
Exploring Web-based Information System Design:
A Discrete-Stage Methodology and

the Corresponding Model

Mara Nikolaidou 1, Dimosthenis Anagnostopoulos 2

1 Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis,
15771, Athens, Greece

mara@di.uoa.gr
2 Department of Geography, Harokopio University

70 El. Venizelou Str, 17671 Athens, Greece
dimosthe@hua.gr

Abstract. After the enormous success of WWW platform, a great number of
enterprise systems have web-based components. Although they are built using
current technological treads, they often fail to provide the desired performance.
A potential cause is that, design related problems, as application modeling,
resource allocation and replication, network configuration and performance
evaluation, although interrelated are solved in isolation. We, thus, argue that a
concise methodology for effectively designing web-based information systems
offers considerable capabilities. Four discrete stages, each of them addressing a
specific issue, and their dependencies are identified. We also propose a
common model for the representation of system entities throughout all design
stages. UML-like notation was used as a visual tool for graphical representation
of model components. Since the modelling scheme is extendable, the
adaptation of UML constructs simplifies the process of extending or
customizing the model. A case study where the proposed methodology was
used for the design a complex enterprise system and the experience obtained
are also presented.

1 Introduction

The World Wide Web (WWW) platform is often characterized as the middleware
providing a common platform for Intranet-based and Internet-based application
development [15]. Using a Web browser is possible to download that part of any
application that consists of its user interface from both the Internet and the
organization’s Intranet. Such applications are considered as web-based applications,
and are built based on the multi-tiered client-server model [12]. The first and second
tiers, e.g. the user interface and the application service, is built using the WWW
platform, while the other tiers implement the specific application logic that may be
based on different architectures, as discussed in [14]. A web-based enterprise system
can be described as a set of web-based applications and the underlying infrastructure
(both at Internet and Intranet level). Most enterprise information systems built to
support current technological treads are based on this architecture. Although

significant vendors, as Oracle and IBM promote web-based software platforms during
the last decade, the proposed solutions, although expensive, often do not provide the
desired performance [13]. A potential cause is that, as most enterprise systems expand
gradually, system extensions are performed without ensuring overall system
performance. Furthermore, web-based applications are characterized by their internal
complexity, the impact of which cannot be determined using a trivial mathematics.
We, thus, argue that a systematic approach for effectively designing and evaluating
web-based enterprise systems offers considerable capabilities [8].

Complete and accurate description of web-based applications is a critical factor
in system design, since it ensures the accurate estimation of the Quality of Service
(QoS) needed from the network infrastructure, the efficient allocation of resources
and the efficient performance evaluation of the overall system. When configuring or
evaluating network systems, applications are usually modeled as a series of discrete
requests for processing, network transfer, etc., using predefined primitives [3, 9, 11].
We consider that such approaches lack efficiency to accurately describe web-based
applications, since intermediate layers are required to support application
decomposition in terms of multi-tiered client-server models and permit the accurate
estimation of application load. The provision of higher-level primitives to easily
describe standard web-based application tiers, as the user service implemented using
the WWW platform, is also required. Extendibility of the model to facilitate the
description of specific products must also be explored.

In the following, we present a methodology for web-based enterprise system
design. It aims at providing decision making support to the system designer to ensure
system efficiency when building a new system or extending an existing one. It
includes web-based application package description, resource allocation and
replication, network configuration (network topology design) and performance
evaluation of the proposed architectures. Four discrete stages, each of them
addressing a specific issue, and their dependencies are identified. When configuring
web-based enterprise systems, each of these problems is usually handled in isolation,
resulting in poor performance. It is important to note the significance of a common
model for the representation of system entities throughout all design stages. We
propose a meta-model supporting all stages incorporating the specific characteristics
of web-based enterprise systems. This meta-model enables the exploration of
dependencies between design stages even if they aren’t obvious, since it is used as the
reference framework to estimate application requirements, apply resource allocation
and replication policies and construct network topology. Although the techniques
explored may be generally applied for large scale systems, we emphasize web-based
enterprise system design, as the application description model is introduced to
efficiently describe web-based application functionality, while the resource allocation
algorithms applied provide solutions taken into account the specific characteristics of
web-based architectures. The proposed approach is supported by a set of software
tools. The system designer interacts with them through a Java platform, named Web-
based enterprise system Modeler, facilitating the graphical description of web-based
architectures using the proposed meta-model.

