
European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

TOWARDS A STRUCTURED METHODOLOGY FOR EVENT-
BASED ENTERPRISE FUNCTIONALITY MODELLING

Nancy Alexopoulou, Department of Informatics and Telecommunications, University of
Athens, Greece nanci@di.uoa.gr

Mara Nikolaidou, Department of Informatics and Telematics, Harokopio University of
Athens, Greece mara@hua.gr

Vasiliki Mantzana, Department of Informatics and Telematics, Harokopio University of
Athens, Greece vasiliki.mantzana@hua.gr

Panagiotis Kanellis, Department of Informatics and Telecommunications, University of
Athens, Greece kanellis@di.uoa.gr

Drakoulis Martakos, Department of Informatics and Telecommunications, University of
Athens, Greece martakos@di.uoa.gr

Abstract
Business process agility has been recognized as a critical characteristic of modern enterprises that
should exhibit flexibility to change. Traditional business process modelling approaches, however, fall
short to provide the desired agility, especially regarding modifications during execution time or when
unpredicted events occur. To this end, we have proposed an event-based enterprise modeling that
enables on-the-fly business process execution; hence promotes business process agility. Event-based
modeling requires the identification of meaningful events and actions. As this is not a trivial task, the
objective of this paper is to present a structured methodology, named Actors-Actions-Events (AAE),
that can guide the designer towards identifying the events and actions depicting enterprise
functionality. The applicability of the AAE methodology is demonstrated through a simplified medical
example.

Keywords: event-based modelling, on-the-fly business process composition, event-driven business
processes.

1 INTRODUCTION

Nowadays, an increasing number of business processes are now conducted under the supervision of
information systems driven by explicit process models. Automatic coordination of business processes
has increased accuracy and efficiency in the execution of business processes (Marlon et al. 2005).
However, as organizational environments grew more and more dynamic, concrete business process
models executed by workflow engines proved to be inflexible to change, meaning that their
adjustment to new requirements was an arduous procedure requiring much time and money. As such,
business process agility was soon recognized as a critical feature for enterprises in the today volatile
era. To this end, numerous research endeavours were conducted, proposing methods or techniques that
could increase business process agility (ShuiGuang et al. 2004, Reichert & Dadam, 1998, Rinderle et
al., 2004, Mangan & Sadiq, 2002).

Most endeavors ensure agility to some extent but they cannot efficiently support agility at run time or
when unpredicted events occur that impose business process modifications. According to our point
view, this shortcoming stems from the fact that in most methodologies, business process logic is

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

1

mailto:nanci@di.uoa.gr
mailto:mara@hua.gr
mailto:vasiliki.mantzana@hua.gr
mailto:kanellis@di.uoa.gr
mailto:martakos@di.uoa.gr

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

organized in integral action sequences that are predetermined at design time. Defining actions strictly
within the context of a specific business process is an important reason for the restriction of the ability
to respond efficiently change. In contrast, we have proposed an event-based approach (Alexopoulou et
al. 2008) that it may prove more promising for the attainment of agility, as it enables the definition of
autonomous actions at design time that do not pertain to a specific business process. However, in order
to establish the applicability of such an approach, the identification of meaningful events and actions is
required. To this end, this paper presents our effort to develop a structured methodology that may
guide the designer in the application of the proposed event-based modeling approach.

The paper is organized as follows: Section 2 presents the basic concepts of the event-based description
of the enterprise functionality. The methodology is described in section 3, while in section 4 the
application of methodology is demonstrated through a simplified example taken from the medical
world. Finally, section 5 wraps up the paper with some concluding remarks and discussion regarding
future work.

