
An Object-Oriented Modeling Scheme for Distributed Applications

 D. Anagnostopoulos M. Nikolaidou
 Department of Geography Department of Informatics
 Harokopion University of Athens University of Athens
 El. Venizelou Str, 17671 Panepistimiopolis, 15784 70
 Athens, Greece Athens, Greece
 Tel.: (+) 301 – 9549171 Tel.: (+) 301 – 7275614
 Fax: (+) 301 – 7275214 Fax: (+) 301 – 7275214

 Email: dimosthe@hua.gr Email: mara@di.uoa.gr

Abstract

A modeling approach is here introduced for
distributed applications. During the last years computer
networks have dominated the world, forcing the
development of applications operating in a network
environment. Since new technologies, as WWW,
middleware and co-operative software emerged,
distributed applications functionality became rather
complex and the requirements from the underlying
network increased considerably.

Distributed applications usually consist of interacting
services provided in a multi-level hierarchy. In order to
effectively evaluate their performance through
simulation, we introduce a multi-layer object-oriented
modeling scheme that facilitates the in-depth and detailed
distributed application description and supports most
popular architectural models, as the client/server model
and its variations. Application functionality is described
using predefined operations, which can be further
decomposed into simpler ones through a multi-layer
hierarchy resulting into elementary actions that indicate
primitive network operations, such as transfer or
processing. Important features of the modeling scheme
are extendibility and wide applicability.

The simulation environment build according to this
modeling scheme is also presented, along with an
example indicating key features and sample results.

1. Introduction

Simulation modeling is widely adopted in the
computer network domain for performance evaluation

purposes. During the last decade, numerous simulation
tools were constructed, aiming at analyzing the behavior
of complex, user-defined network environments ([1], [2]).
Application performance exploitation is thus closely
depended on the network infrastructure. In most cases,
applications running on a network environment are
viewed as generators of network traffic, while application
operation mechanisms are often overlooked.

The outburst in network technology forced the
development of new types of applications, such as
distributed information and control systems, e-mail and
WWW applications, distant learning environments and
workflow management systems. Most are based on the
client/server model and its variations, such as the two-tier
and three-tier models [3], and are generally called
distributed applications. Distributed applications extend
to multiple sites and operate on multi-platform networks.
As distributed applications become more complex and
new services are emerging, the detailed description of
operation mechanisms is more significant, considering the
fact that network delays are often negligible. Thus, even
though distributed applications depend on the supporting
network, detailed modeling of application operation
mechanisms is a prerequisite for their in-depth
performance evaluation.

In current research, a number of cases with a different
orientation can be referenced. Simulation modeling of
customized applications is usually performed analytically
using mathematical models (i.e. the corresponding
functions/distributions) to represent network load
generation ([5], [6]). In other cases, the QoS provided by
the network to support specific application requirements
is exploited. When performance evaluation is oriented
towards issues as the above, it is performed using
modeling solutions that are restrained to these specific

objectives, without emphasizing the application operation
mechanisms.

Application operations are examined in approaches,
such as the ones presented in [2], [7] and [8], where
object-oriented modeling is widely adopted. Application
operation is expressed at the primitive action layer, using
a series of discrete requests for processing, network
transfer, etc., in terms of predefined, primitive actions.
This, however, cannot be effective when application
decomposition is not supported through a mechanism that
transforms operations into primitive actions through
intermediate ones, which conform to the various
architectural models (e.g. the client/server model) and
standards. Decomposition is thus accomplished in an
“empirical” manner. When determining the effect of
applications without analyzing the operation mechanisms,
an accurate estimation of application load is not feasible.
Extendibility and wide applicability, to support variations
of the architectural models as well as customized
implementations, are also not supported. Establishing a
generic modeling scheme is thus required to facilitate the
representation of different types of applications, i.e.
primitive (e.g. FTP) and complex (e.g. distributed
databases), according to common modeling principles, as
well as the interaction between applications and the
underlying network.

