions should be evaluated [7] and
properly adjusted until all imposed requirements are veri-
fied. SysML provides a discrete diagram to define require-
ments and the relations between them in a qualitative fash-
ion. Non-functional requirements are also described in a
quantitative fashion using for example non-functional prop-
erties as defined in ([4]). Furthermore, their verification
must be performed using quantitative methods, for exam-
ple simulation.

The description of non-functional requirements is a quan-
titative fashion was explored in UML profiles proposed for
specific domains. In [6], performance characteristics are de-
fined as discrete entities, associated to information system
elements, and described using qualitative parameters. In
MARTE, a UML profile supporting the specification of real-
time and embedded systems [4], Non-Functional Properties
(NFPs) are introduced to specify semantically well-formed
non-functional quantitative properties (e.g., throughputs, band-
widths, delays, memory usage), combined through Value
Specification Language (VSL) to formulate algebraic and
time expressions. MARTE profile, which is based in UML,
does not support the notion of requirement introduced in
SysML. Instead, non-functional annotations are associated
to system design entities to indicate non-functional char-
acteristics. Non-functional annotations defined using VSL
enables their automated validation, verification and trace-
ability, using external tools. In [1] strategies to apply SysML
and MARTE profile in a complementary manner to model
embedded systems were suggested in a high-level fashion, in-
dicating the potential to combine non-functional properties
and VSL expressions define in MARTE with SysML require-
ments for the description of non-functional system charac-
teristics. As far as NFRs are concerned, MARTE profile
focuses on performance and scheduling properties of system
components. Their verification can be explored using exter-
nal tools.

To explore quantitative NFRS, a SysML extension to ef-
fectively depict and verify them is needed. In this paper, we
propose the extension of basic SysML concepts to:

a) describe, manage and verify non-functional require-
ments, vital for system design and

b) include a discrete diagram serving system evaluation
and requirement verification.
The proposed extensions are applied in designing the ar-

chitecture of enterprise information systems (EISs). For this
purpose a SysML profile was implemented as a plugin to the
MagicDraw modeling tool [9]. To explain the proposed con-
cepts software performance requirements are discussed, as
an example.
The rest of the paper is organized as follows: In section 2,

the extension of basic SysML concepts to explore NFR quan-
titative description and verification is discussed. In section
3, the EIS Architecture Design SysML profile based on the
proposed extensions is briefly presented, emphasizing soft-
ware performance requirements as an example. Conclusions
and future work reside in section 4.

2. SYSML EXTENSION TO SUPPORT NFRS
Requirements in SysML are described, as class stereo-

types, in an abstract, qualitative manner, since they are
specified by two properties, id and text, corresponding to a
simple description. However, SysML specification suggests
to use the stereotype mechanism to define additional prop-
erties for specific requirement types. Requirements can be
grouped in packages based on common characteristics, as
their category (for example functional or non-functional) or
the activities they are related to (for example software or
hardware requirements) forming a multi-level hierarchy.
SysML includes specific relationships to relate require-

ments with other requirements (indicating the way they af-
fect each other) or other model elements. The containment
relationship, defined between requirements, indicates that
the composite requirement is realized if and only if all the
contained ones are realized. In this way, an abstract require-
ment may be composed of more specific ones, or a complex
requirement may be described in a more detail fashion. In
the case of system design, the notion of composite require-
ments is essential to indicate the way a requirement defined
for the system as whole may be described in terms of the
detailed requirements defined for system components. The
deriveReqt relationship indicates that a specific requirement
is derived by others. Since relationships do not have prop-
erties, the way requirements are specified is not depicted.
Requirements should be satisfied by model elements be-

longing to other diagrams (SysML satisfy relationship). For
this purpose, requirements may participate into other dia-
grams, enabling the exploration of the relationship between
requirements and design decisions.
SysML provides the means to describe a set of tests, which

should be performed to verify whether a requirement is sat-
isfied by system components. To depict such an activity, the
test case entity, included in Requirement diagrams, is intro-
duced. A test case is related o one or a set of requirements
for their verification, while it is described through a behav-
ior diagram (for example activity or state machine diagram)
corresponding to the activity (as a set of tests) performed
to verify related requirements. The way requirements are
handled in SysML is summarized in figure 1.
Since non-functional requirements (for example perfor-

mance requirements) are described using both qualitative
and quantitative properties, a quantitative method, such
as simulation, should be employed to produce the neces-
sary data for their verification. There are many tools and
methods suggested to simulate SysML models and integrate

Figure 1: SysML Requirement representation

SysML with different simulation languages either for contin-
uous or discrete event simulation [12, 8, 13]. The concept
of the test case is not supported by any of them. In such
case, the way system evaluation is performed, conforms to
the corresponding simulation method. Thus, the definition
of test cases is of less importance, since they could only
be used to specify the conditions under which the system
should be evaluated and not the evaluation method itself.
Furthermore, the results of the tests performed either by a
test case or using simulation to verify requirement satisfac-
tion are not included in SysML models. Such information
is crucial for the system engineer to adjust system design or
relax imposed requirements.

