
On the Effective Manipulation of Digital
Objects: A Prototype-Based Instantiation

Approach

Kostas Saidis, George Pyrounakis, and Mara Nikolaidou

Libraries Computer Center,
Department of Informatics and Telecommunications,

University of Athens,
University Campus, Athens, 157 84, Greece

saiko@di.uoa.gr, forky@libadm.uoa.gr, mara@di.uoa.gr

Abstract. This paper elaborates on the design and development of an
effective digital object manipulation mechanism that facilitates the gen-
eration of configurable Digital Library application logic, as expressed by
collection manager, cataloguing and browsing modules. Our work aims
to resolve the issue that digital objects typing information can be cur-
rently utilized only by humans as a guide and not by programs as a
digital object type conformance mechanism. Drawing on the notions of
the Object Oriented Model, we propose a “type checking” mechanism
that automates the conformance of digital objects to their type defini-
tions, named digital object prototypes. We pinpoint the practical benefits
gained by our approach in the development of the University of Athens
Digital Library, in terms of code reuse and configuration capabilities.

1 Introduction

In the context of Digital Libraries, a digital object can be conceived as a human
generated artifact that encapsulates underlying digital content and related in-
formation [7,13]. Although variations on representation and encoding issues may
exist, this information is used to describe, annotate, link and manipulate the ob-
ject’s digital content. However, the term “object” is used in a far richer context
in the field of Software Engineering: in the Object Oriented (OO) model an ob-
ject acts as the container of both data (its state) and behavior (its functionality)
and conforms to a type definition, named class.

The Metadata Encoding and Transmission Standard (METS) [11] refers to
digital objects in terms of XML documents, providing detailed specifications of
its sections, comprised of descriptive and administrative metadata, files, struc-
tural maps and links. Moreover, METS supports behaviors attached on digital
content, through the Behavior section of the METS object, “that can be used to
associate executable behaviors with content” [11]. Even though METS uses the
notion of Profiles to refer to “classes” of digital objects, a METS document’s Pro-
file [10] is “intended to describe a class of METS documents in sufficient detail to

A. Rauber et al. (Eds.): ECDL 2005, LNCS 3652, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 K. Saidis, G. Pyrounakis, and M. Nikolaidou

provide both document authors and programmers the guidance they require to
create and process METS documents conforming with a particular profile”. The
absence of an effective type-conformance mechanism forces (a) programmers to
write custom code to implement digital object manipulation mechanisms in an
ad-hoc and not reusable fashion and (b) cataloguing staff to carry out all the
digital object typing arrangements “by hand”, since DL system is not able to
perform them automatically in a transparent manner.

Our work, presented in this paper, refers to the design and implementation
of a sufficient digital object manipulation mechanism, that facilitates the confor-
mance of digital objects to their type definitions, named digital object prototypes,
in an automated manner. Section 2 provides a thorough discussion on digital
object manipulation requirements of University of Athens Digital Library (UoA
DL) in detail, also presenting UoA DL architecture. Section 3 introduces the
notion of digital object prototypes, used as a means to express type-dependent
customisations on the overall structure and behavior of digital objects. Section
4 demonstrates the benefits of utilising prototypes in the development of UoA
DL modules, especially for the case of cataloguing and browsing interfaces and
Section 5 clarifies the use of prototypes in the context of various collections, by
setting up scopes of prototypes. Finally, discussion on related and future work
resides in section 6.

2 The University of Athens Digital Library

2.1 Motivation

In [15] we presented a high-level overview of the University of Athens Digital Li-
brary (UoA DL) architecture. UoA DL will host several heterogeneous collections
in terms of content type, structure, metadata and user requirements, containing
both digitised and born digital material. Some of them are: the University’s His-
torical Archive, Theatrical collection, Folklore collection [9], Byzantine Music
Manuscripts collection, Medical collection and Ancient Manuscript collection.
UoA DL System is implemented in Java and uses Fedora [18] as a digital object
repository.

The Libraries Computer Center of the University is responsible for both
UoA DL System development and the management of digitisation and catalogu-
ing processes of the aforementioned collections, under a strict period of time.
Under these conditions, we did not consider viable to develop custom function-
ality for each collection, in terms of metadata handling, user interfaces or any
other modules. On the contrary, our design approach has been based on the
concept of reusing configurable functionality, in order to cope with the various
constraints and requirements imposed by each collection. Thus, we focused on
the development of a general-purpose, parameterisable DL System that should
be easily configured to accommodate to each collection’s specific requirements,
exhibiting code reuse.