The modeling scheme introduced in this paper
facilitates accuracy in distributed application description
y using a multi-layer action hierarchy. Actions indicate
autonomous operations describing a specific service and
can be decomposed into simpler ones, resulting in
elementary actions similar to those described in [2] and
[7]. The modeling framework supports the client/server
model and its variations and can be further extended to
support other architectural models. Main features of the
modeling scheme are modularity, extendibility and wide
applicability.

To evaluate distributed application performance, a
simulation environment, namely Distributed System
Simulator (DSS), was constructed. DSS enables the
exploitation of various types of distributed applications,
including user-defined ones, as well as the exploitation of
the network infrastructure through its graphical
components. Object-oriented modeling and component
preconstruction is employed.

In the following sections we present Distributed
System Simulator components and emphasize the
modeling scheme introduced for distributed application
description and model extension and validation issues,
crucial for our approach. An example using DSS to
evaluate the performance of a distributed banking system
is also presented.

2. Simulation Environment

Distributed System Simulator was initially developed
as part of a distributed architecture design environment,
called IDIS ([9]). Since requirements for network and
application modeling, experimentation and model
management increased considerably, DSS evolved into a
standalone environment. DSS is based on object-oriented
and process-oriented simulation and its current version is
implemented using MODSIM III ([10]) for model
construction and Java for all other modules.

DSS is modular, as presented in figure 1, and consists
of a graphical user interface (GUI), which co-operates
with individual modules for simulation program
construction and model manipulation and a model base.

Model and experimentation specifications are provided
through GUI. Model Generator constructs the simulation
program, using component models that reside in Model
Base.

Completeness and validity of specifications must be
pre-ensured, and this is accomplished through the
Compatibility Rule Base, which includes a representation
of all models residing in Model Base and compatibility
rules. Model Manager is invoked during the model
extension process.

User External
Invocation

Graphical User
Interface

Compatibility
Rule Base

Model
Base

Model
Generator

Model
Manager

Simulation
Program

DSS

Figure 1. Distributed System Simulator components

Line connections in figure 1 indicate module
invocation and data access. When experiments are
completed, results are subjected to output analysis in
order to a) determine whether distributed applications
operate efficiently and b) determine the ability of the
network infrastructure to support the requirements
imposed by distributed applications.

3. Model Definition

Object-oriented modeling provides an almost natural
representation of multi-entity systems, as distributed
systems, since modularity enables the in-depth
description of all their components. In simulation
modeling, modularity often results in a hierarchical
structure, according to which components are coupled
together to form larger models ([11]). Distributed systems
are modeled as a combination of two types of entities:
distributed application and network infrastructure entities.
Both are described in terms of their elementary
components ([12]). Network model composition is a
complex task due to the increased number of network
technologies and standards. Since modeling solutions for
communication network architectures are already
employed by commercial simulation environments, as
Comnet and OpNet ([2], [1]), this topic is not further
discussed in this paper.

In most contemporary systems, distributed application
operation is based on the client-server model. When
designing distributed applications, as indicated in [3],
there are many architectural solutions that may be
employed regarding the functionality provided by clients
and servers and the replication scheme. There are two
variations of the client/server model that are widely
adopted: the two-tier and the three-tier models.
According to the two-tier model, application functionality
is merely embedded in the clients, while servers deal with
data manipulation and consistency issues ([3]). After the
explosion of the Internet and the WWW, this model was
no more viable, since functionality was embedded in Web
Servers to minimize communication delay. Furthermore,
the aggregate functionality was dispatched into more than
one layer, with the use of intermediate ones (middleware)
between clients and servers, thus offering common
services to clients. This is the three-tier model.

Within the DSS framework, a basic scheme was
introduced to facilitate the description of applications,
regardless of their complexity and architecture,
supporting both the above architectures. Two types of
processes can be defined: clients, which are invoked by
users, and servers, which are invoked by other processes.
The specific interfaces, acting as process activation
mechanisms must be defined for each process, along with
the operation scenario that corresponds to the invocation
of each interface. Each operation scenario comprises the
actions that occur upon process activation.