2 EVENT-BASED DESCRIPTION OF ENTERPRISE FUNCTIONALITY

The fundamental concept in an event-driven organizational environment is that of event. An event is a
notable thing that happens inside or outside the enterprise (Michelson, 2006). Events are generated
either as a result of the completion of an action or because other events have happened. As such, an
event may either initiate an action, or cause another event, or both. The first case holds when the event
needs to be handled somehow, while if this is not the case, it may just cause the occurrence of another
event. Consider, for example, the event “Rain started”. This event may not necessarily require an
action to be taken. However, it may cause the event “The courtyard flooded”. The latter will probably
initiate the action “Remove water from the courtyard”. This example reveals that events can be
interrelated through causality relations. Although it presents a simple causality relation, there can be
more complex combinations among events. An event, for instance, may occur because two other
events happened, or because two events occurred and another did not. In such cases, the generated
event is referred as complex event (Luckham, 2002). The notion of specifying and utilizing
relationships (such as timing, causality, etc.) between events is included in Complex Event Processing
defined by Luckham (Luckham, 2002).

triggers

initiates
action event

 causes

Figure 1. The basic concepts of event-based business process modeling

According to our perspective, the basic concepts of modeling organizational functionality are depicted
in Figure 1. As indicated in Figure 1, an event may cause another event either directly or indirectly
through actions that it may initiate. The event-based logic may be applied for the development of a
design technique for business process modeling completely different from that indicated by the action-
centric approach.

In action-centric approaches, functionality is organized in specific units, i.e. actions, which are tightly
coupled in predefined sequences, i.e. business processes, depicting the flow of action execution. In
contrast, in event-based logic, emphasis is laid not only on actions but also on events initiating them as
well as on events triggered by them. Essentially, in action-centric approaches events are implied. The
sequential transition, for example, from an action to the next occurs after the first action has

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

2

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

completed, which implies a completion event signifying that the execution of the next action may
begin. Likewise, conditions imply the occurrence of specific events determining the action paths that
will be followed.

However, by explicitly modeling events and regarding them as separate entities, equally important to
actions, it is possible to control action execution, ensuring at the same time loose coupling between
actions. In fact, we consider each action as an autonomous unit being aware of only the events
initiating it as well as the events it triggers. In that sense, the notion of business process is eliminated;
the enterprise functionality is described in terms of autonomous actions, events and appropriate event
combinations. The flow of actions is determined at run time by the triggered events. As such, specific
event-action chains evolve during run time.

We believe that action independence promotes agility as it increases modularity in the way enterprise
functionality is modeled. Thus, changes concerning the rearrangement of action sequence or the
insertion/deletion of actions can be more efficiently accommodated. Furthermore, taking into
consideration that in practice people usually perform an action in response to an event occurrence, an
event-based approach seems more appropriate for modeling such human behavior, especially in case
of dynamic environments where contingencies often generate the need for human reaction through ad
hoc actions.

Figure 2. An enterprise interacting with its ecosystem through events

Actions are regarded as a primitive unit of functionality. As such, the direct identification of all actions
depicting the enterprise functionality would be an arduous and ineffective procedure. In action-centric
approaches, modeling usually starts from the identification of a business process as a black box which
is then hierarchically decomposed into subprocesses until primitive actions are identified. In an
analogous manner, to enhance the event-based modeling procedure, we have adopted a systemic
perspective of an enterprise. In specific, as other researchers that have adopted a systemic approach for
the description of an enterprise (Haeckel, 1999, Desai, 2005), we also consider an enterprise as a self-
sustained system with well-defined boundaries. These boundaries demarcate the enterprise within its
ecosystem, which comprises entities that interact with the enterprise such as, customers, suppliers,
partners, etc. This interaction is depicted using events. As such, the enterprise may both sense external
events from its ecosystem as well as diffuse to it internally generated events. These events are depicted
in figure 2 through dashed arrows crossing the enterprise boundaries. Due to this fact, we call them
boundary events. Boundary events may be either incoming or outgoing relative to the entrepreneurial
environment. The solid arrows represent events that are generated internally and observed only within
the enterprise.

An enterprise that is considered as a system may be analysed into subsystems characterized in an
abstract manner as units. Units may be logical or correspond to physical departments of the enterprise.
Each unit in turn may be further analysed into other units and so on. As such, an enterprise may be

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

3

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

ultimately decomposed to a unit hierarchy which in essence constitutes an allocation of the
organizational functionality. The functionality encompassed by atomic units i.e. units of the lowest
level that are not further decomposed is described through the definition of events, actions and their
interrelations.

