
Web-Based System Configuration and Performance
Evaluation using a Knowledge-Based Methodology

Mara Nikolaidou1, Dimosthenis Anagnostopoulos2

1 Dept. of Informatics, University of Athens,
Panepistimiopolis, 15771 Athens, Greece

mara@di.uoa.gr

2 Dept. of Geography, Harokopion University of Athens,
70 El. Venizelou Str, 17671, Athens, Greece

dimosthe@hua.gr

Abstract. Since Internet dominated the world, the World Wide Web platform
is used as a type of middleware providing a common platform for Intranet-
based and Internet-based application development. Web-based applications
have become more complex and demanding, in order to fulfil extended user
requirements. In this paper, we propose a systematic approach for the
configuration, modification and performance evaluation of web-based
systems. Its contribution involves the employment of knowledge-based
techniques for the design of web-based systems and the description of
problems encountered and the solutions proposed. Emphasis is given on the
extendable modelling scheme used to depict web-based application
functionality and estimate application requirements from the network
infrastructure. Web-based system architectures are designed and evaluated
using IDIS environment.

1 Introduction

The enormous success of the Internet is mainly based on the World Wide Web
(WWW), built to facilitate access to multimedia documents distributed all over the
Internet through a common interface, i.e. a Web Browser. Using a Web Browser is
possible to download that part of any application that consists of its user interface
from anywhere in the world. Such applications are considered as web-based
applications, and are built based on the multi-tiered client-server model [1, 2]. The
first tier, e.g. the user interface or user service, is implemented using the WWW
platform, while the other tiers implement the specific application logic that may be
based on different architectures, as discussed in [3]. Thus, WWW platform can be
viewed as a type of middleware providing a common platform of Intranet-based and
Internet-based application development. Many commercial information systems, such
as banking and ordering systems, distant learning environments and workflow
management systems, fall in this category. Development of standards, such as
CORBA, allowing the interaction between heterogeneous, autonomous applications
and of programming languages, such as Java, providing native distributed
programming support established a well-defined platform for web-based application

development. A web-based system can be described as a set of web-based
applications and the underlying infrastructure. Web-based system configuration is
based on the successful combination of interacting components spread over the
Internet, also facing the internal complexity of these components [4]. The
configuration issue is, thus, a multidisciplinary one, imposing examination of a large
number of alternative architectural solutions, exploitation of different replication
scenarios and estimation of proposed architectures’ performance. Complete and
accurate description of web-based application functionality is a critical factor in web-
based system design. It ensures the accurate estimation of QoS provided by the
network infrastructure and the efficient performance evaluation of the overall system.

Simulation tools usually investigate the behaviour of predefined algorithms for the
placement of resources and processes, or estimate the performance characteristics of a
given network architecture, performing a “what-if” analysis [5, 6, 7]. Such tools do
not make suggestions for the design or redesign of the system architecture. When
configuring complex systems, experts rely more on experience than on theory-based
calculations [8, 9]. Web-based system configuration issues requires dealing with
interrelated problems, such as process and file allocation, which are NP-complete.
Dealing with such problems requires methods that are more heuristic than algorithmic
in nature. Expert system research has often concentrated on the representation and
manipulation of heuristic knowledge and its use in information system design and
network configuration problems [10, 11, 12].

In this paper, we describe a systematic approach for the configuration,
modification and performance evaluation of web-based systems. Its contribution
involves the employment of knowledge-based techniques for the configuration of
web-based systems, the description of problems encountered and the solutions
proposed. Emphasis is given on the extendable modelling scheme used to depict web-
based application functionality and estimate application requirements. Furthermore,
one should have the opportunity to evaluate the performance of the proposed
solutions and reconfigure the proposed architecture if user requirements are not
fulfilled. Web-based systems are configured using the Intelligent Distributed System
Design tool (IDIS) [13].The rest of the paper is organized as follows: In section 2,
web-based system configuration issue is discussed and a systematic approach dealing
with it is proposed. In section 3, we present a web-based application representation
scheme. Conclusions reside in section 4.

