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Abstract 

A modeling approach is here introduced for 
distributed applications. During the last years computer 
networks have dominated the world, forcing the 
development of applications operating in a network 
environment. Since new technologies, as WWW, 
middleware and co-operative software emerged, 
distributed applications functionality became rather 
complex and the requirements from the underlying 
network increased considerably. 

Distributed applications usually consist of interacting 
services provided in a multi-level hierarchy. In order to 
effectively evaluate their performance through 
simulation, we introduce a multi-layer object-oriented 
modeling scheme that facilitates the in-depth and detailed 
distributed application description and supports most 
popular architectural models, as the client/server model 
and its variations. Application functionality is described 
using predefined operations, which can be further 
decomposed into simpler ones through a multi-layer 
hierarchy resulting into elementary actions that indicate 
primitive network operations, such as transfer or 
processing. Important features of the modeling scheme 
are extendibility and wide applicability.  

The simulation environment build according to this 
modeling scheme is also presented, along with an 
example indicating key features and sample results. 

1. Introduction 

Simulation modeling is widely adopted in the 
computer network domain for performance evaluation 

purposes. During the last decade, numerous simulation 
tools were constructed, aiming at analyzing the behavior 
of complex, user-defined network environments ([1], [2]). 
Application performance exploitation is thus closely 
depended on the network infrastructure. In most cases, 
applications running on a network environment are 
viewed as generators of network traffic, while application 
operation mechanisms are often overlooked. 

The outburst in network technology forced the 
development of new types of applications, such as 
distributed information and control systems, e-mail and 
WWW applications, distant learning environments and 
workflow management systems. Most are based on the 
client/server model and its variations, such as the two-tier 
and three-tier models [3], and are generally called 
distributed applications. Distributed applications extend 
to multiple sites and operate on multi-platform networks. 
As distributed applications become more complex and 
new services are emerging, the detailed description of 
operation mechanisms is more significant, considering the 
fact that network delays are often negligible. Thus, even 
though distributed applications depend on the supporting 
network, detailed modeling of application operation 
mechanisms is a prerequisite for their in-depth 
performance evaluation.  

In current research, a number of cases with a different 
orientation can be referenced. Simulation modeling of 
customized applications is usually performed analytically 
using mathematical models (i.e. the corresponding 
functions/distributions) to represent network load 
generation ([5], [6]). In other cases, the QoS provided by 
the network to support specific application requirements 
is exploited. When performance evaluation is oriented 
towards issues as the above, it is performed using 
modeling solutions that are restrained to these specific 



 

objectives, without emphasizing the application operation 
mechanisms.  

Application operations are examined in approaches, 
such as the ones presented in [2], [7] and [8], where 
object-oriented modeling is widely adopted. Application 
operation is expressed at the primitive action layer, using 
a series of discrete requests for processing, network 
transfer, etc., in terms of predefined, primitive actions. 
This, however, cannot be effective when application 
decomposition is not supported through a mechanism that 
transforms operations into primitive actions through 
intermediate ones, which conform to the various 
architectural models (e.g. the client/server model) and 
standards. Decomposition is thus accomplished in an 
“empirical” manner. When determining the effect of 
applications without analyzing the operation mechanisms, 
an accurate estimation of application load is not feasible. 
Extendibility and wide applicability, to support variations 
of the architectural models as well as customized 
implementations, are also not supported. Establishing a 
generic modeling scheme is thus required to facilitate the 
representation of different types of applications, i.e. 
primitive (e.g. FTP) and complex (e.g. distributed 
databases), according to common modeling principles, as 
well as the interaction between applications and the 
underlying network.  

The modeling scheme introduced in this paper 
facilitates accuracy in distributed application description 
y using a multi-layer action hierarchy. Actions indicate 
autonomous operations describing a specific service and 
can be decomposed into simpler ones, resulting in 
elementary actions similar to those described in [2] and 
[7]. The modeling framework supports the client/server 
model and its variations and can be further extended to 
support other architectural models. Main features of the 
modeling scheme are modularity, extendibility and wide 
applicability. 

To evaluate distributed application performance, a 
simulation environment, namely Distributed System 
Simulator (DSS), was constructed. DSS enables the 
exploitation of various types of distributed applications, 
including user-defined ones, as well as the exploitation of 
the network infrastructure through its graphical 
components. Object-oriented modeling and component 
preconstruction is employed.  