Events coming from the ecosystem are propagated down to the unit hierarchy and ultimately initiate
actions. An external event may be propagated to more than one units of each level. Conversely the
events that are intended to be diffused in the ecosystem are propagated the other way round. It should
be noted that, equivalently, each unit identifies as its ecosystem the other units of the same level. As
such, events received/sent by a unit from/to units of the same level are regarded as boundary events to
the specific unit. While the hierarchical unit decomposition is different from the current trend of
enterprise modelling that dictates a process-oriented approach (Joao & Francisco, 2005), is not
however same as the older organizational hierarchies where the functions were distributed among
several departments in an isolated manner, as in our approach, units may be both physical and logical
and also are not modelled in isolation. On the contrary, interactions between units are explicitly
modelled through boundary events. Furthermore, the unit hierarchy is essentially conceptual. Its role
is to help the designer identify the events and actions that need to be modeled as it would not be
possible for him/her to effectively conceptualize the whole entrepreneurial functionality directly
through actions and events which constitute a low-level modeling. The definition of unit hierarchy
breaks down the functionality range into smaller units that can be more easily manipulated and thus
conceptualized through events and actions. The event-action chains cross unit limits and have an
enterprise-wide spectrum, just as the business processes. The difference however is that business
processes are predefined at build time, while event-action chains are formed during execution time and
therefore better support agility.

3 A STRUCTURED METHODOLOGY FOR EVENT-BASED ENTERPRISE
FUNCTIONALITY MODELLING

In an event-based approach, the identification of the meaningful events and invoked actions is a
critical issue. However distinguishing the events affecting the function of the enterprise from a chaotic
event cloud is a tough and possibly ineffective process. An indirect way therefore to identify events
more effectively is through action modeling, which includes the definition of the events initiating the
actions as well as the events triggered by the actions. In that sense, action modeling can guide the
designer in the event identification. The problem then is transferred to action identification. For the
detection of actions, an actor-oriented approach is used. We suggest that actors should be identified
initially. As enterprise is viewed as a system, actors constitute an intrinsic part of the latter and are
actually those that provide its functionality. Therefore actors constitute a very good source for
information gathering regarding the tasks performed in the enterprise. Besides, actors are a more
concrete concept than actions let alone events and thus are more easily identifiable. In doing so, the
modeler will better understand actors’ actions and will therefore support action identification and thus
enterprise functionality modeling.

Consequently, we propose that actors should be initially identified which can lead to action and then
event identifications; hence the proposed methodology has been named Actors-Actions-Events (AAE).
AAE methodology for event-based enterprise functionality modeling is grounded on the literature and
consists of four phases which are presented in the following paragraphs.

Phase 1: Actor Identification

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

4

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

Actors are the user categories responsible for accomplishing the required tasks in a company. A
plethora of researchers have focused on the issue of actor identification. As such, there are various
methodologies proposed in the literature appropriate for actor identification (Mantzana et al., 2007,
Pouloudi & Whitley, 1997). AAE does not specify the employment of a specific methodology or a
specific list of actors, as both depend on the specific context and timeframe (Mantzana et al., 2007).
Therefore, the decision is left to the modeler.
Phase 2: Unit Hierarchy Construction and Action Identification
Each actor may describe his/her everyday responsibilities. Based on these descriptions, both, units of
functionality as well as primitive actions of each atomic unit may be deduced. Boundary events for the
whole enterprise system as well as for each unit are also identified. Boundary event identification may
be further refined during the next two phases.
Phase 3: Action Modeling
Each action identified in the previous phase is modeled separately as an autonomous unit and not as
part of a business process. The modeling constituents of an action, depicted in figure 3, are described
in the following:
1) Action is initiated when an event occurs. We define an event type called “Ready for Action X” that