Web-based enterprise system modeling is performed using UML constructs. The
Unified Modeling Language (UML) is a graphically based object-oriented notation
developed by Object Management Group (OMG) as a standard for describing
software architectures, which gained widespread acceptance in the software industry
[2]. In [4, 7], the UML language is used to model complex system functionality,
while mathematical modeling, specifically queuing networks, is adopted to estimate
application performance. Using UML sequence diagrams facilitates the complete
description of client-server architectures, the triggering of processes and the
information exchange between them [7]. However, the detailed description of process
functionality is not facilitated. UML wide acceptance was the main reason why we
chose to adopt it. UML-like notation was used as a visual tool for the graphical
representation of web-based architectures. Since the modeling scheme is extendable,
the adaptation of UML constructs to describe the web-based enterprise system meta-
model helps the Web-based System Modeler user when extending or customizing the
model.

The rest of the paper is organized as follows: In section 2, a design methodology
for web-based enterprise systems is proposed. In section 3, the web-based enterprise
system modeling approach is introduced and the benefits obtained during system
configuration and performance evaluation are presented. In section 4, a case study
employing the proposed approach and the experience obtained is presented, while
conclusions reside in section 5.

2 Design Methodology

The configuration of web-based applications is performed based on the multi-tiered
services. As described in [15], a typical web-based application architecture employed
in numerous commercial solutions consists of the following:
a) Web client, i. e. the first tier, which facilitates a standard user interface allowing

the user to retrieve information (in the form of HTML/XML pages) or activate
applications (through HTML/XML page fields).

b) Web server, i. e. the second tier, which processes and redirects user requests,
gathers results and sends them to the client in the form of HTML/XML pages.
Thus, it provides a middleware platform integrating the desired functionality into
the HTML/XML documents.

c) External application servers implementing specific application logic. Old-
fashioned applications can be incorporated within the web environment using
wrapping techniques. External application services can be activated through CGI
programs at the web server site. The concept of a context file may be used at the
server side, in order to temporary store the results of a CGI program before
gradually presenting them to the user through the Web client. An alternative
solution is the provision of a direct interface allowing the connection to an
already active external program associated with a URL used for its invocation.
An alternative web-based architecture is the one based on intelligent web clients
that support program execution. In this case, an applet may be downloaded from

the Web server and be executed on the client machine to activate other tiers. The
aforementioned functionality is depicted in figure 1.

File
Server

Web Client

HTML/XML page

applet request

Web
Server

read/write
file

CGI
request

page / applet

results

results

results

pages

files

External
Application Server

get/ put page

USER

Figure 1. Widely-adopted Web-based Application Architecture

Web-based enterprise systems have the following specific characteristics:
• The first and second application tiers are implemented using Web technology.

Since the first tier is only responsible for user interaction, application
functionality is implemented as a set of services distributed on different servers.
This reflects on service allocation policies, since a substantial part of application
services must be close to the user.

• Replication techniques are employed to increase performance and availability
especially over the Internet. To achieve the required application performance, the
principle of locality (i.e. keeping servers and data as close as possible to user) is
widely applied. Replica synchronization is usually performed using
asynchronous policies.

• Web-based applications usually operate on workstations. Users have their own
workstation (diskless or not). Server processes are executed on dedicated servers
machines. Application performance is greatly influenced by individual server
machine performance.

• The communication between user-related tiers (web-based tiers) is based in
HTTP protocol. Thus, identification of resources is accomplished using URLs or
URIs. The network infrastructure consists of private intranets and Internet
connections usually supporting TCP/IP protocol stack.
Based on aforementioned characteristics, we introduce a concise methodology

for web-based enterprise system design. Four discrete stages and the dependencies
between them are identified, as indicated in figure 2. Each of them addresses a
specific issue explored during system configuration. All the stages are supported by a

common meta-model used for web-based enterprise system description to ensure
consistency.