In the following sections we present Distributed 
System Simulator components and emphasize the 
modeling scheme introduced for distributed application 
description and model extension and validation issues, 
crucial for our approach.  An example using DSS to 
evaluate the performance of a distributed banking system 
is also presented. 

2. Simulation Environment 

Distributed System Simulator was initially developed 
as part of a distributed architecture design environment, 
called IDIS ([9]). Since requirements for network and 
application modeling, experimentation and model 
management increased considerably, DSS evolved into a 
standalone environment. DSS is based on object-oriented 
and process-oriented simulation and its current version is 
implemented using MODSIM III ([10]) for model 
construction and Java for all other modules. 

DSS is modular, as presented in figure 1, and consists 
of a graphical user interface (GUI), which co-operates 
with individual modules for simulation program 
construction and model manipulation and a model base. 

Model and experimentation specifications are provided 
through GUI. Model Generator constructs the simulation 
program, using component models that reside in Model 
Base.  

Completeness and validity of specifications must be 
pre-ensured, and this is accomplished through the 
Compatibility Rule Base, which includes a representation 
of all models residing in Model Base and compatibility 
rules. Model Manager is invoked during the model 
extension process. 
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Figure 1. Distributed System Simulator components 

Line connections in figure 1 indicate module 
invocation and data access. When experiments are 
completed, results are subjected to output analysis in 
order to a) determine whether distributed applications 
operate efficiently and b) determine the ability of the 
network infrastructure to support the requirements 
imposed by distributed applications.  



 

3. Model Definition 

Object-oriented modeling provides an almost natural 
representation of multi-entity systems, as distributed 
systems, since modularity enables the in-depth 
description of all their components. In simulation 
modeling, modularity often results in a hierarchical 
structure, according to which components are coupled 
together to form larger models ([11]). Distributed systems 
are modeled as a combination of two types of entities: 
distributed application and network infrastructure entities. 
Both are described in terms of their elementary 
components ([12]). Network model composition is a 
complex task due to the increased number of network 
technologies and standards. Since modeling solutions for 
communication network architectures are already 
employed by commercial simulation environments, as 
Comnet and OpNet ([2], [1]), this topic is not further 
discussed in this paper. 

In most contemporary systems, distributed application 
operation is based on the client-server model. When 
designing distributed applications, as indicated in [3], 
there are many architectural solutions that may be 
employed regarding the functionality provided by clients 
and servers and the replication scheme. There are two 
variations of the client/server model that are widely 
adopted: the two-tier and the three-tier models. 
According to the two-tier model, application functionality 
is merely embedded in the clients, while servers deal with 
data manipulation and consistency issues ([3]). After the 
explosion of the Internet and the WWW, this model was 
no more viable, since functionality was embedded in Web 
Servers to minimize communication delay. Furthermore, 
the aggregate functionality was dispatched into more than 
one layer, with the use of intermediate ones (middleware) 
between clients and servers, thus offering common 
services to clients. This is the three-tier model. 

Within the DSS framework, a basic scheme was 
introduced to facilitate the description of applications, 
regardless of their complexity and architecture, 
supporting both the above architectures. Two types of 
processes can be defined: clients, which are invoked by 
users, and servers, which are invoked by other processes. 
The specific interfaces, acting as process activation 
mechanisms must be defined for each process, along with 
the operation scenario that corresponds to the invocation 
of each interface. Each operation scenario comprises the 
actions that occur upon process activation.  

Actions are described by qualitative and quantitative 
parameters, e.g. the processes being involved and the 
amount of data sent and received. In most cases, the 
operation scenario is executed sequentially (each action is 
performed when the previous one has completed). 
However, there are cases where actions must be 

performed concurrently. This is supported through 
specifying groups of actions that have the same sequence 
number.  

The basic actions used for application description are 
the following: 
• Processing: indicating data processing 
• Request:  indicating invocation of a server process 
• Write: indicating data storage 
• Read: indicating data retrieval 
• Transfer:  indicating data transfer between processes 
• Synchronize: indicating replica synchronization 

Each process is executed on a processing node and, 
thus, Processing action indicates invocation of the 
processing unit of the corresponding node. 