Actions are described by qualitative and quantitative
parameters, e.g. the processes being involved and the
amount of data sent and received. In most cases, the
operation scenario is executed sequentially (each action is
performed when the previous one has completed).
However, there are cases where actions must be

performed concurrently. This is supported through
specifying groups of actions that have the same sequence
number.

The basic actions used for application description are
the following:
• Processing: indicating data processing
• Request: indicating invocation of a server process
• Write: indicating data storage
• Read: indicating data retrieval
• Transfer: indicating data transfer between processes
• Synchronize: indicating replica synchronization

Each process is executed on a processing node and,
thus, Processing action indicates invocation of the
processing unit of the corresponding node.

According to the client-server model, communication
between processes is performed through exchanging
messages. Server processes can be invoked by other
processes, clients or servers. Request action indicates
invocation of a server process and is characterized by the
name of the server process, the invoked interface and the
amount of data sent and received. It also implies
activation of the network, since the request and the reply
must be transferred between the invoking and the invoked
process. DSS currently supports RPC, RMI and HTTP
protocols.

Storing data is performed through File Servers. There
are two actions available for data storing, which are read
and write, which are characterized by the amount of data
stored and retrieved, respectively, and the file server
invoked. Temporary data can also be stored in the local
disk, resulting in the invocation of the corresponding
node storage element. File Server process supports two
interfaces, namely read and write, corresponding to the
aforementioned actions.

Transfer action is used to indicate data exchange
between processes.

Replication of processes and data is a common
practice in distributed applications in order to enhance
performance. While process replication is easy to
implement, replication of data is accomplished through
defining process replicas, for handling data, and a
synchronization policy. In the latter case, there are many
issues to be resolved, such as determining the process
responsible for the synchronization (the invoking process
or a process replica), when synchronization is performed
(i.e. whenever a change is made or periodically at pre-
specified time points) and the synchronization algorithm.

Definition of process replicas operating on different
nodes and data replicas stored at different file serves is
supported. DSS does not support specific synchronization
policies. It allows the description of the logical
connection between replicated processes and data during
process definition and provides the synchronize action to
facilitate the specification of synchronization policy. This

action corresponds to the invocation of the synchronize
interface, which must be supported by all process
replicas. The corresponding operation scenario has to be
defined by the human operator. Synchronize action
parameters include the process replicas that must be
synchronized and the amount of data transferred.

User behavior is modeled through User Profiles. Each
profile includes user requests to the client interfaces that
may be invoked by the user. For each profile, execution
parameters, such as the execution probability, are also
specified. User profiles are associated only with
processing nodes.

In figure 2, an example of the processes involved in a
distributed banking system is presented. Tellers are
represented through Teller Profile, which activates Teller
Client by invoking the Deposit Interface. The teller
manager, represented by Manager Profile, can also
activate Teller Client by invoking Closing Interface.
Deposit interface corresponds to a deposit in a client
account and is invoked with two parameters, account and
amount, which indicates the size of the corresponding
data. Deposit operation scenario includes actions, such as
read (indicating program download) and request
(indicating the actual deposit) that activate the
corresponding operation scenarios of Local Database and
File Server. The first parameter of each action indicates
the execution sequence.

Manager

Profile
Teller

Profile

File
Server

Operation
Scenarios
read

write

Teller Client

Operation
Scenarios

Closing Interface

read (1,FS,Appl_File, Appl_File_Size
process(2, Appl_File_Size+6004)

request (5, LocalDB,insert, [Amount,
Acount],Record,10)

.............

Deposit Interface
(in Acount, Amount)

Local DB Server
Operation
Scenarios

..............

..............

 write(3, FS,DBFile200)

.............

insert

synchronize (4, CentralDB,[insert,
[Amount, Acount],20])

(in Acount, Amount) Central DB Server

Operation
Scenarios

synchronize

Figure 2. Distributed Application Description example

Local Database is a replica of Central Database, thus
synchronize action is used to indicate the need for data
synchronization between the local branch and the main
system. After data is stored in Local Database, Central
Database is also updated. Since the synchronization
algorithm is application-specific, the corresponding
operation scenario is defined by the user. Server process

activation is performed through read, write, request and
synchronize actions and is indicated by dotted lines.