System Design

Functional
Configuration

Physical
Configuration

Logical
Configuration

Performance
Evaluation

System
Construction
/Modification

Gathering
Application

Requirements

Figure 2. Web-based Enterprise System Design Methodology

Functional configuration (stage 1) corresponds to the description of system
requirements (functional specifications). Logical and physical configuration (stage 2,
3) deal with process/data allocation and replication policies and network topology
design respectively. Resource allocation and network configuration problems cannot
be solved independently. Thus, stages (2) and (3) are invoked interactively until an
acceptable solution is reached (physical specifications). It is important to note the
significance of a common modeling scheme for the representation of web-based
enterprise system entities throughout all configuration stages. Both logical and
physical configuration stages are accomplished by properly instantiating specific
properties of model entities, already defined during functional configuration. System
configuration phase must facilitate the performance evaluation (stage 4) of the
proposed solution prior implementation. If the system requirements are not satisfied,
logical and physical configuration must be repeatedly invoked.

To support design stages, we have implemented a software platform written in
Java. It is named Web-based System Modeler and facilitates a) the graphical
interaction with the system designer for describing the functional specifications and
exploring the proposed solutions using UML-like notation, b) the instantiation of the
configuration stages and c) the interaction with specific software tools supporting
each stage. Functional configuration is performed using the Modeler. Logical and
physical configurations are accomplished using heuristics. IDIS [10] is a knowledge-
based system facilitating the representation and exploration of resource allocation and
network topology design algorithms using rules of thumb. IDIS knowledge bases
were extended to support web-based application functionality and the proper
interfaces were developed, so that the Web-based System Modeler may use IDIS to
explore resource allocation and network design problems. To evaluate system
performance, a discrete event simulation tool was used [9]. Object-oriented modeling
and pre-construction of model components were employed to ensure efficiency [1].
System performance cannot be partially estimated, e.g. even if only a small part of the
overall architecture is altered, the entire system must be simulated again to accurately
estimate performance measurements. The completion of the simulation phase is the
most time consuming part of the overall design phase. Thus, redesigning an
inefficient architecture imposes the all possible changes are made before the
simulation process is reactivated.

Web-based System Modeler consists of a graphical interface facilitating web-
based enterprise system description using UML constructs, a dictionary containing
models and restrictions and a set of wrappers for properly initializing external
software modules and facilitating data exchange using object-oriented representation.

3 Modeling Approach

Web-based enterprise systems can be modeled as a set of interacting components,
composite or not, suited to describe specific system functionality [5]. The level of
detail in component description must ensure its accuracy and completeness. Thus, a
multi-level modeling schema must be introduced providing: a. high-level composite
models enabling the designer to go through configuration stages and b. a consistent
method for the analysis of composite models in to elementary ones depicting simple
network-based operations. Since the proposed approach is focused on web-based
enterprise system design, high-level models must explicitly depict standard web-
based application functionality, allowing the designer to describe the system under
study even if not being aware of specific implementation details, such as HTTP
operation.

We argue that it is efficient to use a common model to depict the desired
functionality through all the stages of web-system configuration, since it significantly
contributes to simplifying the overall process. The model must enable the description
of both the functional specifications (e.g. application logic and user behavior) and the
physical specifications (hardware infrastructure). The functional specification and
parts of the physical specifications (if pieces of the hardware or network
infrastructure are already available during system configuration) are defined during
functional configuration stage. The logical configuration consists of defining the
relationships between functional and physical specifications, since resource allocation
and replication policies result in the allocation of processes and data instances to
hardware components. Physical configuration results in the creation of physical
specifications. The meta-model introduced to define web-based enterprise system
functionality is presented in figure 3 using UML notation. Gray rectangles represent
first level entities. It identifies a basic set of object types to describe functional and
physical specifications and the relations between them. Further object types may be
added by the designer to describe additional functionality by extending or restricting
existing object behavior. Meta-model extension is essential in order to enrich the
model capability to describe custom applications.

The physical specification consists of a multi-level network architecture. Each
network either consists of other networks and an internetwork, describing the way
they are connected to each other, or represents a simple LAN or WAN connection.
Network nodes are either workstations allocated to users or server stations, where
server processes operate. Networks and internetworks also include relay nodes
depicting routing/switching functionality. Each network/internetwork also includes a
channel element representing the communication link. Processing and relay nodes
consist of individual elements corresponding to the three elementary operations
supported in a network environment: processing, storing and transferring data [5].