According to the client-server model, communication 
between processes is performed through exchanging 
messages. Server processes can be invoked by other 
processes, clients or servers. Request action indicates 
invocation of a server process and is characterized by the 
name of the server process, the invoked interface and the 
amount of data sent and received. It also implies 
activation of the network, since the request and the reply 
must be transferred between the invoking and the invoked 
process. DSS currently supports RPC, RMI and HTTP 
protocols. 

Storing data is performed through File Servers. There 
are two actions available for data storing, which are read 
and write, which are characterized by the amount of data 
stored and retrieved, respectively, and the file server 
invoked. Temporary data can also be stored in the local 
disk, resulting in the invocation of the corresponding 
node storage element. File Server process supports two 
interfaces, namely read and write, corresponding to the 
aforementioned actions.  

Transfer action is used to indicate data exchange 
between processes.  

Replication of processes and data is a common 
practice in distributed applications in order to enhance 
performance. While process replication is easy to 
implement, replication of data is accomplished through 
defining process replicas, for handling data, and a 
synchronization policy. In the latter case, there are many 
issues to be resolved, such as determining the process 
responsible for the synchronization (the invoking process 
or a process replica), when synchronization is performed 
(i.e. whenever a change is made or periodically at pre-
specified time points) and the synchronization algorithm.  

Definition of process replicas operating on different 
nodes and data replicas stored at different file serves is 
supported. DSS does not support specific synchronization 
policies. It allows the description of the logical 
connection between replicated processes and data during 
process definition and provides the synchronize action to 
facilitate the specification of synchronization policy. This 



 

action corresponds to the invocation of the synchronize 
interface, which must be supported by all process 
replicas. The corresponding operation scenario has to be 
defined by the human operator. Synchronize action 
parameters include the process replicas that must be 
synchronized and the amount of data transferred.  

User behavior is modeled through User Profiles. Each 
profile includes user requests to the client interfaces that 
may be invoked by the user. For each profile, execution 
parameters, such as the execution probability, are also 
specified. User profiles are associated only with 
processing nodes.  

In figure 2, an example of the processes involved in a 
distributed banking system is presented. Tellers are 
represented through Teller Profile, which activates Teller 
Client by invoking the Deposit Interface. The teller 
manager, represented by Manager Profile, can also 
activate Teller Client by invoking Closing Interface. 
Deposit interface corresponds to a deposit in a client 
account and is invoked with two parameters, account and 
amount, which indicates the size of the corresponding 
data. Deposit operation scenario includes actions, such as 
read (indicating program download) and request 
(indicating the actual deposit) that activate the 
corresponding operation scenarios of Local Database and 
File Server. The first parameter of each action indicates 
the execution sequence.  
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Figure 2. Distributed Application Description example 

Local Database is a replica of Central Database, thus 
synchronize action is used to indicate the need for data 
synchronization between the local branch and the main 
system. After data is stored in Local Database, Central 
Database is also updated. Since the synchronization 
algorithm is application-specific, the corresponding 
operation scenario is defined by the user. Server process 

activation is performed through read, write, request and 
synchronize actions and is indicated by dotted lines. 

Processes are composite objects acquiring static (e.g. 
process type) and dynamic properties as lists of objects 
(e.g. interfaces and operation scenarios). Each operation 
scenario is also a composite object, including a list of 
actions. DSS operator can store specific instances of 
processes, as the DB Server in the previous example, for 
future reuse in other experiments. This is accomplished 
by properly extending object hierarchies, as discussed in 
section 4. 

The actions used to define operation scenarios are 
either elementary or of higher layer. In the latter case, 
they can be decomposed into elementary ones. While 
processing is an elementary action, write is expressed 
through simpler ones, i.e. a process and a request sent to 
a File Server. All actions can be ultimately expressed 
through the three elementary ones, processing, network 
and diskIO, each indicating invocation of the 
corresponding infrastructure component ([13]). Action 
decomposition is not performed in a single step. 
Intermediate stages are introduced to simplify the overall 
process and maintain relative data. The action 
decomposition scheme is presented in figure 3. 
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Figure 3. Action composition scheme 

Dotted rectangles represent intermediate actions, while 
gray rectangles represent elementary ones. Finally, 
rectangles with black border represent application actions 
used when defining operation scenarios. Note that even 
though processing action is an elementary one, it is used 
in the definition of operation scenarios. This diagram can 
be further extended to include user-defined, domain-
oriented actions, as discussed in section 4, which conform 



 

to specific architectural models. However, although 
alteration or creation of elementary actions is not allowed.  