Our primary focus has been given to collection management, cataloguing,
browsing and user interface issues. Most collections consist of heterogeneous

On the Effective Manipulation of Digital Objects 15

digitised material that require detailed cataloguing, given that free-text search
facilities cannot be provided. Thus, it is of great significance to support de-
tailed descriptions of the nature and structure of digital content in a config-
urable manner. Moreover, the majority of people participating in digitisation
and cataloguing process will be active members of the Academic Community
(such as scholars and postgraduate students) with expertise on the field of the
specific collection. In order to increase productivity and facilitate cataloguing,
while achieving configurability and code reuse, we focused on generating a uni-
fied configurable cataloguing interface, that should adapt to each collection’s
idiosyncrasies, while hiding from users internal representation, implementation
and storage details. The system should “hide” underlying notions such as datas-
treams, XML documents, or even the use of specific metadata sets and only if
the cataloguer requires a more technical cataloguing interface, the system should
disclose such “internal” details.

2.2 Fedora Repository

In [15] we describe the reasons we have chosen Fedora for the development of
UoA DL. Specifically, we use Fedora Repository for handling concerns related to
storage, preservation and versioning, searching and indexing, along with meta-
data interoperability through the Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH) [8].

Within Fedora framework, digital objects are comprised of datastreams, used
to store all digital object related information. Fedora imposes no restrictions on
datastream content; it may be XML metadata or arbitrary external content, such
as locally stored files or remote URLs. Fedora Digital Object Model (FDOM)
has been based on a METS variant in 1.x versions. In Fedora 2.0, released on
late January 2005, a Fedora-specific representation of digital objects is intro-
duced, named Fedora Object XML (FOXML) [5]. The concept behind METS
Behavior section is implemented in FDOM in terms of disseminators. Dissem-
inators associate datastreams to specific behaviors, through the use of special
digital objects, namely Behavior Definition Objects and Behavior Mechanism
Objects. Fedora Behaviors provide one or more methods that get associated to
selected datastreams of a digital object and are automatically exposed in terms
of Web Services [19], providing a standard-based, service-oriented mechanism
for generating distributed and interoperable systems.

2.3 Digital Object Manipulation Requirements

In a higher level of abstraction, a digital object refers to a human generated
artifact that encapsulates underlying digital content and related information
[7,13]. Although variations may exist on serialisation and encoding issues (METS
[11], FOXML [5], RDF [16]), this information is used to describe, annotate, link
and manipulate the object’s internal content. Under this perspective, a digital
object is conceived as an aggregation, consisting of four parts: its metadata sets,
files, structure and behaviors, as presented in Figure 1.

16 K. Saidis, G. Pyrounakis, and M. Nikolaidou

Fig. 1. An abstract representation of a Digital Object and its constitutional parts

In this context, an effective digital object manipulation mechanism should
provide the following capabilities:

(a) With regard to Metadata Sets: (i) Allow the use of multiple Metadata sets
to characterise digital objects, (ii) support mappings between fields of different
Metadata Sets, in order to minimise redundancy and (iii) allow the localisation
and customisation of each Metadata Set in order to cope with the special needs
of different kinds of material, since, in practice, no single metadata standard
can cover all possible needs, especially in the case of digitised content or digital
culture content.

(b) With regard to Files: A digital object may contain zero or more files.
File existence should not be mandatory, since a digital object could be used as
a means to express the structure of ”real world” objects.

(c) With regard to Structural Information: The representation of both struc-
tural and general-purpose linking information should be easily expressed.

(d) With regard to Behaviors: Facilitate DL modules and services to effec-
tively manipulate and compose digital objects.

The detailed specification of each of these attributes depend on the digital
object’s nature; that is, the object’s type. Consider, for example, the Theatrical
collection consisting of albums that contain photos from theatrical performances
of the National Theater. All Photo digital objects should behave in the same
manner, being themselves aware about which parts comprise them and what
each one represents. However, this fundamental “is-a” information is not properly
expressed in neither METS nor FDOM. Fedora supplies digital objects with a
Content Model, resembling the METS Profile metadata attribute. METS Profiles
provide descriptions of “classes” of digital objects in order to be used by humans
as a guide and not by programs as an actual type checking mechanism. In essence,
digital objects are practically “typeless”, since the knowledge of the types of
objects is utilisable only by humans and not by the DL system. The absence
of automatic type checking forces (a) programmers to write custom code to
implement digital object type-conformance in an ad-hoc and not reusable fashion
and (b) cataloguing staff to carry out all the digital object typing arrangements
“by hand”, since the system is not able to perform them automatically in a
transparent manner.