Processing nodes consists of a processing, storage and communication element, while
relay nodes consist of a processing and many communication elements, one for each
network they relay. Since network modeling is widely explored in both research and
commercial tools, we do not further discuss this issue [6]. The approach used for
modeling network, relay node and communication element entities in our model is the
one presented in [1]. Each node element is responsible for serving a corresponding
elementary operation. Consequently, application functionality should be internally
translated into elementary operations. Based on elementary operation characteristics,
we can determine the QoS provided by the physical specifications.

is_supported supports network

channel

internetwork

workstation

server node

consist of

processing node relay_node

storage element

processing element

relay element

Physical Specifications

operates_on supports

operates_on

supports

operates_on supports

is_stored

-ActivationProb
user request

+Initiate()
+Top_Conf()
+Split()
+Merge()

-ID
-Description
-Range
-Parent
-Connect_List

-corr.NetID

site

is_composed_by

Functional Specifications

daemon profile user profile web client

server

process

web
server

DB
server

file
server

activates

application

+Initialize()
+Create_Replica()

-ID
-Description
-Type{data/program}
-Sharable
-Updatable
-Replicable
-Repl.Policy
-Synch.Policy

-NoReplicas
-Repl_List
-Site_List

-Node_List

file

componentactivates

operates_on

component

interface

implementation
1:N

belongs_toOperation Dictionary

+analyze()
+..........()

operation

+.........()

elementary operation

is_analyzed

Figure 3. System Description Meta-model

The functional specification consists of web-based application and user behavior
description. Web-based applications are presented as sets of interacting processes and
files accessed by them. User behavior is described through user profiles activating
web clients. Each profile includes user requests resulting in application invocation
through the web interface, e.g. by invoking specific components of a web client
operating on the user workstation. Each user request is characterized by an activation
probability attribute indicating how often the user activates the specific application to
perform a specific task modeled as component. The user profile concept may
efficiently depict the behavior of a specific user if this can be predetermined. The

behavior of Intranet users usually acquires such characteristics. Internet user behavior
is more stochastic. In this case, the user profile concept may be used to depict the
behavior of user groups regarding specific services, as for example, the user profile
“remote client”, which can be used to represent the behavior of clients paying their
credit card using a web banking system. Daemon profile models indicate the
automated activation of processes. Daemon profiles operate on the same processing
node as the process they activate.

The services composing application functionality can be described using the
process component concept. Each component corresponds to the set of tasks
completed when activated in a certain manner. Besides the web client process model,
server process models are also supported. Specific models as the Web Server,
Database Server and File Server are introduced as ancestors of the basic server model
to depict the corresponding functionality. Each process consists of many components,
while each component consists of an interface depicting the process activation
mechanism and an implementation comprising the tasks that occur upon process
activation. Component implementation is described using a predefined set of
operations forming the operation dictionary. Operations are described by qualitative
and quantitative parameters, as for example, the processes being involved and the
amount of data sent and received in an “invoke process” operation. In most cases,
component implementation is executed sequentially (each operation is performed
when the previous one is completed). However, there are cases where operations
must be performed concurrently. All operations must be analyzed into elementary
operations, namely processing, storing and transferring, to estimate the QoS needed
from the physical specification. Operations depict simple tasks occurring in the
system, for example “get page from a Web Server”, “insert data in a database”, “store
data in the storage device”. It is evident that the term “simple” is relevant in terms of
application perspective. When describing a database, the operation “insert data”
seems as simple, while describing a middleware platform seems as complex. In the
following, we suggest an operation dictionary suitable for web-based application
description. The dictionary includes:
a. operations indicating basic tasks. These are processing, indicating data

processing, request, indicating invocation of a server process and synchronize,
indicating replica synchronization.

b. file related operations involving File Server activation. These are: write/read
indicating data storage/retrieval. While processing is an elementary operation,
write can be expressed through simpler ones, i.e. a process and a request sent to
a File Server.

c. database operations depicting database functionality. There are: insert, delete,
update, select and activate_store_procedure. They provide transparency when
defining application functionality.

d. web-related operations used to describe web server and web client functionality.
They include:
• Get/put page: indicating retrieving/storing an HTML/XML page
• Post: indicating form/field passing on an HTML/XML page
• Get applet: indicating applet download