Processes are composite objects acquiring static (e.g.
process type) and dynamic properties as lists of objects
(e.g. interfaces and operation scenarios). Each operation
scenario is also a composite object, including a list of
actions. DSS operator can store specific instances of
processes, as the DB Server in the previous example, for
future reuse in other experiments. This is accomplished
by properly extending object hierarchies, as discussed in
section 4.

The actions used to define operation scenarios are
either elementary or of higher layer. In the latter case,
they can be decomposed into elementary ones. While
processing is an elementary action, write is expressed
through simpler ones, i.e. a process and a request sent to
a File Server. All actions can be ultimately expressed
through the three elementary ones, processing, network
and diskIO, each indicating invocation of the
corresponding infrastructure component ([13]). Action
decomposition is not performed in a single step.
Intermediate stages are introduced to simplify the overall
process and maintain relative data. The action
decomposition scheme is presented in figure 3.

Request

send
request

Layer
3

Layer
2

Layer
1

Layer
0

Write Read Synchonize

Activate
Operation
Scenario

ProcessingDiskIO

Transfer

Network

reply

Figure 3. Action composition scheme

Dotted rectangles represent intermediate actions, while
gray rectangles represent elementary ones. Finally,
rectangles with black border represent application actions
used when defining operation scenarios. Note that even
though processing action is an elementary one, it is used
in the definition of operation scenarios. This diagram can
be further extended to include user-defined, domain-
oriented actions, as discussed in section 4, which conform

to specific architectural models. However, although
alteration or creation of elementary actions is not allowed.

The supported actions are categorized into 4 layers.
The lowest layer includes only elementary actions, while
the highest one includes only actions built upon existing
ones. User-defined actions are also placed at this layer.
Each action can be decomposed into others of the same or
the lower layer. Actions support specific parameters and
are derived as ancestors of the action class. During action
decomposition, all parameters of the invoked action must
be defined.

4. Model Extension and Validation

The proposed object-oriented modeling scheme
facilitates the extension of application component (e.g.
actions) functionality, in order to describe custom
applications, and also storing of specific application
component (e.g. DB server) instances for future reuse.
The same capabilities are provided for network
components, as network protocols. Model extension is
performed by the human operator through the invocation
of Model Manager and Compatibility Rule Base.

Extending distributed application modeling constructs
is a strong requirement for the modeling scheme and is
noted as a pitfall of current simulation tools. Processes,
actions and communication protocols are the most
common entities, new models of which (i.e. components)
need to be provided. Models are created as ancestors of
existing, abstract entity models. A concise modeling
framework for extending object structures has been
described in ([13]). Considering the example of section
3.1, a new insert action model would be constructed as a
direct descendant of the abstract application action
model, while a DB process model would be constructed
as a descendant of BE process model (figure 4).

Extending object hierarchies is performed according to
specific restrictions that ensure the validity of the
modeling scheme. User-defined action models are either
of intermediate or application type. Existing actions can
not be altered, while new actions must always be
described in terms of existing ones. When creating a new
process model, the interfaces and operation scenarios are
usually fully defined. Although a new operation scenario
(e.g. insert) can be stored within a new process model
(e.g. DB process), the operation scenario model can not
be extended, since the addition of new operation
scenarios not belonging to a specific process is not
supported. While describing an application, the user can
copy a specific operation scenario, since the description
of specific instances is temporarily stored within
Compatibility Rule Base.

Process

User_Profile

Operation
Scenario

Action Parameter

has_a activates

Interface

Application
Action

User_
Request

Application
Action

Action

Elementary
Action

Intermediate
Action

Processing

Network

Write Read

Transfer DiskIO

Object Hierarchies

Object Interaction

Request

Synchronise

Send
Request

Activate
Operation
Scenario

Reply

DB

insert

BE_Process FE_Process

FS

Process

Figure 4. Distributed Application modeling scheme

At the implementation level, the Model Base is
extended using object inheritance. When extending
composite entities (e.g. process), hierarchical layering
enables the construction of complex models through
extending the behavior of existing objects and ensures
that models of a single entity, organized in a single class
hierarchy, are accessed through a common interface,
using polymorphism ([14]).