is used to initiate action X, where X is the id of the action being modelled (A1 in figure 3). In fact,
this is a conceptual event introduced in order to aggregate a number of real events which are those
that actually initiate the action. Defining conceptual events to aggregate actual ones is a basic
concept in complex event processing (Luckham, 2002). Through the conceptual events, complexity
is hidden within events. Action does not need to be aware of complicated event combinations that
cause its execution. Even if it is only one event, e.g. E10, invoking an action, e.g. A1, we still
employ the event “Ready for Action A1”. Thus we define the relations E10 →“Ready for Action
A1” and “Ready for Action A1”→A1 instead of the relation E10 → A1. Through this approach, any
modification involving the actual events initiating an action is again hidden among events, as
action A1 for example will be constantly initiated by the event “Ready for Action A1”, even if
modifications in the enterprise functionality impose the latter to be caused by a new event and no
longer by E10.

2) An action triggers one or more events upon its completion. For these events appropriate constraints
have to be defined regarding the way they can be triggered.

3) An action requires specific data in order to be executed, i.e. input data, while during its execution,
it produces output data.

4) An action is performed by a specific category of users represented by an actor, e.g. a doctor, a
secretary etc.

Ready
For A1

Action A1
E1

 E2

Input
Data

Output

Figure 3. Constituents of action definition

Phase 4: Definition of Event Interrelations
Action modelling produces a number of events that are defined in respect to the action they initiate or
the action that are triggered by. The next step involves specifying the interrelations among the defined

Data En

. . .

 Actor

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

5

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

events. These interrelations determine the flow of actions at run time. The simplest way to relate
events is through the causality relation, e.g. event E1 causes event E2. More complex causality
relations may be constructed between events using logical operators such as, AND, OR, NOT, as
shown in Table 1.

The simple causality relation may be used to express event chains. An event chain would be for
example E1→E2→E3, which means that event E1 causes event E2 and event E2 in turn causes event E3.
Obviously, in this case, event sequence matters. If this is not the case, events can be related using an
AND relationship. A specialization of this case is when an action is invoked after an event has
occurred a specific number of times. This case corresponds to multiple identical events being related
through an AND relationship. If action A can be invoked either by event E1 or event E2, this would
signify an OR relation. Practically, in an OR relation, the action caused will be initiated by the event
that will happen first. However, it is critical that events that will occur later will be ignored, and thus
will not re-invoke the action, as this would lead to an erroneous business process execution. In case
the events that occur later are not to be ignored and rather produce an error, an XOR relation must be
used instead of OR. An XOR relation dictates that only one of a set of events can occur.

 Event Relations Description
E1→E2 (timing relation) E1 happens before E2
E1→E2 (causality relation) E1 causes E2

E3 is caused by the combination of
E1 and E2 through Logical Operators
(LO), i.e. AND, OR, NOT, XOR.

 E1 LO E2 → E3

Table 1. Combining events to produce complex events

Causality implies a timing relation, i.e. the caused event happens after the event causing it. However, a
timing relation may not necessarily include the notion of causality. The fact that E1 for example
happens before E2 does not necessarily mean that E1 causes E2. Timing relations may impose
constraints between events such as that event E1 for example must occur exactly after a four minutes
lapse from the occurrence of event E2 or that E2 will occur in less than two hours after the occurrence
of event E1.

It should be noted that the above four stages are performed sequentially but not in isolation. This
means that the designer may for example discover at the end of phase 4 that some actions need to be
reconsidered and thus return to phase 3.

The definition of actions and event interrelations indirectly produces a number of possible event-
action chains. With the support of an appropriate modelling tool, all possible event-action chains can
be generated automatically. Such a capability is necessary as, according to the proposed approach, the
modeller does not directly build process chains. However, by being offered the capability to view the
generated process chains, the modeller can get a whole picture of the way actions are orchestrated to
cooperatively offer the required functionality. Moreover, the modeller may view information flow and
perhaps identify process discontinuities or other errors that will make him/her reconsider the currently
modelled actions and/or event interrelations.

