

USING UML TO MODEL DISTRIBUTED SYSTEM ARCHITECTURES

M. Nikolaidou12, N. Alexopoulou12, A. Tsadimas12, A. Dais2, D. Anagnostopoulos1

{mara@di.uoa.gr, nancy@hua.gr, tsadimas@hua.gr, a.dais@di.uoa.gr, dimosthe@hua.gr}
 1 Harokopio University of Athens, 2 Department of Informatics and Telecommunications,
 El. Venizelou Str, 70, 17671Athens, Greece University of Athens, Panepistimiopolis, 15771, Athens, Greece

Abstract

Distributed system configuration is a complex process, since it
involves solving interrelated issues, corresponding to different
configuration stages usually supported by automated or semi-
automated independent tools. A common model for distributed
system representation in all configuration stages enables the
identification of unclear application specific dependencies
between discrete stages. It should also be easily realized in
various software tools used to automate discrete configuration
stages and facilitate the designer to efficiently provide system
specifications. We propose to use UML to model all aspects of
distributed system configuration process by extending and
integrating different diagram types. Alternative views of the
system emphasizing specific configuration stages are offered
through the realization of extended UML diagrams. Rational
Rose software platform is used for implementation purposes.

Keywords
Distributed System Model, UML 2.0 extension,
Distributed System Configuration, XML

1. INTRODUCTION

As distributed systems become more complex, there is a
constant effort to provide a common interface for all
application users [20]. The J2EE architecture [1]
contributes towards this direction, since it provides a
common user application interface through the Web both
at Intranet and Internet level. Significant vendors, such as
BEA, IBM and Oracle [9], provide software development
platforms, such as WebLogic [2], WebSphere [21] and
Oracle Application Server [16], which support both J2EE
and custom architectures and facilitate application
integration. Such platforms contribute to distinguishing
application logic from the user-interface and enable users
to access any application through a common interface
using a web client. Thus, they contribute to distributed
system configurability and extendibility.

Even though, vendors actively promote information
system development using the aforementioned software
platforms, the proposed solutions, although expensive,
often do not provide the desired performance [18]. A
potential cause is that, configuration issues, although
interrelated, are solved in isolation. Distributed system
configuration is a complex process, since it involves
solving interrelated issues, as application configuration
(e.g. process/data allocation and replication), network
configuration and performance evaluation, corresponding

to different configuration stages. A systematic approach
for distributed system configuration is presented in [12].
In order to ensure distributed system performance, their
configuration dependencies must by identified and
explored. Since the underlying network topology affects
application configuration, the relationship between
resource allocation policy and network architecture
should be easily explored, thus models used for the
representation of distributed system architectures within
each stage should be exchangeable. Configuration stages
are supported by automated or semi-automated tools [3, 5,
10, 11, 18]. In order to provide exchangeable models, the
modeling framework adopted within each stage should be
realizable in various software tools. A common model
representing distributed systems in all configuration
stages will facilitate model exchange and ensure
interoperability between software tools supporting each
stage. This model must support distributed system
representation in a multi-layered fashion and enable
description of any kind of application, thus be extendable.
It should also be easily realized in various software tools
used to automate discrete configuration stages and
facilitate the designer to efficiently provide system
specifications.

As system designers are usually familiar with UML
[15], we decided to use UML notation to model all
aspects of distributed system configuration process in a
multi-layered fashion by integrating different diagram
types [4]. Although, UML is mainly used for software
engineering (e.g. when designing and implementing
application components), UML concepts may be applied
in system engineering as well (e.g. when allocating
application components to hardware resources and
designing the system architecture). In [6, 8], UML
sequence diagrams facilitate the description of client-
server architectures emphasizing process triggering.
However, the description of internal process functionality
is not facilitated, while the dependencies between
applications and network are not modeled. Thus,
alternative system views must be provided facilitating
their identification.

The rest of the paper is organized as follows: In
section 2, we briefly discuss the proposed distributed
system configuration framework. Configuration stages are
identified and basic properties of the proposed meta-

model are presented. In section 3, we focus on distributed
system modeling using UML. Alternative model views,
corresponding UML diagrams and UML 2.0 extensions
are described. Emphasis is given to application
description. Conclusions reside in section 5.

2. DISTRIBUTED SYSTEM CONFIGURATION
FRAMEWORK

Distributed systems are composed of distributed
applications and the underlying network. Distributed
applications are currently built based on client-server
models and consist of multiple tiers [19]. The underlying
network consists of heterogeneous Intranets and Internet
connections usually integrated through TCP/IP protocol
stack. Users have their own workstation (diskless or not),
while server processes are executed on dedicated server
nodes.