When defining a new action, the user declares its
parameters and the actions used to describe it, while GUI
ensures that all actions are properly invoked (their
parameters are properly filled). The code fragment
generated when constructing the write action is presented
in figure 5. As indicated in this figure, write is
constructed as a descendant of application action and
results in the activation of a request action. Its parameters
are stored as object properties, and only the init method
needs to be modified.

User-defined actions are added in Model Base in a
similar manner. The init method is explicitly created for
all user-defined actions, since they support different input
parameters and correspond to different descriptions stored
in the consist_of property. Other methods, such as
activate, maintain the same syntax to facilitate
polymorphism and remain the same for all actions.

{Object Definitions}

{Objects Implementation}�

ApplicationActionObj=
Object(ActionObj)
 CalledProcess:ProcessObj;
 CallingProcess:ProcessObj;
 Number_consist_of:Integer;
 Consist_of:
 ARRAY[1..Number_consist_of] of
ActionObj;
Override
 ASK METHOD Init();
Override
 WAIT FOR METHOD Activate;
END OBJECT;

RequestObj=
Object(ApplicationActionObj)
 Seq:Integer;
 Interface:InterfaceObj;
 Int_Par_List:List of STRING;
 ReqSize: INTEGER;
 ReplySize: INTEGER;
Override
 ASK METHOD Init(IN Seq:INTEGER;
 IN Calling_Procedure: ProcessObj;
 IN Called_Process: BE_ProcessObj;
 IN Interface: InterfaceObj;
 IN Int_Par_List: List of STRING;
 IN ReqSize: INTEGER;
 IN ReplySize: INTEGER);

END OBJECT;

WriteObj=
Object(ApplicationActionObj)
 File:FileObj;
 Data_size: INTEGER;
Override
 Called_Process: FSObj;
Override
 ASK METHOD Init(IN Seq:INTEGER;
 IN Calling_Procedure:ProcessObj;
 IN Called_Process:FSObj;
 IN File: FileObj;
 IN Data_size: INTEGER;);

END OBJECT;

OBJECT ApplicationActionObj;

…
WAIT FOR METHOD Activate;
BEGIN
 FOR ALL a IN consist_of
 WAIT FOR a TO Activate;
END METHOD;

END OBJECT;

OBJECT WriteObj;

ASK METHOD Init(IN seq:INTEGER;
 IN calling_procedure:ProcessObj;
 IN called_Process:FSObj;
 IN file: FileObj;
 IN data_size: INTEGER;);

BEGIN

Seq:=seq;
Calling_Procedure:=calling_procedure;
Called_Process:=called_process;
File:= file;
Data_size:=data_size

/* initiate inherited properties */

Interface:=new(InterfaceObj);
Int_Par_List:=[File,Data_size];
ASK Interface TO Init("write", Int_Par_List);
ReqSize:= Data_size+100;
ReplySize:= 100;

/* fill consist_of list */

Number_Consist_of=1;
Consist_of[1]:=new(requestObj);
ASK Consist_of[1] To Init
 (Seq,Calling_Procedure, Called_Process,
 Interface, Int_Par_List,
ReqSize,ReplySize);
END METHOD;

END OBJECT;

Figure 5. Code generation when constructing Write action

Extension of process models is accomplished based on
the same guidelines.

Code generation is performed by Model Manager,
which establishes a coupling relation between these
components. The extension process comprises the
following steps:
1. Ensuring model validity and compatibility with the

existing ones.
2. Inserting component models in the Model Base.
3. Updating Compatibility Rule Base with the new

component structure.
The overall process is depicted in figure 6.
Model extension and simulation program generation

capabilities can only be supported when input

specifications are thoroughly examined to ensure model
validity. Validation is not trivial, even though models are
preconstructed, since models are coupled to form larger
ones and are extended to conform to customized
implementations. Validation is carried out through rule-
based mechanisms during system specification.