• Applet: indicating applet activation
• CGI: indicating CGI program activation
• Invoke Program: indicating active program invocation
• Handle/Retrieve context file: indicating context file creation or

modification/retrieval of context file data
• HTTP request: indicating send request/reply protocol implemented to

support HTTP protocol
These operations are used to easily describe component implementation
corresponding to Web server and Web client functionality in the model depicted
in figure 1. When a get page request is sent to the Web server, the proper
functions are initiated and a HTML file is retrieved from the File Server through
a read request. Based on HTML page content, the Web server may send the
HTML page, as a reply, back to the client, or initiate a CGI script or an active
program to communicate with any external application server. The get page
request is also used to download an applet from the Web server and
communicate with the external application server.
Operations can be either elementary or of higher layer. In the latter case, they

are analyzed into elementary ones. Operation decomposition is performed through
intermediate stages to simplify the overall process and maintain relative data.
Operation decomposition hierarchy ensures consistency, reduces complexity and
enables following a common predefined decomposition mechanism. The most
promising feature of this scheme is that the operation hierarchy can be further
extended to include new operation, placed at the highest layer. Definition of new
operations is based on existing ones to ensure consistency. Web related operation
hierarchy is depicted in figure 4 using UML class diagram notation (only the
decomposition of web-related operations is presented in the figure).

Layer 2

Layer 1

Layer 0

Write

Activate
Operation
Scenario

Transfer

HTTP
send request

HTTP
reply

H/R
Context File

Invoke
ProgramCGI

Request

Processing

Read

Applet Post

HTTP
Request

Get/Put
PageGet Applet

Figure 4. Web-related Operation Decomposition Model

Dotted rectangles represent intermediate actions, while gray rectangles represent
elementary ones. Although not indicated in the figure, the activate operation scenario
operation may result in the invocation of any operation included in application
description. The http request operation depicts the request functionality as it is
implemented by HTTP protocol and it is used in the decomposition of application
operations describing Web client functionality. Many application operations, such as
get/put page, actually represent the invocation of the corresponding server interface,
and are decomposed into http request operation. These types of operations are
supported to simplify the description of operation scenarios, since they are described
using less parameters than the corresponding request operations. Furthermore, they
make server invocation transparent to the user, when describing client operation.

Using Web-based enterprise system Modeler, the user may further extend the
operation hierarchy to describe specific application functionality by properly
extending the corresponding UML diagram. When defining a new operation, the user
must specify its parameters and the operation used to describe it. In order to avoid
model inconsistency, the user ability to add operations is restricted. The meta-model
of figure 3 can be extended in a similar manner. We decided to adopt UML notation
to describe the meta-model, as a. it is a wide acceptable standard and most designers
are familiar with it, b. it allows the graphical representation of specifications and c. it
facilitates the automated implementation of existing model extensions.

Site concept is introduced to define the access points of the system. Definition of
sites is retrospective. Specification of their size is performed with respect to the user's
view. At the first level of detail, sites are defined as Internet access points. At the next
levels of detail, each site is further refined, allowing the user to adjust the description
of the system according to the application scale. Since each site must be supported by
a network, the site definition is restricted by the same rules as network definition; for
example, a site should be decomposed to smaller ones until its range corresponds to
the limits of a LAN. During the logical and physical configuration, sites of the same
level may be merged or divided to ease network design. Progressive refinement of
sites enables the progressive solution of resource allocation and replication problems.

Within Modeler environment, the user defines the system through a graphical
environment. Each entity is depicted using a UML symbol, for example, the UML
package symbol is used to depict composite entities as sites, applications and
networks. All entities regarding their representation obtain attributes filled manually
or automatically. The entity representation symbols are presented in table 1. The
system offers two different views: the functional, emphasizing on the functional
specifications, and the physical, emphasizing on the physical specification,
respectively.

After completing the functional configuration stage, application description and
site specification are completed. User profiles are defined within sites. Physical
specification may also be partially defined. The next stage, e.g. logical configuration,
corresponds to allocating processes and data forming applications into sites.

Table 1. Model Entity Visual Representation using UML Symbols

Model Entity UML Representation
Functional Specification
Site ⇒ Package
User/Daemon Profile ⇒ Component in Component Diagram
User Request ⇒ Interface of component
Process ⇒ Component in Component Diagram (site view) or

Object in Sequence Diagram (application view)
Component ⇒ Interface of component or Object Activation (site

view) in Sequence Diagram (application view)
Component Interface ⇒ Class
Component Implementation ⇒ Parameterized Class
Application ⇒ Package
Physical Specification
Network/Internetwork ⇒ Package
Node ⇒ Nodes in Deployment Diagram
Element ⇒ Node within Node in Deployment Diagram
Channel ⇒ Arc between Nodes in Deployment Diagram

4 Case Study

The proposed design methodology was tested during the configuration stage of the
enterprise information system of the Greek National Diabetes Network (GNDN),
which consists of the National Diabetes Institute and 128 Medical Centers hosted in
public hospitals allover the country. The National Diabetes Institute received a grant
for building an integrated information system supporting the following services: a)
medical record maintenance regarding diabetic patients, b) provision of statistical
information concerning the diabetes disease, c) everyday life patient support and d)
educating the public regarding the Diabetes disease. The system should be accessed
through the Internet in order to provide information to different categories of users
(public, patients, researchers) with different privileges, while it is maintained by
physicians working in diabetes medical centers and the National Diabetes Institute.