2 Configuring Web-Based Systems

Internet technology can be used in conjunction with middleware technology
(message-based or object-based) to produce powerful web-based architectures. The
configuration of web-based applications is performed based on the multi-tiered client-
server model. The Web client, e.g. the first tier, facilitates a standard user interface
allowing the user to retrieve information (in the form of HTML pages) or activate
applications (through HTML pages). The Web server, e.g. the second tier, process

and redirects user requests, gathers results and sends them to the client in the form of
HTML documents. Thus, it provides a middleware platform integrating the desired
functionality into HTML documents. An easy way to forward requests to other tiers is
to activate CGI programs at the web server site. CGIs are portions of executable code
written in scripting languages, as PERL and JavaScript. The Web server does not
save any context related to a request coming from the browser, thus every request to a
CGI program is handled in isolation (stateless server operation). The concept of a
context file may be used on the server side, in order to temporary store the results of a
CGI program before gradually presenting them to the user through the Web client.
The weakness of the CGI approach lies on the fact that the program must be restarted
on each request. An alternative solution is the provision of a direct interface allowing
the connection to an already active external program using shared object technology.
The program is permanently loaded into the server memory and associated with a
URL used for its activation. An alternative web-based architecture is the one based on
applets. Web browsers can be used for program execution (intelligent web clients). In
this case, an applet may be downloaded from the Web server and be executed on the
client machine to activate other tiers. Web-based applications often employ this
technique to communicate with other distributed middleware platforms, as CORBA
(Common Object Request Broker Architecture). Old-fashioned applications are
incorporated with web environment using wrapping techniques.

Hardware used to support web-based applications is usually described in terms of
the workstation-server model. Users have their own workstation (diskless or not) for
executing client processes. Server processes are executed on dedicated servers.
Replication techniques are employed to increase performance and ensure availability.

Web-based systems are viewed as a combination of web-based applications and
the underlying network infrastructure. Both can be described in terms of elementary
components [14]. The network infrastructure consists of private intranets and Internet
connections. Each intranet consists of interconnected local or even wide area
networks supporting TCP/IP protocol stack. Network infrastructure configuration
requires the following components to be defined: processing nodes used for the
execution of client and server processes, storage devices and network connections.
For application description, the necessary components are: processes (clients,
servers), messages and data. Users are described through user profiles. A typical
web-based application architecture described in terms of the aforementioned
components is depicted in figure 1.

The Web client acts as the user interface for application invocation. Users,
depicted as user profiles, access applications through HTML pages in the Web client.
Processes communicate through exchanging messages based on the request/reply
model. As indicated in the figure, when a get page request is sent to the Web server,
the proper functions are initiated and a HTML file is retrieved from the File Server
through a read request. Based upon the HTML page content, the Web server may
send the HTML page, as a reply, back to the client, or initiate a CGI script or an
active program to communicate with any external application server. The get page

request is also used to download an applet from the Web server and communicate
with the external application server.

get/ put page

File
Server

HTML page 2

Web Client

HTML page 1

USER
Profile 1

USER
Profile 2

applet request

Web
Server

read/write
file

CGI
request

page / applet

results

results

results

pages

files

External
Application Server

Figure 1. Typical Web-based Application Architecture

In the following, we propose an integrated approach for web-based system design.
System design is performed prior system construction and after user requirement
gathering, as indicated in figure 2. It includes web-based application functionality
description, process and data allocation to minimize Internet traffic and ensure
efficient application operation and network configuration (network topology design).
The design phase must facilitate the performance evaluation of the proposed solution
prior implementation to ensure reliability. It is important to note the significance of a
common modelling scheme for the representation of system entities. This enables the
detailed description of user requirements while maintaining simplicity in the
description of web applications. System design is accomplished in the following steps
(figure 2):

1. Functional topology definition
2. Logical topology definition
3. Physical topology definition
4. Performance evaluation

Functional topology definition corresponds to the systematic description of system
requirements. Logical and physical topology definition deal with server and data
allocation and network configuration respectively. Both are accomplished using
heuristics. Resource allocation and network configuration problem cannot be solved
independently [11]. Thus, steps (2) and (3) of the proposed approach are invoked
interactively until an acceptable solution is reached, as shown in figure 2. Analytical
description of each step is presented in the following. IDIS system provides a semi-
automated environment guiding the user throughout the aforementioned steps.

System Design

Functional
Topology
Definition

Physical
Topology
Definition

Logical
Topology
Definition

Performance
Evaluation

System
Construction
/Modification

Gathering
Application

Requirements

Figure 2.Web-based Configuration Systematic Approach

2.1 Functional Topology Definition

In functional topology definition, applications are described as sets of interacting
processes activated by user profiles. The files used by processes are also specified.
There are two kinds of files, data files and code files. Application functionality is
described in terms of predetermined, high-level operations (or actions), which are
customized to conform to the web-based application architecture presented in figure
1. Operations are ultimately expressed in terms of primitive actions used to estimate
application requirements. The desired performance characteristics for each
application are also defined. More about the application representation scheme is
presented in section 3.