4 DEMONSTRATING THE PROPOSED MODELLING METHODOLOGY
THROUGH A SIMPLIFIED MEDICAL EXAMPLE

Medical processes are a typical example of volatile processes. Due to their nature, they are

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

6

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

characterized by high variability expressed by modifications in patient management and treatment, as
well as by frequently arising emergencies which prevent the execution of regular steps. Following, we
provide a simplified system view of a hospital.

Phase 1: Actor Identification
As this demonstration is based on a healthcare organization, the authors decided to use IGOHcaps
method proposed by Mantzana et al. (Mantzana et al., 2007). Using this method, a list of actors could
be identified, such as doctors, managers, medical secretaries, patients, nurses, suppliers etc. However,
in this paper we focus only on doctors and secretaries as (a) this is not a real case but an example and
(b) its not our intention to perform an exhaustive identification of all actions and events of a hospital
but merely to demonstrate our structured method.

Phase 2: Unit Hierarchy Construction and Action Identification
Based on the actors’ responsibilities, the overall hospital functionality may be grouped as indicated by
the unit decomposition presented in figures 4 to 7. Figure 4 illustrates the hospital as a system
comprising four units, namely the Inpatient Clinic, the Emergency Department, the Laboratories and
the Imaging Department. The arrival of a patient constitutes an incoming boundary event for the
hospital, while when a hospitalized patient is discharged, an outgoing boundary event is generated.

Figure 4. A systemic perspective of a hospital

Patients usually arrive at the hospital’s Emergency Department, where they get examined and it is
decided whether they need to be hospitalized. If this is the case, the patients are admitted to the
Inpatient Clinic. During the patient’s hospitalization, a number of laboratory and imaging
examinations are performed. Units and boundary events are presented in figure 5. The obvious
coupling between events in figure 5 denotes the way the identified units intercommunicate. The actors
presented in figure 4 also pertain to each of the four units but for simplification reasons they have been
eliminated from each unit in figure 5.

Inpatient Clinic Patient Discharge Patient

Figure 5. Boundary events for hospital’s units

Figure 6. Decomposition of Inpatient Clinic unit

To demonstrate our modeling approach, we choose to further analyze the Inpatient Clinic unit. As
shown in figure 6, this unit includes two other subunits that are regarded atomic, namely Patient

Patient
Arrived

Emergency
Department

 Patient Admitted

 Patient Discharge
Admitted

Laboratory Examinations Completed

Imaging Examinations Completed Imaging Examinations Requested

 Laboratory Examinations Requested

 Laboratories
Laboratory Examinations

Completed
Laboratory Examinations

Requested
Imaging

Department
Imaging

 Examinations
Completed

Imaging
Examinations

Requested

Patient
Arrived

Patient
Discharge

Inpatient Clinic Emergency Department

Hospital

Laboratories Imaging Department

 Doctor

 Medical
Secretary

 Laboratory Examinations Required

Patient
Admission

Patient
Treatment Patient Discharge Patient Admitted

 Imaging Examinations RequestedImaging Examinations Completed

Laboratory Examinations Completed

 Doctor
 Medical Secretary

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

7

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

Admission and Patient Treatment, whose boundary events are presented in figure 7. Note that as
opposed to the units of the first level (figure 4), which may exist in reality, the subunits encompassed
in Inpatient Clinic unit constitute rather a logical functionality grouping. From figures 4, 5, 6 and 7, it
can be deduced how events are propagated from the first level to the lowest and the other way round.

Figure 7. Boundary events of Patient Admission and Patient Treatment units

Based on actors’ everyday tasks a number of primitive actions may be identified. Regarding patient
admission, for example, the tasks performed by doctors and medical secretaries include Ward and Bed
Allocation, Patient File Creation, Performance of Clinical Examination, Findings Assessment,
Medical Treatment Specification, and Specialist Consultation. These six actions are appropriately
modeled in the subsequent phase.