On the Effective Manipulation of Digital Objects 17

According to the OO paradigm, each object corresponds to a type definition,
named class. The same should stand for digital objects as well; digital objects
should conform to a specification of their constitutional parts, wrapped in a
separate entity. This entity, named digital object prototype, should contain all the
corresponding specifications, in a manner independent of their realizations, such
as class in the OO model provides the specification of its instantiations. Under
this perspective, behaviors should not be assigned on digital objects directly;
they should be assigned on the definition of their type. In the OO paradigm,
functionality expressed in terms of methods is defined once and in one place,
in the class definition. Objects, defined as class instances, are automatically
supplied with this functionality as a result of their “is-a / instance-of” relation
with their type definition; it is the class (that is, the type) that makes this
functionality available to all its instances, it is not the user that provides it to
each of them separately.

2.4 UoA DL System Architecture

From a software design perspective, the digital object type checking issues can
be explained using the notion of separation of concerns [14]. There are three
separate concerns that need to be resolved in order to provide an efficient dig-
ital object manipulation mechanism: (a) how the object is stored (storage and
serialization concern), (b) what are the object parts and what each one repre-
sent (object specification and typing information), (c) how the object is inter-
nally represented, handled and composed according to its typing specification,
in terms of coding facilities and APIs. Figure 2 depicts UoA DL architecture,
where an intermediate layer is inserted between Fedora Repository and DL ap-
plication logic, named Digital Object Dictionary, that copes with the typing and
DL system internal representation concern of underlying Fedora digital objects.

Fig. 2. Uoa DL architecture, using a Digital Object Dictionary to facilitate Composi-
tions of Digital Objects

18 K. Saidis, G. Pyrounakis, and M. Nikolaidou

3 Digital Object Prototypes and Instances

A Digital Object Prototype provides a detailed specification of a digital object’s
constitutional parts. The process of generating a digital object based on a pro-
totype is called instantiation and the resulted object is called an instance of
the prototype. The digital object instantiation process ensures that the acquired
object instance will conform with the specifications residing in the prototype,
making it automatically behave in the prototype-specified manner. Our imple-
mentation has focused on expressing “is-a / instance-of” relations between ob-
jects and respective prototypes, resembling the OO instantiation mechanism.
Future work includes the ability to utilise OO inheritance in the context of dig-
ital object prototypes.

Figure 3 represents a Theatrical Collection Photo object as an instance of the
corresponding Photo prototype. The latter is defined in terms of XML, depicted
in Figure 4, providing the specifications of the constitutional parts of all the
Photo digital object instances. When a Photo object instance is acquired by
a DL module, the Dictionary utilises information residing in the prototype in
order to load its constitutional parts from Fedora repository.

Fig. 3. A Photo Object as an Instance of the Photo Prototype

In particular, the Photo prototype specifies that:

(a) Photo object instances should contain two metadata sets, namely: (i) DC,
used to hold the fields of the Dublin Core Metadata Element Set [3] for content
description purposes and (ii) TechnicalMD, holding the fields of the NISO tech-
nical metadata for Digital Still Images [12] for holding digitisation information.
There exist common DC and NISO fields (e.g. file format), that are mapped in-
ternally by the object instance, as specified in the Photo Prototype. Thus, even if
the file format field is stored within the DC section, it is “aliased” as both a DC
and NISO field by the Photo Instance. This way, field mappings are automatically
handled by object’s type, such as a class in the OO paradigm uses encapsulation
and information hiding to enclose “internal / private” functionality.

On the Effective Manipulation of Digital Objects 19

Fig. 4. Photo Prototype XML Definition

(b) Photo instances should contain a high quality TIFF image, a WWW
quality JPEG image and a thumbnail. Allowed MIME types and descriptive
attributes are also provided.