Application design and implementation was performed using the Oracle product
suite, while all applications should be web-based. Medical records are private, thus
records belonging to a specific Medical Center should be only accessed from the
personnel employed in it, while specific fields regarding clinical measurements can
be widely accessed and statistically processed. The system supports almost 1.000.000
patient records. The size of medical centers differs according to the size of the
hospital hosting it. There are three categories of medical centers regarding
information system support, as indicating in table 2. As none of the applications is
considered as time- critical, the required response time is 15-20 sec for all
transactions. The National Diabetes Institute and medical centers are interconnected
through the National Health Network, a private TCP/IP based network,
interconnecting public hospitals. Network connection speed varies from 128 Kbps to
2 Mbps. In the following, we discuss detailed experience using the web-based

enterprise system meta-model presented in section 3 through all the system
configuration stages.

Table 2. Medical Center Requirements

Category Avg. Number of
patients per day

Max. Number of
Users

Number

Small <10 1 60
Medium 25 3 76
Lange >45 7 32
Total 4000 512 168

Functional configuration
We focus on Medical Record and Statistics Provision applications, to indicate

the advantages of the application modeling scheme. The Medical Record application
is based on the “typical” Oracle web-based architecture, where application interface is
implemented using JAVA servlets executed in the Oracle Application Server.
Database-related application logic is implemented using stored procedures. Since
medical records are private, two different database servers had to be modeled (each
one belonging to a different application), the Medical DS maintaining medical
records and Informational DS maintaining specific record fields subjected to
statistical processing. It is evident that the two databases had to be synchronized.

OracleApplSrv was added in the metamodel depicted in figure 3 as an ancestor
of Web Server entity to model Oracle Application Server functionality.
OracleApplSrv mainly consists of the invocation of forms, the management of fields
and the completion of transactions consisting of stored procedures. Since a Web
Server is incorporated within Oracle Application Server, it is able to accept and
process HTTP requests produced by the Web clients used by the users. Two new
operations were added in the operation hierarchy (figure 4) to integrate web-based
functionality and ease OracleApplSrv description. The Form_access (form_name,
numbers_of_fields, avg_field_size, processing) was added in the operation hierarchy
to depict accessing, activating and processing of a form. This operation is further
decomposed into get page, post and processing operations to depict the invocation of
Oracle forms as HTML pages and the filling of specific fields. The
activate_transaction(LocalDb, sp_number, [sp_list], processing) operation is used to
depict the activation of stored procedures corresponding to each transaction. It is
further decomposed into invoke program, processing and post operations. The
invoke_ program(MedicalDS, call_stored_procedure, [sp_number, sp_list])
operation depictes the invocation of MedicalDS to execute a specific stored
procedure, while the post operation is used to pass stored procedure parameter values.
The invoke_program(MedicalDS, insert, [512, 128]) operation represented recording
the specific user performing medical record update and is included as the last
operation of the 6 components of OracleApplSrv built to represent Medical Record
application modules.

Extending operation hierarchy is an important feature to ensure the detailed
application description. If only predefined operations could be used, the same

description would have to be repeatedly given a) within the same application
component and b) in different components, to represent the same functionality.
Although only up to 15 operations are needed to describe an application module, each
one of the 6 components of OracleApplSrv is decomposed to a large number of
elementary operations varying form 97 to 245.

A new action called call_stored_procedure_step (preprocessing, data_accessed,
postprocessing) was also added in the action hierarchy to easily describe store
procedure functionality. Each stored procedure consists of one to five steps. The
call_stored_procedure_step action includes the activation of processing, read and
write actions. Since the Informational DS is updated only through database
replication, synchronize operation scenario had to be implemented according to
Oracle replication mechanisms. This operation scenario is invoked whenever
synchronize action is invoked. An instance of Application Package View describing
the discussed applications is depicted in figure 5.