Access points of the web-based system, called locations, are also specified.
Definition of locations as well as specification of their size is performed with respect
to the user's view. At the first level of detail, locations are defined as Internet access
points. At next levels of detail, the location entity can be refined into more
elementary ones, allowing the user to adjust the description of the system according
to the application scale. Progressive refinement of location concept enables the
progressive solution of resource allocation and network configuration problems.

2.2 Logical Topology Definition

Logical topology definition concerns process and file allocation. Allocation of
processes and files is performed aiming at a. minimizing Internet traffic, b. fulfilling
application requirements and c. minimizing configuration cost. Minimizing Intranet
traffic especially on WAN connections and balancing load is also taken into account.
Communication cost function C consists of CU caused by client access, CP caused by
server access and CF caused by data access. The optimal allocation solution is reached
when C , under conditions ensuring access to all process and
data replicas. Different replication scenarios can be applied, while locating processes
and data [15]. As proved in [16], minimizing C is considered to be NP-complete
problem. For the solution of such problems, heuristic methods are introduced,
ensuring that, even if the optimal solution is not reached, one very close to it will be
found. A variety of allocation algorithms supporting synchronous and asynchronous
replication policies can be applied [17, 18, 19].

)Cmin(C FPU C++=

Adopting the workstation-server model, CU=0 thus C .
Since servers may access shared data, there is dependence between C

)Cmin(C FPU C++=
P and CF. Even

if the optimal solution is not reached, it is assumed that data are allocated before
processes. Since network topology is not predefined during process and data
allocation, it should be designed concurrently to ensure the efficient support of the
solutions adopted. To achieve the required application performance, locality (i.e.
keeping servers and data as close as possible to user) is considered as a basic
principle. The most popular algorithm for Web server placement is the one based on
the avoidance of unnecessary data transfer between WAN connections with
asynchronous data replication support. The algorithm does not support optimal
performance solutions, as it only focuses on WAN traffic and searches for a “relative
good”, cost effective and simple solution. Alternative algorithms supporting different
data replication schemes and LAN traffic minimization are also supported [20, 21].
Each supported algorithm has an Activation_Factor, indicating activation order. Most
simple algorithms are first applied. If the proposed solution does not satisfy
application requirements, more complex algorithms are tested resulting in more costly
solutions. Activation_Factor in each algorithm may be altered during system
reconfiguration.

2.3 Physical Topology Definition

At the stage of physical topology definition, the network topology is designed.
Network topology design is performed progressively. Since a network must be
designed for each location, location refinement leads to a more detailed description of
the network architecture. At each level of detail, the network architecture is formed
by connections between locations of the specific level. For example, the network
supporting the Building location is formed by network connections between all the
Floors belonging to that Building. IDIS supports physical topology design by
providing alternatives for network topology design and network configuration, but
does not indicate commercial solutions.

2.4 Performance Evaluation

To evaluate system performance, a discrete event simulation tool was used [22].
Simulation modeling is widely adopted in the computer network domain for
performance evaluation purposes. MODSIM simulation language [23] was used for
simulation purposes. Object-oriented modelling and pre-constructed model libraries
were employed to ensure efficiency of the simulation process [24]. Using simulation,
maximum, average and minimum values of all performance measurements can be
estimated. If the system requirements are not satisfied, logical and physical topologies
must be redesigned. System performance cannot be partially estimated, e.g. even if
only a small part of the overall architecture is altered, the entire system must be
simulated again to accurately estimate performance measurements. The completion of
the simulation phase is the most time consuming part of the overall design phase.
Thus, while redesigning an inefficient architecture, all possible changes will be
examined before the simulation process is reactivated.

3 Web-based Application Representation Scheme

Web-based application functionality is represented using the modelling scheme
presented in [22]. Main features of the modelling scheme are modularity,
extendibility and wide applicability. It facilitates accuracy in distributed application
description using a multi-layer action hierarchy. Actions indicate autonomous
operations describing a specific service. The main goals of this modelling method are:
a. to facilitate the complete description of application functionality in a simple way
and b. to ensure the detailed depiction of application requirements. The modelling
framework supports multi-tiered client/server models and can be easily extended to
support customized applications.