The proposed distributed system configuration stages
and their interaction are analytically described in [12, 14].
Functional configuration (stage 1) corresponds to the
description of system specifications. Logical and physical
configuration (stages 2 and 3) deal with application
configuration (process/data allocation and replication
policies) and network design respectively. As resource
allocation and network configuration problems cannot be
independently solved, stages (2) and (3) are repeatedly
invoked until an acceptable solution is reached. System
configuration phase must facilitate the performance
evaluation (stage 4) of the proposed solution prior to
implementation. If system requirements are not satisfied,
logical and physical configuration are re-initiated. Stages
2 and 3 are usually automated by software tools as those
described in [11, 5, 18, 3]. Stage 4 is usually performed
using discrete event simulation [13, 7].
We decided to adοpt UML to represent distributed
systems, since a) it is a widely accepted standard and
most system designers are familiar with it, b) it allows the
graphical representation of specifications and c) it
facilitates the automated implementation of model
extensions. Three alternative views are utilized
emphasizing specific requirements of each configuration
stage. Application view is used to describe functional
specifications (e.g. application logic and user behavior).
Site view facilitates the definition of system access points
and the resource allocation and replication. Resources
(e.g. processes and data) and the way they interact are
already described through application view. Physical view
provides for network infrastructure modeling. The site
and physical view correspond to application and network
architecture respectively, thus they are interrelated. This
interrelation must be reflected to the corresponding UML
diagram entities to ensure distributed system
performance. Both site and physical views are
decomposed into hierarchical levels of detail. At the

lower level, network nodes are related to process/data
replicas.

A UML profile is introduced to implement the
distributed system model. This profile, called “Distributed
System Modeling”, is imported within Rational Rose
platform ([17]), which acts as the user interface for the
system designer (figure 1). In order to model all aspects
of distributed system configuration process, different
UML diagrams are integrated and properly extended.
Additional functionality needed to manipulate the model
was embedded within Rose platforms (as addins).
Functional configuration is strongly related to model
definition. Thus, it is performed within Rose
environment. Application, Site and Physical views are
created within Rose by the designer as extended UML
diagrams. Additional functionality is embedded within
Rose, as custom scripts, to facilitate the description of
specific distributed system characteristics.

Figure 1: Distributed System Representation

Framework

Logical and physical configuration stages are semi-
automated using heuristics by appropriate decision-
support software, for example IDIS [11]. They aim at
filling specific properties of site and physical view
respectively. To evaluate distributed system performance,
the discrete event simulation tool described in [13] can be
used. The simulator uses as input the overall distributed
system model, after the construction of application, site
and physical view. Thus, there is a need for data exchange
between Rose and the tools used to automate these stages.
XML was adopted for this purpose. The model created by
the designer through Rose is exported in XML in order to
be used by the proper configuration tool and imported
again in order for the designer to view corresponding
results. Additional functionality is embedded within Rose
to enable view management and invocation of external
software tools. In the following, we focus on UML
extensions needed to efficiently model distributed system
architectures.

3. DISTRIBUTED SYSTEM MODEL USING UML

In the following, we discuss alternative model views and
corresponding modeling issues. UML diagrams are used
to represent different aspects of the distributed system
model suitable for each view. Distributed system entities
are depicted as UML model elements included in the
corresponding diagram, properly extended to include
additional properties and support additional constraints.
The stereotype mechanism was efficient to create the
distributed system meta-model.

Physical view refers to the aggregate network.
Network is a composite entity, which is repeatedly refined

to represent network topology. Network nodes are either
workstations allocated to users or server stations, running
server processes. Specifically, nodes consist of one
processing, one storage and one communication element.
UML deployment diagrams are commonly used to
represent network architectures [6]. In the proposed
model, physical view is represented as a deployment
diagram. No additional stereotypes are needed to
represent network architecture, thus physical view is not
further discussed. Instead, we focus on application
architecture and functionality representation. The
corresponding model supported during configuration
stages is presented in figure 2, as a UML class diagram.