When SysML is used for system design, as for example
in EIS architecture model-based design, non-functional re-
quirements are emphasized. To be accurately defined, non-
functional requirements should be described using quanti-
tative properties, in a similar fashion as the non-functional
properties defined in MARTE UML profile [4]. Since, non-
functional requirements may not always be described in an
exact fashion, value deviation of quantitative properties should
be allowed, to indicate for example that the response time
for a specific service should be 4 to 5 seconds. In the same
rational, maximum, minimum or average values should be
described. Thus, more than one properties should be avail-
able for its description.

Furthermore, derived quantitative properties of non-functional
requirements should be automatically computed. The de-
riveRqt relationship indicates only the fact that the derived
requirement is related to one or more others. It does not pro-
vide any information about the way the requirement may
be derived, which may be depicted by indicating the way
its quantitative properties are computed based on proper-
ties of the requirements it is derived from. Thus, a com-
putation formula property should be defined for derived re-
quirements. The computation formulas may involve heuris-
tics and become complicated. SysML requirement entity
must be extended to a) effectively represent the quantita-
tive aspects of requirements and b) the way derived require-
ments should be computed. Constraints, specific purpose
languages as VSL [1] or scripts can be applied to derived re-
quirements to enforce the automatic computation of derived
properties, while computation algorithms must also be in-
tegrated in the SysML model. It should be noted that the
specification of computation formulas is meaningfull only if
it is actually executed and quantitative properties are cal-
culated.

Non-functional requirements must be satisfied by system
components included in any of the system design diagrams.

Figure 2: Extending SysML to explore NFRs

In such case, in order to decide whether a non-functional
requirement is verified, the designer may have to explore if
the value of a quantitative property is satisfied by the related
system components. To perform such a task, the comparison
of specific evaluation results for each system component and
related requirements properties should be performed, which
leads to the need to integrate evaluation data into the system
model.
The SysML test case, as a concept, is focused on depict-

ing how to evaluate model element satisfying a specific re-
quirement, while integrating evaluation results into the sys-
tem model is not considered. In the case of system design,
non-functional requirements are verified in a quantitative
fashion by evaluation scenarios instead of test cases. An
evaluation scenario should facilitate both a) the definition
of the conditions under which the system will be evaluated
(probably using simulation) and b) the depiction of the eval-
uation results, so that the system engineer may be directly
informed of requirement verification. An evaluation scenario
comprises of evaluation entities, used to evaluate model el-
ements, to verify the corresponding requirement or require-
ments and can be described with block definition diagrams.
Since an evaluation scenario is introduced to specify the con-
ditions under which the system design should be explored,
it involves the evaluation of all model elements, thus it is
used to verify a composite, abstract NFR (for example the
system performance must be high), constituting of more spe-
cific ones (for example service time should be between 3 to 5
seconds). When an evaluation scenario verifies a composite
requirement or a set of requirements, it should be used to
verify all the included requirements.
System design evaluation is usually performed via simu-

lation. Regardless of the method used to perform system
evaluation, evaluation elements have input properties, re-
lated to evaluated model elements, and output properties,
depicting evaluation data. Based on the value of output
properties, requirements are verified. In the case of non-
functional requirements described in a quantitative fashion,
an appropriate comparison method should be defined for
the specific requirement, based on the output properties of
all related evaluation entities. Such a method could be de-
fined for example using a Parametric Diagram or executable
scripts, associating requirement quantitative properties to

evaluation entity output properties.
As already mentioned, to simulate a SysML model using

a specific simulation method, simulation-specific character-
istics should be included in the model. Such properties may
be incorporated into evaluation entities, thus evaluation spe-
cific information does not have to be included in a system
model designed by the system engineer, promoting discrete
activity independence.