The supported actions are categorized into 4 layers. 
The lowest layer includes only elementary actions, while 
the highest one includes only actions built upon existing 
ones. User-defined actions are also placed at this layer. 
Each action can be decomposed into others of the same or 
the lower layer. Actions support specific parameters and 
are derived as ancestors of the action class. During action 
decomposition, all parameters of the invoked action must 
be defined. 

4. Model Extension and Validation 

The proposed object-oriented modeling scheme 
facilitates the extension of application component (e.g. 
actions) functionality, in order to describe custom 
applications, and also storing of specific application 
component (e.g. DB server) instances for future reuse. 
The same capabilities are provided for network 
components, as network protocols. Model extension is 
performed by the human operator through the invocation 
of Model Manager and Compatibility Rule Base. 

Extending distributed application modeling constructs 
is a strong requirement for the modeling scheme and is 
noted as a pitfall of current simulation tools. Processes, 
actions and communication protocols are the most 
common entities, new models of which (i.e. components) 
need to be provided. Models are created as ancestors of 
existing, abstract entity models. A concise modeling 
framework for extending object structures has been 
described in ([13]). Considering the example of section 
3.1, a new insert action model would be constructed as a 
direct descendant of the abstract application action 
model, while a DB process model would be constructed 
as a descendant of BE process model (figure 4).  

Extending object hierarchies is performed according to 
specific restrictions that ensure the validity of the 
modeling scheme. User-defined action models are either 
of intermediate or application type. Existing actions can 
not be altered, while new actions must always be 
described in terms of existing ones. When creating a new 
process model, the interfaces and operation scenarios are 
usually fully defined. Although a new operation scenario 
(e.g. insert) can be stored within a new process model 
(e.g. DB process), the operation scenario model can not 
be extended, since the addition of new operation 
scenarios not belonging to a specific process is not 
supported. While describing an application, the user can 
copy a specific operation scenario, since the description 
of specific instances is temporarily stored within 
Compatibility Rule Base. 
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Figure 4. Distributed Application modeling scheme 

At the implementation level, the Model Base is 
extended using object inheritance. When extending 
composite entities (e.g. process), hierarchical layering 
enables the construction of complex models through 
extending the behavior of existing objects and ensures 
that models of a single entity, organized in a single class 
hierarchy, are accessed through a common interface, 
using polymorphism ([14]).  

When defining a new action, the user declares its 
parameters and the actions used to describe it, while GUI 
ensures that all actions are properly invoked (their 
parameters are properly filled). The code fragment 
generated when constructing the write action is presented 
in figure 5. As indicated in this figure, write is 
constructed as a descendant of application action and 
results in the activation of a request action. Its parameters 
are stored as object properties, and only the init method 
needs to be modified.  

User-defined actions are added in Model Base in a 
similar manner. The init method is explicitly created for 
all user-defined actions, since they support different input 
parameters and correspond to different descriptions stored 
in the consist_of property. Other methods, such as 
activate, maintain the same syntax to facilitate 
polymorphism and remain the same for all actions. 



{Object Definitions} 
 

{Objects Implementation}� 

ApplicationActionObj= 
Object(ActionObj) 
 CalledProcess:ProcessObj; 
 CallingProcess:ProcessObj; 
 Number_consist_of:Integer; 
 Consist_of: 
  ARRAY[1..Number_consist_of] of 
ActionObj; 
Override 
 ASK METHOD Init( ); 
Override 
 WAIT FOR METHOD Activate; 
END OBJECT; 
 
RequestObj= 
Object(ApplicationActionObj) 
 Seq:Integer; 
 Interface:InterfaceObj; 
 Int_Par_List:List of STRING;  
 ReqSize: INTEGER; 
 ReplySize: INTEGER; 
Override 
 ASK METHOD Init(IN Seq:INTEGER; 
  IN Calling_Procedure: ProcessObj; 
  IN Called_Process: BE_ProcessObj; 
  IN Interface: InterfaceObj; 
  IN Int_Par_List: List of STRING;  
  IN ReqSize: INTEGER; 
  IN ReplySize: INTEGER); 
 