(c) Photo object instances do not contain other types of objects; the Struc-
ture section of the Photo instance is empty, following the specification residing
in the structure definition part of the Photo Prototype. On the other hand,
Albums are used to host photos and the respective structure definition of the
Album Prototype (not presented herein), specifies that Photo object instances
can be “inserted” into Album instances. Structural information is utilised by
user interface modules, in order to inform the users of the DL System about the
allowed children types of each object instance.

(d) When a Photo object instance is created, it automatically exposes the
behavior schemes defined by the Photo prototype, namely editView and brow-
seView.

A prototype may contain various behavior schemes for different purposes.
However, two basic types of behavior schemes are currently supported: edit
and view. The application logic indicates if the acquired digital object instance
should be used for read-only or editing purposes. In the latter case, the object
instance is acquired in editing mode and the user interface adjusts accordingly,
by displaying the scheme elements through an editable web form. The editView
behavior scheme depicted in Figure 4 determines the components of a low-detail
cataloguing interface, comprised of the photo’s title, subject, resolution, com-
pression ratio and number of available colours. Respectively, the browseView
scheme defines the metadata used for browsing photo objects, comprised of the
photo’s title, subject and thumbnail image. The distinction between an “ed-
itable” view or a “read-only” view is made internally by the object’s prototype,
that “knows” how to guide the low-level Web UI engine to display each element
for editing or presentation purposes. The result is configurability and code reuse;
the Dictionary API makes no distinction between end-user and cataloguer forms,
allowing the development of modules in a uniform and reusable fashion. Cata-
loguer interfaces are generated in the same way with “common” content display
end-user interfaces.

20 K. Saidis, G. Pyrounakis, and M. Nikolaidou

A behavior scheme represents a composition of the digital object consti-
tutional parts. It resides in the prototype and it is dynamically bound to all
the prototype instances. This dynamic binding resembles the notion of Fedora
disseminator. However, behavior schemes are based on well-known concepts of
the OO paradigm, with well understood semantics. In particular, a Behavior
scheme can be conceived as a method of class operating on the latter’ s “inter-
nal” fields. The behavior scheme is defined once in the digital object prototype
and is made available to all its corresponding instances by the typing mecha-
nism, resembling the OO model’s dynamic method dispatching. Moreover, Fe-
dora behaviors are parameterised on the datastream level of digital objects, while
Prototype-based behavior schemes can be parameterised in a more fine-grained
manner, supporting arbitrary compositions of digital object atomic elements,
as contained in the metadata sets, files or structural / reference parts. Behavior
schemes are able to identify the required atomic elements (e.g MDSets.dc.dc:title,
MDSets.dc.dc:subject, files.thumbnail in the browseView behavior scheme) inde-
pendent of their storage representation or datastream location. Finally, Fedora
behaviors rely on the a-priori existence of the digital object and its constitu-
tional datastreams; it is not possible to attach behavior on a digital object or
its datastreams, if they do not yet exist. This means that they are not suitable
for performing cataloguing effectively; all datastreams should be present and all
behaviors should be defined and bound, in order to be able to utilise them. On
the contrary, our approach gathers all object-related behaviors in the prototype
and thus, we are able to treat a newly created prototype instantiation in a type-
defined manner, before it has been ingested in Fedora Repository. Fedora Web
Service behaviors will be of value after collections and related objects have been
inserted into the system and DL application logic services have been developed.

4 The Benefits of Digital Object Type Conformance

The point put forward by this paper is that digital object composition and
manipulation is performed more effectively if digital objects are supplied with a
high-level type conformance mechanism, that resolves internal object details in
a transparent manner. Fedora satisfies several of the requirements identified in
section 2.3, such as the support of many metadata sets and files, along with the
effective storage and indexing of structural and reference information, added in
its new version. Based on its rich feature set, we have set up the digital object
“type conformance” extension, that can be conceived as a realization of the
Content Model notion, in programming and practical terms. Figure 5 depicts
this functionality, performed by the intermediate Dictionary layer.

The use of digital object prototypes allowed us:

– to gather all digital object manipulation functionality in a unified pro-
gramming API, exposed in terms of the digital object dictionary, that abstracts
underlying serialisation and storage details of digital content. This allowed us
to centralise and reuse the code that handles datastream handling and XML
parsing concerns, advancing the overall system’s modularity and increasing the

On the Effective Manipulation of Digital Objects 21

Fig. 5. A detailed overview of our proposed “type conformance” mechanism

independence of DL System modules from low-level Fedora datastream seriali-
sation details.