During system design, NFRs may also used to depict spe-
cific behavior forced on system components (for example the
way a traffic generator may behave under heavy traffic con-
ditions). In such a case, there is no point in verifying the
requirements. The corresponding evaluation entity may con-
form to them, since they specify conditions under which the
system design should be evaluated. The same requirement
or requirements may be verified more than once, by evolv-
ing evaluation scenarios, as the system design is re-adjusted.
Evaluation data and conditions included in them should be
integrated in the SysML model. Thus, evaluation scenarios
should be grouped into a distinct diagram, named Evalua-
tion Diagram.The way basic SysML concepts are extended
to handled non-functional requirements for system design is
summarized in figure 2.

3. EIS ARCHITECTURE DESIGN SYSML
PROFILE

The proposed SysML extensions were applied in a SysML
Profile for the design of Enterprise Information System Ar-
chitecture. It has been implemented using the MagicDraw
[9] modeling tool. Along with the profile, a java plugin was
implemented, called EIS Architecture Design plugin, respon-
sible to impose model constraints and embed the desired
functionality in MagicDraw.

As an example of NFR management supported by the
profile, software performance requirements are discussed.
Defined stereotypes, additional qualitative and quantitative
properties and related constraints are presented in figure 3.
Three groups of stereotypes are defined, indicated by dif-
ferent colors: design stereotypes, describing software struc-
ture, NFR stereotypes, describing performance requirements
and evaluation stereotypes, describing corrsponding evalua-
tion entities. Stereotypes are associated between them using
the relations defined in figure 2. In this example, require-
ments happen to be verified by a simple evaluation entity
which evaluates the corresponding design entity satisfying
the requirement. Stereotype constraints indicated in figure
3, ensure compatibility between design decisions and indi-
cate which NFRs each software component must satisfy.

3.1 Defining Software Performance Require-
ments

Software architecture is explored using a discrete compo-
nent diagram named Functional View. To explore software
performance, desired performance measurements and corre-
sponding component behavior should be defined in a quan-
titative fashion. Both of them are defined as performance
requirements. Software components are defined as services,
grouped in Modules (client & server), representing software
tiers. Though, services are invoked by other services de-
pending on software functionality, modules are allocated to
hardware components. Roles represent different user groups
initiating services that belong to client-Modules.

Figure 3: NFRs and Evaluation entities for software performance exploitation

The performance of services is measured by the desired
response time, depicted as a ResponseTime requirement,
which indicates the time frame in which the service should
return an answer to the calling service or role. An average
and maximum value and measurement unit, are defined as
quantitative properties. The requirement is verified based on
Eval-Service evaluation entity corresponding output prop-
erties. The deviation property indicates acceptable value
deviation between corresponding properties.
Services, when executed, consume network, processing-

power and storage resources. These parameters describe
the service behavior in a quantitative fashion and must be
defined by the software architect. They are defined using a
Service-QoS requirement that the service satisfies. For each
of them, values of three different types: traffic, processing
and storage must be defined. Since Service-QoS require-
ment indicates the resources consumed within the desired
response time, these requirements are interrelated.
To explore the performance of software components, the

behavior of the users initiating them should be specified by
defining a behavior requirement for each role, indicating how
frequent a role is activated, described by an activation dis-
tribution function (e.g., Binomial, Poisson, Normal) and its
initialization parameters. To describe alternative user be-
havior on specific occasions, for example a heavier work-
load, a different behavior requirement can be defined. Both
behavior and Servive-QoS requirements are used during sys-
tem evaluation to properly initiate evaluation scenarios, thus
corresponding evaluation entities (e.g., Eval-Role and Eval-
Service) conform to them. Corresponding model elements
are expected to conform to these requirements.
Module-QoS-req indicates the resources consumed by soft-

ware tiers and are described by quantitative properties in a
similar fashion as responseTime-req (see figure 3). They
are derived from Service-QoS-reqs of services belonging to
them. In such case, a computation formula must be defined,
as indicated by the corresponding property of Module-QoS-
req. Processing and storage Module-QoS requirements are

computed for each module, while a traffic Module-QoS re-
quirement is computed for each Module-Invoke relationship,
indicating the information exchange between modules.