END OBJECT; 
 
WriteObj= 
Object(ApplicationActionObj) 
 File:FileObj; 
 Data_size: INTEGER; 
Override 
 Called_Process: FSObj; 
Override 
 ASK METHOD Init(IN Seq:INTEGER; 
  IN Calling_Procedure:ProcessObj; 
  IN Called_Process:FSObj; 
  IN File: FileObj; 
  IN Data_size: INTEGER;); 
 
END OBJECT; 
 

OBJECT ApplicationActionObj; 
 
… 
WAIT FOR METHOD Activate; 
BEGIN 
 FOR ALL a IN consist_of 
  WAIT FOR a TO Activate; 
END METHOD; 
 
END OBJECT; 
 
 
OBJECT WriteObj; 
  
ASK METHOD Init(IN seq:INTEGER; 
  IN calling_procedure:ProcessObj; 
  IN called_Process:FSObj; 
  IN file: FileObj; 
  IN data_size: INTEGER;); 
 
 
BEGIN 
 
Seq:=seq; 
Calling_Procedure:=calling_procedure; 
Called_Process:=called_process; 
File:= file; 
Data_size:=data_size 
 
/* initiate inherited properties */  
 
Interface:=new(InterfaceObj); 
Int_Par_List:=[File,Data_size]; 
ASK Interface TO Init("write", Int_Par_List); 
ReqSize:= Data_size+100; 
ReplySize:= 100; 
 
/* fill consist_of list */ 
 
Number_Consist_of=1; 
Consist_of[1]:=new(requestObj); 
ASK Consist_of[1] To Init 
 (Seq,Calling_Procedure, Called_Process,  
 Interface, Int_Par_List, 
ReqSize,ReplySize); 
END METHOD; 
 
END OBJECT; 

Figure 5. Code generation when constructing Write action 

Extension of process models is accomplished based on 
the same guidelines. 

Code generation is performed by Model Manager, 
which establishes a coupling relation between these 
components. The extension process comprises the 
following steps: 
1. Ensuring model validity and compatibility with the 

existing ones. 
2. Inserting component models in the Model Base. 
3. Updating Compatibility Rule Base with the new 

component structure. 
The overall process is depicted in figure 6.  
Model extension and simulation program generation 

capabilities can only be supported when input 

specifications are thoroughly examined to ensure model 
validity. Validation is not trivial, even though models are 
preconstructed, since models are coupled to form larger 
ones and are extended to conform to customized 
implementations. Validation is carried out through rule-
based mechanisms during system specification. 

Graphical visualization of the existing model 
hierarchies supports the addition of customized models. 
Compatibility Rule Base is invoked to ensure that 
consistency is maintained. When Model Library is 
extended, the Compatibility Rule Base is updated with the 
additional model structure, its relations with the existing 
models and rules concerning its initialization.  
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Figure 6. Model Extension process 

5. Practical Example of DSS Usage 

Distributed System Simulator was used for evaluating 
the performance of a distributed banking system. Except 
from headquarters, the bank maintains 64 branches. The 
banking system supports 24 discrete transactions, 
grouped in four categories, which are mainly initiated by 
tellers. The average transaction number per day in a 
branch is 500, while the maximum transaction number in 
central branches is over 1000. The required response time 
is 15-20 sec for all transactions. 

Network infrastructure could be modeled and 
evaluated using various commercial simulation tools. 
However, application description was not feasible on the 
basis of primitive modeling constructs and required an 
intermediate-layer analysis that gradually extends to the 
primitive action layer, so that a credible application 
model would emerge.  

The system architecture is based on the three-tier 
model. A central database is installed in headquarters, 
where all transactions are executed, while transaction logs 
are maintained in local databases at the branches. The 
central database supports 33 stored procedures 
corresponding to the different execution steps of the 24 
transactions. Transactions are coordinated by a 
transaction monitoring system, also installed in 
headquarters. Digital’s RDB database management 
system and ACMS transaction monitoring system are 
used. The overall network is a TCP/IP one. 