As indicated in table 1, in the application view of functional specification,
process functionality is depicted as sequence diagrams. Processes are represented as
objects and components as object activations. When the user clicks on an activation
icon, a popup window facilitates the description of its interface and implementation.
Message icons are added automatically between process activations to represent
process interaction. Messages are labeled using the name of the operation initiating
process activation.

Web
Client

Web
Srv

Local
ApplSrv Medical DS Informational DS

reques
t

Search
Medical
Record

activate_transaction

invoke_program
Medical
Record
Module

synchonize

Stored
Procedure

sychronize SP

form Access

get
page

get
applet

applet
request

Provide
Statistics

File Server

get
page

Medical Record Search

Implemetation
�����
�����
�����
�����

form_access Patient_data, 8,
request

processing
form_access

5612
display_results,

ParametersOperation

OracleApplSrv,

Application View

Figure 5. Application Package View - Medical Record and Statistics Provision

Application Models

As indicated in figure 5, the Process Statistics component invokes the WebSrv
through get_page and get_applet actions and InformationalDS through applet action.
It implements Statistics Provision application, a typical Internet application, where,

after the user is identified, an applet is downloaded and executed in his/her
workstation allowing the provision of specific statistics concerning the values of
medical variables of patients fulfilling predetermined constraints.

Logical Configuration
The users invoke application modules through forms executed on the Oracle

Application Server using a web browser, thus a replica of Oracle Application Server
and related files were placed in all medical centers. The implementation of an Oracle
Database in small-sized Medical Centers is costly. Alternative Medical DS allocation
scenarios were studied in order to ensure the requested response time and reduce cost.
After evaluating different alternatives, it was decided to keep Medical DS replicas in
all Medical Centers except for the small ones directly connected with another one
with a network connection faster than 512Kbps. It was decided to place one copy of
the Informational DS in the National Diabetes Institute, since the Internet access of
the system is supported through this specific site.

Within functional specifications, site description was conducted using two levels
and the entire medical centers where placed in the second one. During logical
configuration site decomposition hierarchy was modified to depict the structure of the
WAN network interconnecting hospitals, thus it was feasible to consider the network
topology when placing database replicas. An instance of the site view of functional
specifications after completing logical configuration is depicted in figure 6.

Site View

Attica Region NDI Macedonia Peloponnisos Epeirus

Site View

Physician
7

Provide Statistics
3

web client
7

Oracle ApplSrv
1

MedicalDS
1

FS
1

NDI site

3rd Regional Attica Hospital North General Hospital2nd Regional Attica Hospital 1st Regional Attica Hospital

Figure 6. Site Package View – 3rd Attica Regional Hospital

As indicated in figure 6, site decomposition is depicted using package icons.
Component icons are used to represent user profiles, daemon profiles and process
(they are distinguished by their color). Interfaces represent user_requests,
daemon_requests and components, respectively. The number in the down right side of

each component represents the number of profile or process instances operating in the
specific site.

Physical Configuration
Since the system uses the National Health network, the network topology was

predefined. The physical configuration focused on the design of the National
Diabetes Institute site. The performance evaluation of the system indicated that the
processing power of the hardware supporting Database functionality was not
adequate to execute client transactions within the predefined response time. This was
mainly due to the lack of statistics preventing the estimation of Internet traffic
characteristics.

The underlying network and database architecture could be modeled and studied
using various commercial simulation tools. However, in order to accurately estimate
the network load generated and study alternative database replication scenarios, there
is a need for the detailed description of the applications. Due to the increased
complexity of application functionality, e.g. Oracle Application Server operation, the
direct mapping of application description into low-level primitives was not feasible.
The extendable operation dictionary concept provided a set of common high-level
constructs, conforming to web-based application specifications, which enable
accurate application package description and the direct mapping of this description
into QoS parameters that the physical configuration must satisfy. This is the main
advantage of the proposed meta-model.

Site redefinition process illustrates the ability of the proposed model to depict
the impact of technological boundaries (physical specification) and resource
allocation policies to application functionality (functional specification). When
configuring web-based enterprise systems, each of these problems is usually handled
in isolation, resulting in poor system performance. The proposed model enables the
exploration of dependencies between configuration stages even if they aren’t obvious,
as functional specifications are corrected or filled, as physical specifications are
progressively defined.