– to customise digital object instances “internally” and automatically, using
prototype-driven digital object instantiation. The concept of OO encapsulation
is based on entities carrying out “private” functionality in a type-specific manner
(e.g. metadata field mappings, validation of containment relationships and al-
lowed files), while exposing unified external manipulation interfaces. The notion
of prototype-based behavior schemes aims at accomplishing this functionality –
each behavior scheme is executed differently by each object, albeit used in a uni-
fied manner. For instance, Album instances are also supplied with editView and
browseView schemes that are executed by the Album prototype in a different
manner with regard to the corresponding schemes of the Photo prototype.

– to enable type-defined introspection of digital object structure and behav-
ior. A UoA DL module is capable of querying a digital object instance for its
constitutional parts, made available to the instance through its corresponding
prototype. This way, a module can supply the user with the list of supported
behaviors and let him or her select the desired behavior scheme to execute. In
software engineering, this concept is named reflection. Work presented in [4] en-
ables introspection of underlying object structure and behaviors. A prototype
can be conceived as an introspection guide for its digital object instances and
we argue that prototype-driven introspection is richer in semantics terms.

5 Digital Collections and the Scope of Prototypes

A collection refers to a set of items with similar characteristics, such as type,
owner, subject area and like. A digital collection aims at providing this group-
ing in the context of digital content. In the case of the University of Athens,
most digital collections contain digitised material representing real world com-
plex objects, as the Photo Albums of Theatrical collection. Furthermore, various
metadata sets and/or local extensions or combinations of them are used to char-

22 K. Saidis, G. Pyrounakis, and M. Nikolaidou

Fig. 6. A Digital Library as Hierarchy of Digital Object Instances with collection-
scoped Prototypes

acterise their content. Thus, the elements of a digital collection vary significantly
in terms of digital content structure, the metadata sets used to describe it and
the user requirements for cataloguing and browsing. For these reasons, digital ob-
ject prototypes are defined with a collection-pertinent scope, affecting collection-
specific digital object instances. This allows us (a) to support fine-grained def-
initions of collection specific kinds of material and (b) to avoid type collision
problems – Theatrical Collection Photo prototype may coexist with the Medi-
cal Collection Photo in the UoA DL. Each prototype is supplied with composite
identifiers, such as dl.theatrical.photo, that differs from dl.medical.photo.
The composite identifier is attached on respective prototype instances, through
the Fedora Content Model metadata attribute.

For uniformity reasons, all information is stored in Fedora Repository, in
terms of digital objects. This stands for collections, too. In order to be able
to represent, manage and manipulate all digital content in a unified manner,
collections are treated as digital object instances conforming to the collection
prototype. By representing everything in terms of digital object instances, flexible
and effective collection management capabilities can be generated. Collections,
sub-collections and the Digital Library itself are represented as a hierarchy of
digital object instances, as depicted in Figure 6. This representation scheme
provided the following benefits:

– New collections can be easily added in UoA DL, through the creation of a
new instance of the collection prototype. This has been of significant importance,
providing us the ability to work out the details of each collection independently,
but yet in a unified fashion.

– Support collection / sub-collection hierarchies in a configurable manner. A
sub-collection is simply a collection instance added in another collection instance.

– Support the characterisation of collections and sub-collections, supplying
them with metadata sets, as any other common digital object instance.

– Easily identifiable prototype definitions. The Content Model fully qualified
identifier is used to supply the Dictionary with the path of the DL hierarchy

On the Effective Manipulation of Digital Objects 23

that leads to the specific collection and the definition of the specific prototype
in that collection.

6 Discussion

UoA DL System is currently being used for the cataloguing process of the UoA
Historical Archive collection. Several extensions are under consideration, such
as the generation of a prototype construction interface, that could assist on the
creation of digital object prototypes, since, currently, the XML prototype specifi-
cation need to be issued by direct XML editing. Moreover, the structure part of a
digital object should be supplied with general purpose linking capabilities, in or-
der to be able to cope with relations that extend structural containment. We are
taking under consideration the use of the Fedora Metadata for Object-to-Object
Relationships, introduced in Fedora 2.0, for this purpose. Finally, our current ef-
fort is focused on generalising the current definition of behavior schemes in order
to support prototype-driven: (a) automatic conversions of primitive file types to
their prototype-defined derivatives, in order to facilitate cataloguing staff (e.g
convert a TIFF image to a low quality JPEG image and a thumbnail) and (b)
cataloguing form validation (e.g. metadata fields validation).