Graphical visualization of the existing model
hierarchies supports the addition of customized models.
Compatibility Rule Base is invoked to ensure that
consistency is maintained. When Model Library is
extended, the Compatibility Rule Base is updated with the
additional model structure, its relations with the existing
models and rules concerning its initialization.

User

Graphical User
Interface

Compatibility
Rule Base

Models
Base

Model
Manager

model
description

model
code

model
update

Figure 6. Model Extension process

5. Practical Example of DSS Usage

Distributed System Simulator was used for evaluating
the performance of a distributed banking system. Except
from headquarters, the bank maintains 64 branches. The
banking system supports 24 discrete transactions,
grouped in four categories, which are mainly initiated by
tellers. The average transaction number per day in a
branch is 500, while the maximum transaction number in
central branches is over 1000. The required response time
is 15-20 sec for all transactions.

Network infrastructure could be modeled and
evaluated using various commercial simulation tools.
However, application description was not feasible on the
basis of primitive modeling constructs and required an
intermediate-layer analysis that gradually extends to the
primitive action layer, so that a credible application
model would emerge.

The system architecture is based on the three-tier
model. A central database is installed in headquarters,
where all transactions are executed, while transaction logs
are maintained in local databases at the branches. The
central database supports 33 stored procedures
corresponding to the different execution steps of the 24
transactions. Transactions are coordinated by a
transaction monitoring system, also installed in
headquarters. Digital’s RDB database management
system and ACMS transaction monitoring system are
used. The overall network is a TCP/IP one.

Light client applications are running on user
workstations. Client data are stored locally in the branch
file server. When a transaction is executed, the
corresponding forms are invoked, each having an average
size of 3K. ACMS is invoked up to four times for the
execution of the corresponding stored procedure. Before
finishing each transaction, a log is stored in the local
database.

Server processes that were modeled are the following:
File Server at headquarters and local branches,
CentralDB, LocalDB and ACMS. Since LocalDB
represents logging, only a simple insert interface had to
be implemented for recording the log. CentralDB is
accessed through the 33 stored procedures, which are
implemented and stored in the database. For each stored
procedure, a single interface had to be implemented.
Since system performance was mainly determined by the
interaction of the different system modules and not by the
internal database mechanisms, we decided to establish a
common representation for all stored procedures. A new
action called call_stored_procedure_step was created and
inserted in the action hierarchy. Action parameters are
preprocessing, data_accessed and postprocessing.
Data_accessed parameter indicates the amount of data
accessed at each step, while preprocessing and
postprocessing parameters indicate the amount of data to
be processed before and after access, as a fraction of the
accessed data. Using this action, the description of stored
procedures was significantly simplified. Each stored
procedure consists of one to five steps. The
call_stored_procedure_step action is implemented as an
interface of the CentralDB process in a way similar to
read/write and includes the activation of processing, read
and write actions. ACMS is modeled as a server process
providing the interface call_ACMS (procedure, inputdata,
outputdata, processing), which initiates the activation of
the corresponding stored procedure.

Client applications involve the invocation and
processing of forms, the activation of stored procedures
through ACMS and log recording. Log recording is
depicted through properly invoking the insert interface of
LocalDB, while stored procedure activation is
accomplished through the invocation of the call_ACMS
interface of ACMS. Form_access (FS, form_name,
processing) was added in the action hierarchy to depict
accessing, activating and processing of a form. Using
combinations of these three actions, it was possible to
describe all applications in a simplified, common way.

Applications were categorized in four groups, each
controlled by a different type of user. Applications of the
same group are not executed simultaneously by the same
user. This led us to depict each group as a client process
supporting one interface for each specific application.
Users are depicted as profiles initiating the corresponding
client application.

Except from building a credible distributed application
model, DSS also enabled the estimation of the exact
amount of data processed and transferred within and
between branches. Modeling advantages that were
offered are also simplification in client application
description, extendibility and flexibility during process
description.