type={user_ defined, application}
or
name={processing, diskIO}

<<Application View>>

<<User Profile Actor>>

<<Invokes>>

<<Component Implemantation Graph>>

<<Operation Activ ity>>

<<Operation Dictionary>>

Operation_Usage
order
label

Operation Dictionary

Operation
name
ty pe
parameterlist

0..1

1
+incoming

0..1

+target

1

{ordered}

0..1

1

+outgoing
0..1

+source

1

Transition
ty pe{join, f ork, simple}

Activity_Operation
id
parameterlist
v aluelist
targetprocess

1

0..1

+target
1

+incoming

0..1

1

0..1

+source
1

+outgoing

0..1

1

1

1

1

SiteView

Invocation
id
label

User_Profile
name
instances

Component_Implementation
id

Site
name

Component_Interface
name

0..1

1

+incoming 0..1

+target 1

0..1

1

+outgoing0..1

+source1

1

1

1

1

Application View

Process_Component
name
ty pe{serv er,client}
instances

1..*1..*

<<Elementary Use Case>>

<<Intermediate Use Case>>

<<Aplication Use Case>>

<<Uses>>

<<Site View>> <<Site Package>>

<<Server Component>>

<<Client Component>>

<<Serv er Package>>

<<Component Use Case>>

<<Client Package>>

Figure 2: Distributed Application Model

All classes of the model are related to stereotypes defined
within different system UML views. Stereotypes are
illustrated by shaded boxes. The model classes retrieve
data from the stereotypes, excluding though the
representation information. Based on this class diagram,
distributed system models, generated using Rational Rose,
are exported and imported in XML format.

3.1. Application View
Application view comprises all the applications supported
by the distributed system, as well as the interactions
among them. Applications are conceived as sets of
interacting processes and data repositories (i.e. files)
accessed by them. A process, which can be either server
or client, consists of components, each representing the
specific set of tasks (or operations) executed when the
process is activated in a certain way (based on its input
parameters). Thus, components stand for all alternative
activation ways. Component implementation consists of
simple tasks occurring upon process activation, called

operations. These are selected from a predefined
operation set, that is, the operation dictionary.
User behavior is also described in the application view,
through user profiles activating clients. Each profile
includes user requests, which invoke specific components
of client processes operating on the user’s workstation.
3.1.1 Representation Model
An example of application view is presented in figure 3.
In this example, a user (a student) initiates a simple search
in a library OPAC, thus performs a database search
through the appropriate CGI in the web server. UML use
case diagram was extended for application view
representation. Client and server processes are modeled as
package stereotypes, depicted by rounded rectangles
respectively labeled. Process components are illustrated
using a double-lined use case icon. Arrows between use
cases, denote the interaction among components and
hence among processes. User profiles are illustrated using
UML actor icon. Each use case conceals the internal

actions occurring when the process is activated through
the respective component interface.

Figure 3: Application View Example

Internal actions are illustrated by a UML activity diagram
which appears, as shown in figure 3, when selecting the
corresponding name from a menu that opens up when
right clicking on a component use case. Actions included
in this activity diagram are selected from the operation
dictionary through a submenu (figure 4). Depending on
the operation selected, a form appears containing the
parameters of the specific operation. Through this form,
the system designer may specify a value for every
parameter.

Figure 4: Process Component Representation

In figure 4, the UML activity diagram for the Simple
Search component of Web Client process is depicted. The
form_access (form_name, no_fields, avg_fsize,
processing) operation concerns accessing, activating and
processing of a web form. For the operations that invoke
other components, the target process component is
specified through the same form. This information
enables the automatic generation of arrows among
components in the external part of the application view
when the activity diagram window is closed. Arrows are
labeled using the name and the id of the operation
initiating process activation.

3.1.2 UML Extensions
Figures 5 and 6 represent UML 2.0 extensions (additional
stereotypes are depicted in a shaded manner) defined for
the external and internal representation of processes in the
Application View.

Usage

RedefinableElement

Classifier

<<UseCaseModel>>

UseCase

<<Invokes>>

<<ApplicationView>>

Model

Element

Dependency

1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+cl ientDependency

*

Actor

Package

<<UserProfileActor>>

<<ProcessPackage>>

ActivityNode <<ComponentInterfaceUseCase>>

Figure 5: Use Case Diagram Extension to represent

the Application View
Packages in UML constitute a general grouping
mechanism. Therefore, server and client processes are
conceived as packages, as they both group components.
They are defined as stereotypes of Package by the name
ProcessPackage. As shown in the figure 3, the
corresponding view elements are rounded rectangles with
the corresponding label. Components are conceptually
related to use cases, as a use case in UML is a kind of
classifier, representing a coherent unit of functionality
provided by a system. Thus, the stereotype
ComponentUseCase is defined as a specialization of
UseCase. The stereotype Invokes concerns the
relationship among components. If, for example,
component Simple Search invokes component Get Page
(figure 3), it is entailed that Simple Search requires Get
Page in order to be accomplished. This implies a
dependency relationship among operations, as opposed to
use cases in UML use case diagrams which may be
connected to each other only by Extend, Include and
Generalization relationships. Thus, we have defined
Invokes relationship as a stereotype of UML Dependency
and more specifically of Usage. Usage is a kind of
dependency in which one element requires another for its
full implementation. This is exactly the case with the
relationship between components. The stereotype Invokes
includes two additional attributes, namely the operationId
and the operationName, i.e. the id and name of the
internal action that initiates the invocation.
The stereotype UserProfileActor is a specialization of the
Actor classifier of the UML meta-model with additional
properties, as activationProbabilities. ApplicationView,
formed of ProcessPackages, UserProfileActors,