The computation of the processing Module-QoS require-
ment is briefly discussed in the following as an example.
It consists of the estimation of avg-value and max-value
properties (indicating the average and maximum process-
ing power required by the hardware node the module will
operate on). Their values are estimated based on the value
property of the processing Service-QoS requirement of all
Services belonging to that Module and the properties of
Roles initiating them (either directly or indirectly). The
calculation formula is presented in algorithm 1 and is based
on heuristics.

for j = 1 to s do
for k = 1 to r do

for t = 0 to 23 do
if k.StartT ime ≤ t ≤ k.EndTime then

SRmaxj [k, t] = k.numOfOccurs
SRavgj [k, t] = k.numbOfOccrs ∗ percentagek→j

else
SRmaxj [k, t] = 0
SRavgj [k, t] = 0

end if
end for

end for
for t = 0 to 23 do

Smaxj [t] =
∑r

k=1 SRmaxj [k, t]
Savgj [t] =

∑r
k=1 SRavgj [k, t]

end for
for t = 0 to 23 do

Smaxprocj [t] = Smaxj [t] ∗ s.proc
Savgprocj [t] = Savgj [t] ∗ s.proc

end for
end for
for t = 0 to 23 do

Mmaxproc[t] =
∑s

j=1 Smaxprocj [t]

Mavgproc[t] =
∑s

j=1 Savgprocj [t]

end for
maxproc = max23

t=0 Mmaxproc[t]

avgproc =
∑23

t=0 Mavgproc[t]

x , where x the number of
Mavgproci[t] ̸= 0

Algorithm 1: Calculating the max-value and avg-value
attributes of the processing Module-QoS-requirement

Figure 4: Functional View excerpt: defining perfor-
mance requirements

According to the algorithm, for each Module, a set named
SRV is defined, so as to include all services that belong to
a module mod. Each set contains s elements. A set named
ROL(i) is defined for each element srv(i) of set SRV, so
as to include all roles that initiate directly or indirectly a
service srv. Each set contains r elements. For each ser-
vice srv(i) that belongs to a module mod and is initiated
by a set of roles ROL(i), a matrix is defined, having 24
columns (the hours of a day) and r rows. This matrix is
called SRmaxsrv. Each row of the matrix has as values
the instances (numOfOccurs) of that role that initiate di-
rectly or indirectly the service in the specific time interval
defined by the StartT ime and EndTime properties of the
Role. SRavgsrv matrix is defined in a similar fashion to in-
dicate the average number of roles that initiate the service.
Maximum and average concurrent role instances initiating
the service, called Smaxsrv and Savgsrv, are estimated for
each time-interval.
The maximun and average processing requirement for each

Module for each time interval indicated by Mmaxproc and
Mavgproc matrices are estimated based on Smaxsrv and
Savgsrv matrices and the value attribute of corresponding
Service-QoS requirement (indicated as proc) of all the ser-
vices belonging to the Module.
Maximum processing Module-QoS requirement, calledmax-

proc, is estimated as the maximum value of Mmaxproc ma-
trix. Average processing Module-QoS requirement, called
avgproc, is estimated as the average value of Mavgproc ma-
trix.
Figure 4 presents a part of a Functional view diagram,

where two roles (officer-1 and manager) initiate services be-
longing to a Client Module (accounting app). For each ser-
vice, for example edit employee data service, a response time
requirement has been defined (s1-RT). Processing, storage
and traffic Service-QoS requirements have also been defined.
The accounting app Module-QoS-reqs are calculated by the
tool.

3.2 Verifying Software Performance Require-
ments

As indicated in figure 3 evaluation entities are used to
evaluate software performance. Their input properties are

initialised by the corresponding software entity properties.
In the case of EIS Architecture design, evaluation scenar-
ios are explored using an external simulator, build for this
purpose.

The evaluation entities’ input properties are used to ini-
tialize the simulation model and the output properties are
used to store simulation output. To verify a performance
requirement, the system engineer should be informed of any
conflicts between evaluation entities output properties and
corresponding requirement properties. For example, the
max and average ResponseTime output properties of Eval-
Service entity are compared to ResponseTime requirement
properties, to verify if the requirement is satisfied. The value
of derived requirements calculated for Module and Module-
Invoke entities are also verified using Eval-Module entity.
However, not all requirements related to a software compo-
nent have to be verified. For example, the input properties
of Eval-Service entity include the Service-QoS requirements
that the corresponding service satisfies, and indicate the con-
ditions under which the evaluation should be performed. In
such case, the Eval-Service entity conforms to the Service-
QoS requirement, defined for service component behavior in
a quantitative fashion (figure 3).

Through performance evaluation scenarios, the conflicts
in performance requirement verification should be visually
presented to the system engineer. Services and modules,
failed to satisfy related performance measures, are visually
identified, while the system engineer is the one responsible to
adjust EIS architecture design and initiate another evalua-
tion scenario. Since evaluation scenarios become part of the
system model, he/she may refer to them to realize the effect
of specific architecture decisions on the EIS architecture.