The capability to extend the action hierarchy was
important to ensure detailed application description. If
only predefined actions could be used, the same
description would have to be repeatedly given for all
transactions, e.g. form activation. Furthermore, this
scheme facilitated application description at the level of
abstraction required by different groups of users.

While the system was under deployment, DSS
contributed to determining potential weak points and
ensuring the response time of client transactions. Since
the main activity of all transactions relates to the
invocation of the central database through ACMS, special
attention was given to the system performance at
headquarters. DSS indicated two drawbacks: First, the
processing power of the hardware supporting the Central
Database was not adequate to execute client transactions
within the predefined response time. This proved to be
accurate, forcing the bank to upgrade the hardware
platform. Second, for the interconnection of branches
with headquarters, load estimation indicated that the
throughput of specific leased lines should be increased.
On the other hand, Ethernet (10BaseT) proved to be
efficient for branches, since the average throughput was
very low (less than 0.05 Mbps).

6. Conclusions

Exploring the behavior of distributed systems while
emphasizing the description of distributed applications
was the objective of the modeling scheme introduced.
Application modeling extends to the operation and
interaction mechanisms and conforms to the various
forms of the client/server model. Since distributed system
architectures are configurable, considerable effort was put
in constructing and organizing the preconstructed
component models to ensure their efficient manipulation.

The modeling scheme provides guidelines for
modeling the essential, both primitive and composite,
distributed system components. The capability to reuse
models when implementing customized component
models was crucial for the description of different
architectures, despite the complicated nature of this
process. An important feature of this research is that the
modeling guidelines can also be used in other modeling
and simulation studies.

References

[1] Mil3 Inc, Opnet Modeler Modeling Manual, Washington,
1997

[2] CACI Products, COMNET III Reference Manual, San
Diego, 1997

[3] J. Shedletsky, and J. Rofrano, “Application Reference
Designs for Distributed Systems”, IBM System Journal,
Vol. 32, No 4, 1993.

[4] Coulouris, G.F., J. Dollimore, and T. Kindberg,
Distributed Systems - Concepts and Design, Third Edition,
Addison Wesley Publishing Company, 2000.

[5] R. L. Bagrodia, and C. Shen, “MIDAS: Integrated Design
and Simulation of Distributed Systems”, IEEE
Transactions on Software Engineering, Vol. 17, No. 10,
October 1991.

[6] V. D. Khoroshevsky, “Modelling of Large-scale
Distributed Computer Systems”, Proceedings of IMACS
World Congress 1999, Conf. 15, Vol. 6, 1999.

[7] S. R. Ramesh, “An Object-Oriented Modeling Framework
for an Enterprise-Wide Distributed Computer System”,
Proceeding of the Americas Conference on Information
Systems, Association for Information Systems, August
1998.

[8] M. Matsushita, M. Ashita, et. al., “Distributed Process
Management System based on Object-Centred Process
Modeling”, Lecture Notes on Computer Science 0302-
9743, No 1368, Springer Verlag, 1998.

[9] M. Nikolaidou, D. Lelis, et. al., “A Discipline Approach
towards the Design of Distributed Systems”, IEE
Distributed System Engineering Journal, Vol. 2, No 2,
1995.

[10] CACI Products Company, MODSIM III The Language of
Object-Oriented Programming - Reference Manual, San
Diego, 1999

[11] B.P. Zeigler, “Object-Oriented Simulation With
Hierarchical, Modular Models”, copyright by Author,
1995 (originally published by Academic Press, 1990)

[12] J. Kramer, “Configuration Programming – A Framework
for the Development of Distributed Systems”,
Proceedings of IEEE International Conference on
Computer Systems and Software Engineering, Israel,
1990.

[13] D. Anagnostopoulos, and M. Nikolaidou, “A Conceptual
Methodology for Conducting Faster-than-Real-Time
Experiments”, SCS Transactions on Computer Simulation,
Vol. 16, No 2, 1999.

[14] D. Anagnostopoulos, and M. Nikolaidou, “An Object-
Oriented Modelling Methodology for Dynamic Computer
Network Simulation”, to appear in the International
Journal of Modelling and Simulation.