ComponentUseCases and Invokes relationships among
them, constitutes a stereotype of Model. Component
implementation is represented through an activity graph,
hence the relation between ActivityNode and
ComponentUseCase in figure 5.

<<ComponentImplementation>>

<<OperationActivity>>

Activity

Activity Edge

0..1

+transitions

0..1

Activity Node +source

+outgoing

+incoming

+target

Figure 6: Activity Graph Extension to represent

Component Implementation

Each component implementation maps to a UML activity
with the differentiation that it is not composed of
activities in general, but specifically of operations that
have been defined in the Operation Dictionary (figure 6).
ComponentImplementation is formed of
OperationActivities. The stereotype OperationActivity
extends the semantics of ActivityNode with the additional
properties valueList and targetProcessComponent. These
properties have been described in the previous section
(see § 3.1.1).

3.2 Site View

Defining the access points of the system is supported
through the site concept. The term site is used to
characterize any location (i.e. a building, an office, etc.).
As such, a site is a composite entity which can be further
analyzed into subsites, forming thus a hierarchical
structure. User profiles and processes are associated with
atomic sites, i.e. sites which cannot be further
decomposed, constituting therefore the lowest level of the
hierarchy. In essence, the hierarchy indicates where (in
which location) each process instance runs and each user
profile is placed.

The site view is represented using UML component
diagrams. Introducing progressive site refinement and
linking site range to network range, enables the
identification of dependencies between application
configuration and network topology. Thus, component
diagrams representing site view and deployment diagrams
representing physical view are interrelated. This is
facilitated by the relationship between node and
component model entities already supported in core UML
meta-model.

3.2.1 Representation Model
As indicated in figure 7, sites are modeled using UML
packages. At the lowest level, server and client processes
are illustrated as UML components, the shaded ones

standing for client processes, while UML actor icon is
used to represent user profiles.

Figure 7: Site View Example

UML dependencies are used to represent relationships
among processes (i.e. between UML components in this
view), between a user profile and a process, and among
sites of different level, while connections between sites
and processes or user profiles are illustrated using Include
relationships (arrows with a solid line).

The system designer may specify the number of
replicas used for each process through the
numberOfInstances property. For a user profile, this
property indicates the number of users of the specific
category (e.g. students) working in a particular site. This
information may be entered by the system designer
through an appropriate tab included in component
specification appearing when double-clicking it.
3.2.2 UML Extensions
The hierarchical site structure indicates a grouping of
sites when moving from lower levels to the root of the
hierarchy. As such, we have defined site as a stereotype
of Package, named SitePackage (figure 8). SitePackages
relate to each other through an Abstraction relationship, a
dependency which relates two elements or sets of
elements representing the same concept at different levels
of abstraction. Sites constitute a more detailed view of
their parent site, while root site is the most abstract one.

Processes are modeled as UML components, since
they are essentially pieces of software. Hence,
ServerComponent and ClientComponent are defined as
stereotypes of UML Component. ServerComponents and
ClientComponents are connected through Dependency
relationships, like components in the respective UML
diagrams. These stereotypes extend the semantics of
Component by including the additional attribute
numberOfInstances. User profile has been defined as a
stereotype of Actor, named UserProfileActor, including
the same attribute.

SitePackages are related to ServerComponents,
ClientComponents and UserProfileActors by Include

relationships. SitePackages, ServerComponents,
ClientComponents and UserProfileActors, along with
their interrelations, compose a SiteView which is itself a
stereotype of Model.