Figure 5 includes a part of the Evaluation diagram cor-
responding to the entities defined in figure 4. Evaluation
entities are automatically added in the diagram by the tool,
while the system engineer adds the requirements they must
conform to.

After the completion of the simulation experiment of this
scenario, output parameters of all evaluation entities are
filled. Constraint validation rules are utilized to indicate
the evaluation entities associated to non-verified require-
ments. Evaluation entities not verifying a model constraint
are marked with red color, and the designer is able, by click-
ing on them, to identify the non-verified requirement. For
example, as shown in the figure, the s1-RT Response Time
requirement is not verified by edit employee data service;
thus the corresponding evaluation entity is marked with red
color. The system engineer may view output properties and
realize the conflict. In this case, the estimated maximum re-
sponse time is outside the limits of the value interval for the
Response Time requirement. The system engineer should
decide whether this requirement will be relaxed or the nec-
cessary actions in order to improve software architecture per-
formance.

The existence of the Evaluation diagram helps the system
designer to better realize the affect of his/her redesign de-
cisions. System designers that tested the tool, appreciated
the fact that all the information related to requirement ver-
ification was presented in a single diagram. They also found
useful that all different experiments results were maintained
and could be used when making modification in architecture
design.

Figure 5: Evaluation diagram excerpt: response time requirement verification

4. CONCLUSIONS
SysML provides distinct diagrams to describe system struc-

ture and components, explore allocation policies and iden-
tify system requirements. However, during system design,
non-functional requirements (for example performance re-
quirements) affecting efficient system operation should be
effectively explored. Proposed system designs should be val-
idated and properly adjusted until an acceptable architec-
ture is defined. SysML provides for requirements description
in an abstract fashion. To support non-functional require-
ments, the SysML requirement entity must be extended.
The integration of an Evaluation diagram consisting of eval-
uation scenarios, facilitates system design validation and re-
quirement verification, while evaluation results are included
in the system model.
The proposed profile is currently tested using real-world

case studies to identify limitations of the proposed approach.
The way the exploration of complex models may affect the
performance of EIS Architecture Design MagicDraw plugin,
especially during derived requirement computation and eval-
uation scenario creation is also under investigation.

5. REFERENCES
[1] H. Espinoza, D. Cancila, B. Selic, and S. Gérard.

Challenges in combining sysML and MARTE for
model-based design of embedded systems. In
ECMDA-FA, volume 5562 of Lecture Notes in
Computer Science, pages 98–113. Springer, 2009.

[2] J. A. Estefan. Survey of Model-based Systems
Engineering (MBSE) Methodologies. INCOSE MBSE
Focus Group, May 2007.

[3] O. M. G. Inc. UML Superstructure Specification,
Version 2.1.2, November 2007.

[4] O. M. G. Inc. UML profile for MARTE: Modeling and
analysis of real-time embedded systems specification,

version 1.0, November 2009.

[5] O. M. G. Inc. Systems Modeling Language (SYSML)
Specification, Version 1.2, June 2010.

[6] ITU. User requirements notation URN - language
definition. ITU-T Reccomendation Z.151, ITU, Nov.
2008.

[7] M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira.
A uml-based approach for validation of software
architecture descriptions. In TEAA, pages 158–171,
2006.

[8] L. F. McGinnis and V. Ustun. A simple example of
SysML-driven simulation. In Winter Simulation
Conference, pages 1703–1710. WSC, 2009.

[9] MagicDraw UML. http://www.magicdraw.com/.

[10] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using non-functional requirements: A
process-oriented approach. IEEE Transactions on
Software Engineering, 18:483–497, 1992.

[11] M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and
D. Anagnostopoulos. Employing Zachman Enterprise
Architecture Framework to systematically perform
Model-Based System Engineering Activities. In
HICSS-42, pages 1–10, 2009.

[12] R. Peak, R. Burkhart, S. Friedenthal, M. Wilson,
M. Bajaj, and I. Kim. Simulation-based design using
sysml part 1: A parametrics primer. San Diego, CA,
USA, 2009. INCOSE Intl. Symposium.

[13] R. Wang and C. Dagli. An executable system
architecture approach to discrete events system
modeling using SysML in conjunction with colored
petri nets. In IEEE Systems Conference 2008.

[14] L. Zhu and I. Gorton. Uml profiles for design decisions
and non-functional requirements. In SHARK-ADI ’07,
page 8, Washington, DC, USA, 2007. IEEE Computer
Society.