Applications are modelled as sets of interacting processes. The specific interfaces,
acting as process activation mechanisms must be defined for each process, along with
the operation scenario that corresponds to the invocation of each interface. Each
operation scenario comprises the actions that occur upon process activation. User
behaviour is modelled through user profiles. Each profile includes user requests
resulting in application invocation through the Web platform. Actions are described
by qualitative and quantitative parameters, e.g. the processes being involved and the
amount of data sent and received. In most cases, the operation scenario is executed
sequentially (each action is performed when the previous one has completed).
However, there are cases where actions must be performed concurrently. This is
supported through specifying groups of actions that have common sequence number.
The basic actions used to define operation scenarios are: processing indicating data
processing, request indicating invocation of a server process, write/read indicating
data storage/retrieval, transfer indicating data transfer between processes and
synchronise indicating replica synchronization.

Actions can be either elementary or of higher layer. In the latter case, they are
decomposed into elementary ones. While processing is an elementary action, write
can be expressed through simpler ones, i.e. a process and a request sent to a File
Server. All actions can be ultimately expressed through the three elementary ones,
processing, network and diskIO, each indicating invocation of the corresponding
infrastructure component. Action decomposition is performed through intermediate
stages to simplify the overall process and maintain relative data. Action
decomposition hierarchy ensures consistency, reduces complexity and enables
following a common predefined decomposition mechanism. The most promising
feature of this scheme is that the action hierarchy can be further extended to include
new actions, placed at the highest layer. Definition of new actions is based on
existing ones to ensure consistency during action decomposition.

In order to support Web-based applications, the action hierarchy presented in [22]
was extended to include Web-related actions. These actions are used to easily
describe operation scenarios corresponding to Web server and Web client
functionality in the model depicted in figure 1. They include:

• Get/put page: indicating retrieving/storing an HTML/XML page
• Post: indicating form/field passing on an HTML/XML page
• Get applet: indicating applet download
• Applet: indicating applet activation
• CGI: indicating a cgi program activation
• Invoke Program: indicating active program invocation
• Handle/Retrieve context file: indicating context file creation or modification/

retrieval of context file data
• HTTP request/reply: indicating send request/reply protocol implemented to

support HTTP protocol

The first three are usually used to describe Web client functionality, the following
three Web server functionality and the last one HTTP protocol functionality. While
all others are used for operation scenario description, the last ones are intermediate
actions accurately depicting HTTP internal functionality. The functionality of
external application servers can be depicted by further extending action hierarchy to
support application specific operations. Web related actions hierarchy is depicted in
figure 3.

Request

send
request

Layer 2

Layer 1

Layer 0

Write Read Synchonize

Activate
Operation
Scenario

ProcessingDiskIO

Transfer

Network

reply

HTTP
send request

HTTP
reply

Invoke
Program

CGI

Post

HTTP
Request

H/R
Context File

Applet

Get/Put
Page

Get Applet

Figure 3. Action Decomposition Hierarchy

Dotted rectangles represent intermediate actions, while gray rectangles represent
elementary ones. Finally, rectangles with black border represent application actions
used when defining operation scenarios. Web related actions are indicated using
italics. The request action is used to depict process invocation and is further
decomposed into send request, activate operation scenario and reply actions.
Although not indicated in the figure, the activate operation scenario action may result
in the invocation of any action included in application description. The http request

action depicts the request functionality as it is implemented by HTTP protocol and it
is used in the decomposition of application actions describing Web client
functionality. Many application actions, as read/write or get/put page, actually
represent the invocation of the corresponding server interface, and are decomposed
into a request or http request action. This type of actions is supported to simplify the
description of operation scenarios, since they are described using less parameters that
the corresponding request actions. Furthermore they make server invocation
transparent to the user, when describing client operation.

The user may further extend action hierarchy to describe external application
functionality. When defining a new action, the user must specify its parameters and
the actions used to describe it. During action decomposition, all parameters of the
invoked action must be defined. In order to avoid knowledge inconsistency, the user
ability to add actions is restricted.

4 Conclusions

Web-based systems provide a standard platform for the development of a wide range
of applications. They extend to multiple sites and are characterized by internal
complexity. Thus, their configuration is not a trivial task. We proposed a systematic
approach for the configuration, modification and performance evaluation of web-
based systems. During system design, NP-complete problems, such as resource
allocation and network configuration must be solved. The proposed approach
employs knowledge-based techniques and heuristics for providing solutions.
Simulation is the performance evaluation of the proposed solutions. Emphasis is
given on the extendable modelling scheme used to depict web-based application
functionality and estimate application requirements. Future work focuses on the
support of web-based multimedia and real time applications.

References

1. Serain, D.: Middleware. Springer-Verlag, London, Great Britain (1999)
2. Reeser, R., Hariharan, R.: Analytic Model of Web Servers in Distributed Environments.