5 Conclusions

We proposed a concise methodology for the design of web-based enterprise
information systems considering their specific characteristics. Four discrete stages,
each of them addressing a specific issue, and the dependencies between them were
identified. They include application package description, process/data replica
allocation, network/hardware configuration and performance evaluation of the
proposed architectures. When configuring web-based enterprise systems, each of
these problems is usually handled in isolation, resulting in poor performance. The
common meta-model proposed for system description through all stages promotes
consistency, since all the stages are performed by properly instantiating model entity
properties. As indicated in the case study using the site concept, the model was able
to represent how network/hardware technological boundaries effect functional
specifications and system architecture even if they are not obvious.

The proposed meta-model facilitates the accurate and detailed description of
web-based applications and the estimation of QoS parameters. Extending the meta-
model was proven to be an essential feature in order to describe complex application
functionality, such as the one supported by Oracle Application Server. UML-like
representation of meta-model entities helped through model extension/customization,
since Web-based System Modeler users are usually familiar with UML constructs.

References

[1] Anagnostopoulos, D.: An Object-Oriented Modeling Methodology for Dynamic
Computer Network Simulation. International Journal of Modeling and Simulation 21
(2001)

[2] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison Wesley (1999)

[3] Cruz, J., Park, K.: Towards performance-driven system support for distributed computing
in clustered environments. Journal of Parallel and Distributed Computing 59 (1999)

[4] Kaehkipuro, P.: UML-Based Performance Modeling Framework for Component-Based
Distributed Systems. In: Performance Engineering, Lecture Notes in Computer Science
2047, Springer-Verlag (2001) 167-154

[5] Kramer, J.: Configuration Programming - A Framework for the Development of
Distributed Systems. In: Proceedings of the International Conference on Computer
Systems and Software Engineering, Israel, IEEE Computer Press (1990)

[6] Law, A.M., McComas, M. G.: Simulation Software of Communications Networks: The
State of the Art. IEEE Communications Magazine 4 (1994)

[7] Mirandola, R, Cortellessa, V.: UML Based Performance Modeling in Distributed
Systems. In: UML2000, Lecture Notes in Computer Science 1939, Springer-Verlag
(2000) 178-193

[8] Nezlek, G.S., Hemant, K.J., Nazareth, D.L.: An Integrated Approach to Enterprise
Computing Architectures. Communications of the ACM 42 (1999)

[9] Nikolaidou, M., Anagnostopoulos, D.: An Application-Oriented Approach for
Distributed System Modeling. In: Proceedings of International Conference on Distributed
Computing Systems, Phoenix, Arizona, US, IEEE Computer Press (2001)

[10] Nikolaidou, M., Lelis, D., et. al: A Discipline Approach towards the Design of
Distributed Systems. IEE Distributed System Engineering Journal 2 (1995)

[11] Ramesh, S., Perros, H.G.: A multi-layer client-server queuing network model with non-
hierarchical synchronous and asynchronous messages. Performance Evaluation 45 (2001)

[12] Reeser, R., Hariharan, R.: Analytic Model of Web Servers in Distributed Environments.
In Proceeding of the International Workshop on Software and Performance, Ottawa,
Canada, ACM Press (2000)

[13] Savino-Vázquez, N.N., et al.: Predicting the behavior of three-tiered applications: dealing
with distributed-object technology and databases. Performance Evaluation 39 (2000)

[14] Shedletsky, J., Rofrano, J.: Application Reference Designs for Distributed Systems. IBM
System Journal 32 (1993)

[15] Serain, D.: Middleware. Springer-Verlag London, Great Britain (1999)

	Exploring Web-based Information System Design:
	A Discrete-Stage Methodology and
	the Corresponding Model
	1Introduction
	2Design Methodology
	
	
	
	
	
	
	Web-based System Modeler consists of a graphical interface facilitating web-based enterprise system description using UML constructs, a dictionary containing models and restrictions and a set of wrappers for properly initializing external software module

	3Modeling Approach
	Functional Specification
	4Case Study
	
	
	
	
	
	Functional configuration

	Figure 5. Application Package View - Medical Record and Statistics Provision Application Models
	
	
	
	
	Logical Configuration

	Figure 6. Site Package View – 3rd Attica Regional
	
	
	
	
	Physical Configuration

	5Conclusions
	References