Phase 3: Action Modeling

Figure 8. Modeling the identified actions of Patient Admission

E1 Ready
For A1

A1: Allocate Ward and
Bed

Patient
Data

Bed
Allocation
Number

 Medical
Secretary

E1: Ward and Bed Allocation Completed

E2 Ready
For A2

A2: Create Patient File

Patient
Data and Bed

Allocation
Number

Patient
File

 Medical
Secretary

 E2: Patient File Creation Completed

Ready
For A3

A3: Perform Clinical
Examination

E3

Patient
File

Patient
File

 Doctor

E3: Clinical Examination Completed
E30: Laboratory Examinations Requested
E31: Imaging Examinations Requested

E30

E31

 Doctor

Ready
For A4

E4

Patient
File

E4: Findings Assessment Completed
E20: Diagnosis Feasible
E21: Diagnosis not Feasible

E20
E21

A4: Assess Findings to
Establish a Running

Diagnosis

Patient
File

Ready
For A6

A6: Consult a Specialist E6

Patient
File

Patient
File

 Doctor

 E6: Specialist Consultation Completed
 Doctor

Ready
For A5

A5: Specify Medical
Treatment

E5

Patient
File

Patient
File

E5: Medical Treatment Specification Completed

Patient
Admission Medical TrePa atment Specified tient Admitted

Laboratory Examinations
Completed

Imaging Examinations
Completed Imaging Examinations Requested

Laboratory Examinations
Requested

Patient
Treatment Patient Discharge

Medical
Treatment Specified
boratory aminations

ted

Imaging Examinations
Completed

Imaging Examinations
ReLa Ex

Comple
quested

 Laboratory Examinations
Requested

 Doctor Medical Secretary

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

8

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

Based on the information gathered from the previous phase, the identified actions can be modeled as
illustrated in figure 8. Figure 8 does not include the constraints that should be defined between the
triggered events. Regarding action “A3: Perform Clinical Examination”, for example, an AND
constraint should be defined among events “E3: Clinical Examinations Completed”, “E30: Laboratory
Examinations Requested” and “E31: Imaging Examinations Requested” as when a patient is admitted,
he/she always submitted to a number of basic laboratory and imaging examinations. Concerning action
“A4: Assess Findings to Establish” a Running Diagnosis it triggers the events “E4: Findings
Assessment Completed”, “E20: Diagnosis Feasible” and “E20: Diagnosis not Feasible”. The constraint
defined for these events may be expressed by the logical expression (E4 AND E20) XOR (E4 AND E21).

Phase 4: Defining Event Interrelations
Event interrelations are depicted in figure 9. The solid line is used to denote an AND relation. It is
clear that no arrow ends in an incoming boundary event and likewise no arrow starts from an outgoing
boundary event.

 IBE1: Patient Admitted IBE2: Laboratory Examinations Completed IBE3: Imaging Examinations Completed
 OBE1: Medical Treatment Specified OBE2: Laboratory Examinations Requested OBE3: Imaging Examinations Requested

Figure 9. Defining event interrelations

It should be noted that event “E31: Imaging Examinations Requested” for example, semantically could
be a boundary event itself. However, to ensure independence of boundary-specific information in
action modeling, E31 is not defined as an outgoing boundary event. Rather, it invokes “OBE3: Imaging
Examinations Requested”, which is the one considered an outgoing boundary event. In this way,
changes in subsystem boundaries will not necessarily affect action definition.

Event interrelations presented in figure 9 may produce two possible event-action chains during run
time (figure 10). For simplicity reasons “Ready for A” events can be eliminated from the
representation of event-action chains as they do not offer any essential information regarding the
action flow. The event-action chain depicted in part (a) of figure 10 is described as follows. When a
patient is admitted to a hospital clinic, he/she is allocated to a bed in a specific ward and then a patient
file is created to keep all relative medical information. After that, a clinical examination is performed
and then the findings are assessed, which lead to the establishment of a running diagnosis. As a result,
a medical treatment is subsequently specified. In event-action chain depicted in part (b) the
differentiation is that the running diagnosis is not feasible. Therefore, a specialist’s consultation is
acquired and then, according to his/her diagnosis, the medical treatment is specified.