In: Proceedings of the ACM 2000 International Workshop on Software and Performance.
ACM Computer Press (2000)

3. Shedletsky, J., Rofrano, J.: Application Reference Designs for Distributed Systems. IBM
System Journal 32(4) (1993)

4. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed Systems - Concepts and Design.
3rd edn. Addison Wesley Publishing Company (2000))

5. Arlitt, M.F., Williamson, C.L.: Internet Web Servers: Workload Characterization and
Performance Implications. IEEE/ACM Transactions on Networking 5(5) (1997)

6. Barford, P., Crovella, M.: A Performance Evaluation of Hyper Text Transfer Protocols.
In: Proceedings of the ACM 1999 International Conference on Measurement and
Modeling of Computer Systems. ACM Computer Press (1999)

7. Khoroshevsky V. D.: Modelling of Large-scale Distributed Computer Systems. In:
Proceedings of IMACS World Congress 1999. IMACS 6 (1999)

8. Juengst, W.E, Heinrich, M.: Using Resource Balancing to Configure Modular Systems.
IEEE Intelligent Systems 1(1) (1998)

9. Fleischanderl, G., Friedrich, G.F., et. al.: Configuring Large Systems Using Generative
Constraint Satisfaction. IEEE Intelligent Systems 1(1) (1998)

10. Nezlek, G.S., Hemant, K.J., Nazareth, D.L.: An Integrated Approach to Enterprise
Computing Architectures. Communications of the ACM 42(11) (1999)

11. Lee, S.J., Wu, C.H.: A Knowledged-based approach to the Local-Area Network Design
Problem. Applied Intelligence 4(1) (1994)

12. Dutta, A., Mitra, S.: Integrating Heuristic Knowledge and Optimization Models for
Communication-Network Design. IEEE Transactions on Knowledge and Data
Engineering 5(12) (1993)

13. Nikolaidou, M., Lelis, D., et. al: A Discipline Approach towards the Design of Distributed
Systems. IEE Distributed System Engineering Journal 2(2) (1995)

14. Kramer, J.: Configuration Programming - A Framework for the Development of
Distributed Systems. In: Proceedings of the Annual IEEE International Conference on
Computer Systems and Software Engineering. IEEE Computer Press (1990)

15. Buretta, M.: Data Replication: Tools and Techniques for Managing Distributed
Information. Wiley & Sons Inc., US (1997)

16. Morgan, H.L., Levin, K.D.: Optimal Program and Data Locations in Computer Networks.
Communications of ACM 20(5) (1977)

17. Jajodia, S.: Managing Replicated Files in Partitioned Distributed Database Systems. In:
Proceedings of IEEE International Conference on Data Engineering. IEEE Computer
Press (1987)

18. Awerbuch, B., Bartal, Y., Amos, F.: Competitive Distributed File Allocation. In:
Proceedings of ACM Annual Symposium on Theory of Computing. ACM Computer Press
(1992)

19. Litoiu, M., Rolia, J.: Object allocation for Distributed Applications with Complex
Workloads. In: TOOLS’2000. Lecture Notes on Computer Science, Vol 1786. Springer-
Verlag, Berlin Heidelberg New York (2000)

20. Tan, M., Siegel, H.J.: A Stochastic Model for Heterogeneous Computing and Its
Application in Data Relocation Scheme Development. IEEE Transactions on Parallel and
Distributed Computing 9(11) (1998)

21. Johnson, G., Singh, A.K.: Stable and Fault/tolerant Object Allocation. In: Proceeding of
ACM Annual Symposium on Principles on Distributed Computing. ACM Computer Press
(2000)

22. Nikolaidou, M., Anagnostopoulos, D.: An Application-Oriented Approach for Distributed
System Modeling. In: Proceedings of 21st IEEE International Conference on Distributed
Computing Systems. IEEE Computer Press (2001)

23. MODSIM III The Language of Object-Oriented Programming - Reference Manual. CACI
Products Company (1999)

24. Anagnostopoulos D.: An Object-Oriented Modeling Methodology for Dynamic Computer
Network Simulation. International Journal of Modeling and Simulation 21(4) (2001)

	Web-Based System Configuration and Performance Evaluation using a Knowledge-Based Methodology
	Mara Nikolaidou1, Dimosthenis Anagnostopoulos2
	Introduction
	Configuring Web-Based Systems
	
	
	
	
	Figure 2.Web-based Configuration Systematic Approach

	Functional Topology Definition
	Logical Topology Definition
	Physical Topology Definition
	Performance Evaluation

	Web-based Application Representation Scheme
	Conclusions
	References