Light client applications are running on user 
workstations. Client data are stored locally in the branch 
file server. When a transaction is executed, the 
corresponding forms are invoked, each having an average 
size of 3K. ACMS is invoked up to four times for the 
execution of the corresponding stored procedure. Before 
finishing each transaction, a log is stored in the local 
database.  

Server processes that were modeled are the following: 
File Server at headquarters and local branches, 
CentralDB, LocalDB and ACMS. Since LocalDB 
represents logging, only a simple insert interface had to 
be implemented for recording the log. CentralDB is 
accessed through the 33 stored procedures, which are 
implemented and stored in the database. For each stored 
procedure, a single interface had to be implemented. 
Since system performance was mainly determined by the 
interaction of the different system modules and not by the 
internal database mechanisms, we decided to establish a 
common representation for all stored procedures. A new 
action called call_stored_procedure_step was created and 
inserted in the action hierarchy. Action parameters are 
preprocessing, data_accessed and postprocessing. 
Data_accessed parameter indicates the amount of data 
accessed at each step, while preprocessing and 
postprocessing parameters indicate the amount of data to 
be processed before and after access, as a fraction of the 
accessed data. Using this action, the description of stored 
procedures was significantly simplified. Each stored 
procedure consists of one to five steps. The 
call_stored_procedure_step action is implemented as an 
interface of the CentralDB process in a way similar to 
read/write and includes the activation of processing, read 
and write actions. ACMS is modeled as a server process 
providing the interface call_ACMS (procedure, inputdata, 
outputdata, processing), which initiates the activation of 
the corresponding stored procedure.  

Client applications involve the invocation and 
processing of forms, the activation of stored procedures 
through ACMS and log recording. Log recording is 
depicted through properly invoking the insert interface of 
LocalDB, while stored procedure activation is 
accomplished through the invocation of the call_ACMS 
interface of ACMS. Form_access (FS, form_name, 
processing) was added in the action hierarchy to depict 
accessing, activating and processing of a form. Using 
combinations of these three actions, it was possible to 
describe all applications in a simplified, common way.  

Applications were categorized in four groups, each 
controlled by a different type of user. Applications of the 
same group are not executed simultaneously by the same 
user. This led us to depict each group as a client process 
supporting one interface for each specific application. 
Users are depicted as profiles initiating the corresponding 
client application. 

Except from building a credible distributed application 
model, DSS also enabled the estimation of the exact 
amount of data processed and transferred within and 
between branches. Modeling advantages that were 
offered are also simplification in client application 
description, extendibility and flexibility during process 
description.  



 

The capability to extend the action hierarchy was 
important to ensure detailed application description. If 
only predefined actions could be used, the same 
description would have to be repeatedly given for all 
transactions, e.g. form activation. Furthermore, this 
scheme facilitated application description at the level of 
abstraction required by different groups of users.  

While the system was under deployment, DSS 
contributed to determining potential weak points and 
ensuring the response time of client transactions. Since 
the main activity of all transactions relates to the 
invocation of the central database through ACMS, special 
attention was given to the system performance at 
headquarters. DSS indicated two drawbacks: First, the 
processing power of the hardware supporting the Central 
Database was not adequate to execute client transactions 
within the predefined response time. This proved to be 
accurate, forcing the bank to upgrade the hardware 
platform. Second, for the interconnection of branches 
with headquarters, load estimation indicated that the 
throughput of specific leased lines should be increased. 
On the other hand, Ethernet (10BaseT) proved to be 
efficient for branches, since the average throughput was 
very low (less than 0.05 Mbps).  

6. Conclusions 

Exploring the behavior of distributed systems while 
emphasizing the description of distributed applications 
was the objective of the modeling scheme introduced. 
Application modeling extends to the operation and 
interaction mechanisms and conforms to the various 
forms of the client/server model. Since distributed system 
architectures are configurable, considerable effort was put 
in constructing and organizing the preconstructed 
component models to ensure their efficient manipulation. 

The modeling scheme provides guidelines for 
modeling the essential, both primitive and composite, 
distributed system components. The capability to reuse 
models when implementing customized component 
models was crucial for the description of different 
architectures, despite the complicated nature of this 
process. An important feature of this research is that the 
modeling guidelines can also be used in other modeling 
and simulation studies.  
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