RedefinableElement

Model Element Dependency1..* *
+supplier

1..*
+supplierDependency

*

1..* *

+client
1..*

+clientDependency

*

Actor

Package

Component

Relatioship

Abstraction

IncludeClassifier

1 *
+base
1

+include
*

*1
+addition

*1

<<ServerComponent>>

<<UserProfileActor>>

<<SiteView>>

<<SitePackage>>

<<ClientComponent>>

Figure 8: Component Diagram Extension to represent

the Site View

4. CONCLUSIONS

We proposed a UML profile, enabling a holistic approach
for distributed system configuration. The alternative
views supported ultimately result in a consistent
distributed system representation which allows efficient
system configuration and guarantees system performance.
The representation of distributed systems concepts as
UML model entities contributes considerably to the
simplification of model extension/customization, since
system designers are usually familiar with UML
constructs. We currently further elaborate the Rational
Rose add-ins and implement the XML converters in all
the tools automating configuration stages.

5. ACKNOWLEDGEMENTS

This research was supported by Pythagoras program (MIS
89198) co-funded by the Greek Government (25%) and
the European Union (75%).

6. REFERENCES

[1] Armstrong E., et al., The J2EE 1.4 Tutorial, Sun
Microsystems, 2004.

[2] BEA, BEA WebLogic Application Server 8.1 Overview,
White paper, 2003.

[3] Gomaa H., Menasce D., Kerschberg L., “A Software
Architectural Design Method for Large-scale Distributed
Information Systems”, Distributed System Engineering
Journal, Vol. 3, No 3, IOP, 1996.

[4] Gomaa H. and Shin M., “Multiple View Meta-Modeling of
software Product Lines”, in Proceedings of the 8th
International Conference on Engineering Complex
Computer Systems, IEEE Computer Press, 2002.

[5] Graupner S., Kotov V., Trinks H., “A Framework for
Analyzing and Organizing Complex Systems”, in
Proceedings of the 7th International Conference on

Engineering Complex Computer Systems, IEEE Computer
Press, 2001.

[6] Kaehkipuro P., “UML-Based Performance Modeling
Framework for Component-Based Distributed Systems”,
Lecture Notes in Computer Science 2047, Performance
Engineering, Springer-Verlag, 2001.

[7] Law A.M. and McComas M. G., “Simulation Software of
Communications Networks: The State of the Art”, IEEE
Communications Magazine, Vol 4, No 3, IEEE Computer
Press, 1994.

[8] Mirandola R, Cortellessa V., “UML Based Performance
Modeling in Distributed Systems”, Lecture Notes in
Computer Science 1939, UML2000, Springer-Verlag, 2000.

[9] Natis Y., Pezzini M. Iiyima K., Magic Quadrant for
Enterprise Application Servers, 2004, Research Note,
Gartner Research, 2004.

[10] Nezlek G.S., Hemant K.J., Nazareth D.L., “An Integrated
Approach to Enterprise Computing Architectures”,
Communications of the ACM, Vol 42, No 11, ACM
Press,1999.

[11] Nikolaidou Μ., D. Lelis, D. Mouzakis, P. Georgiadis, “A
Discipline Approach towards the Design of Distributed
Systems”, Distributed System Engineering Jοurnal, Vol. 2,
No 2, IOP, 1995.

[12] Nikolaidou M., D. Anagnostopoulos, “Exploring Web-
based Information System Design: A Discrete-Stage
Methodology and the Corresponding Model”, Lecture
Notes on Computer Science 2681, CAISE’03, Springer
Verlag, 2003.

[13] Nikolaidou M. and Anagnostopoulos D., "A Distributed
System Simulation Modelling Approach", Simulation
Practice and Theory Journal, Vol. 11, No 4, Elsevier Press,
2003.

[14] Nikolaidou M., D. Anagnostopoulos, “Web-Based System
Engineering: Web-Based Application Configuration Based
Upon Restrictions Imposed By Network Architecture”,
Proceedings of 16th IASSE Conference ISCA, 2003.

[15] OMG Inc, OMG Unified Modeling Language
SuperStructure Specification, Version 2.0, October 2004.

[16] Oracle Co, Oracle Application Server 10g: High
Availability, Oracle White Paper, January 2004.

[17] Rational Software Corp, Using the Rose Extensibility
Interface, White Paper, 2001.

[18] Savino-Vázquez N.N. et al., “Predicting the behaviour of
three-tiered applications: dealing with distributed-object
technology and databases”, Performance Evaluation Vol.
39, no 1-4, Elsevier Press, 2000.

[19] Shedletsky J. and Rofrano J., “Application Reference
Designs for Distributed Systems”, IBM System Journal,
Vol. 32, No 4, 1993.

[20] Serain D., Middleware, Springer-Verlag London, Great
Britain, 1999.

[21] Willenborg R., Brown K., Cuomo G., “Designing
WebSphere Application Server for performance: An
evolutionary approach”, IBM System Journal, Vol 43, No
2, 2004.