The greatest challenge, however, relies in extending Digital Object Proto-
types in order to supply them with Object Oriented inheritance capabilities. We
argue that it is of great importance to bridge the gap between digital objects
and OO objects even further. Approaches on formalisation of inheritance se-
mantics [2,1,17] treat an object as a record of fields, where each field contains a
method. Our representation treats objects as aggregations of their four consti-
tutional parts. In a high level of abstraction, these two representations present
significant similarities, indicating that it should be possible to incorporate in-
heritance in the context of digital object prototypes, albeit supplied with the
appropriate semantics. Our second long-term goal is to support the concept of
OO polymorphism, having digital object instances participate in more that one
“is-a” relations. Definition reuse through inheritance has been discussed in [6],
although targeted on information retrieval enhancements. Our aim is to use pro-
totype inheritance for enhancing the reuse and configuration capabilities of the
Dictionary digital object manipulation mechanism.

References

1. L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, pages
51–68, 1984.

2. W. Cook and J. Palsberg. A denotational semantics of inheritance and its cor-
rectness. In Proceedings of the ACM Conference on Object-Oriented Programming:
Systems, Languages and Application (OOPSLA), pages 433–444, 1989.

3. DCMI Metadata Terms. Dublin Core Metadata Initiative, January 2005. Available
at http://www.dublincore.org/documents/dcmi-terms/.

4. N. Dushay. Localizing experience of digital content via structural metadata. In
Proceedings of the Joint Conference on Digital Libraries (JCDL ’02), pages 244–
252, 2002.

24 K. Saidis, G. Pyrounakis, and M. Nikolaidou

5. Introduction to Fedora Object XML. Fedora Project. Available at http://
www.fedora.info/download/2.0/userdocs/digitalobjects/introFOXML.html.

6. N. Fuhr. Object-oriented and database concepts for the design of networked in-
formation retrieval systems. In Proceedings of the 5th international conference on
Information and knowledge management, pages 164–172, 1996.

7. R. Kahn and R. Wilensky. A Framework for Distributed Digital Object Services.
Corporation of National Research Initiative - Reston USA, 1995. Available at
http://www.cnri.reston.va.us/k-w.html.

8. C. Lagoze and H. V. de Sompel. The open archives initiative: Building a low-barrier
interoperability framework. In Proceedings of the Joint Conference on Digital Li-
braries (JCDL ’01), 2001.

9. I. Lourdi and C. Papatheodorou. A metadata application profile for collection-level
description of digital folklore resources. In Proceedings of the Third International
workshop on Presenting and Exploring Heritage on the Web (PEH’04), 15th Inter-
national Conference and Workshop on Database and Expert Systems Applications
DEXA 2004, pages 90–94, August 2004.

10. METS Profile Documentation. Library of Congress.
11. METS: An Overview & Tutorial. Library of Congress, September 2004. Available

at http://www.loc.gov/standards/mets/METSOverview.v2.html.
12. Data Dictionary - Technical Metadata for Digital Still Images. NISO Standards

Committee, June 2002.
13. Reference Model for an Open Archival Information System (OAIS). Consultative

Committee for Space Data Systems (CCSDS), 2002. Blue Book, Issue 1.
14. D. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, 1972.
15. G. Pyrounakis, K. Saidis, M. Nikolaidou, and I. Lourdi. Designing an integrated

digital library framework to support multiple heterogeneous collections. In Pro-
ceedings of the 8th European Conference on Digital Libraries (ECDL 2004), pages
26–37, 2004.

16. Resource Description Framework (RDF). World Wide Web Consortium. Available
at http://http://www.w3.org/RDF/.

17. U. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In
Proceedings of the ACM Conference on Lisp and Functional Programming, pages
289–297, 1988.

18. T. Staples, R. Wayland, and S. Payette. The fedora project: An open-source digital
object repository management system. D-Lib Magazine, 9(4), April 2003.

19. Web Services Activity. World Wide Web Consortium. Available at
http://www.www.org/2002/ws/.

	Introduction
	The University of Athens Digital Library
	Motivation
	Fedora Repository
	Digital Object Manipulation Requirements
	UoA DL System Architecture

	Digital Object Prototypes and Instances
	The Benefits of Digital Object Type Conformance
	Digital Collections and the Scope of Prototypes
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