As these chains are constructed on-the-fly during execution time and each action is an autonomous
unit, how can the action instances referring to the same patient be correlated? To find a way to trace
actions of the same process instance, yet without obliterating their independence, we considered the

E1

Ready
For A6 Ready

For A

5

Ready
For A4

E21

Ready
For A2 Ready

For A3

Ready
For A1

IBE1

OBE1

E3

E4
E20

E6

OBE2

E30

OBE3

E2 En

IBE2 E5

IBE3

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

9

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

analogy from the real world. In reality, two actions are associated through the common data they refer
to. Instances of actions “A3: Perform Clinical Examinations” and “A4: Assess Findings to Establish a
Running Diagnosis”, for example, are associated if they refer to the same patient. To this end, actions
are related to data structures containing specific patient information. As the reference to this data
structure should be propagated to the related actions, we assume in our approach that this is
accomplished by the events. As such, events encompass also information regarding data location
which they pass to the actions they initiate.

 (a)

IBE1 A1 E1

E4

E3

OBE1

A2 E2 A3 A4

A5

E20

E5

IBE3 IBE2
OBE2 OBE3

E31
E30

A1: Allocate Ward and Bed A4: Assess Findings to Establish a Running Diagnosis
A2: Create Patient File A5: Specify Medical Treatment
A3: Perform Clinical Examination A6: Consult a Specialist

E1: Ward and Bed Allocation Completed
E2: Patient File Creation Completed
E3: Clinical Examination Completed
E30: Laboratory Examinations Requested
E31: Imaging Examinations Requested

(b)

IBE1 A1 E1

E4

E3

OBE1

A2 E2 A4

A5

E21

E5
A6 E6

IBE3 IBE2
OBE2 OBE3

E31
E30

A3

E4: Findings Assessment Completed
E20: Diagnosis Feasible
E21: Diagnosis not Feasible
E6: Specialist Consultation Completed
E5: Medical Treatment Specification Completed

Figure 10. The possible event-action chains regarding patient admission

Lastly, it should be noted, that the differentiation between the event-chains depicted in figure10 lies in
an implied condition, which checks whether a running diagnosis is feasible after the findings
assessment. In our approach, conditions are implicitly modeled through the definition of two opposite
events, namely, “E20: Diagnosis Feasible” and “E21: Diagnosis not Feasible”. Each is combined with
event “E4: Findings Assessment Completed” (see figure 9) to initiate a different action. This indirect
expression of conditions through opposite events that is introduced in this paper constitutes an Event-
Action (EA) approach which is in contrast to Event-Condition-Action (ECA) approach (Dayal et al.,
1990) originally applied within the active database community (Widom & Ceri, 1996, Paton & Diaz,
1999). In ECA model, when an event occurs, the condition is evaluated. If the condition is satisfied,
the action is executed. ECA is a well-established and extensively applied concept in business process
modeling and workflow approaches (Jan et al., 2006, Chen et al., 2006 and Bae et al., 2004). While
ECA model is more expressive, we propose however EA model, since it may prove more efficient
regarding business process agility. As EA model is based on only two entity types (event-actions)
combined in autonomous pairs, it is characterized by higher homogeneity and less complicated
structures than those combining event and actions through conditions. Apparently, changes are more
easily performed in simpler structures. Moreover, the incorporation of business rules - expressed in
ECA by conditions - within event processing, simplifies the way events and actions are interrelated.
This leads to a more straightforward modeling procedure.

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

10

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

5 CONCLUSIONS

Efficient response to change may be attained through the adoption of an event-based modelling
approach for enterprise functionality. To effectively applying such an approach, designers should be
guided by an appropriate methodology. To this end, a structured methodology, called AAE, has been
proposed in this paper. AAE facilitates the detection of events and actions starting from the
identification of the actors operating within the enterprise.

AAE methodology makes an important contribution at both practical and conceptual level. At a
practical level, it contributes towards a deeper understanding and simplification of the modelling
process. At the conceptual level, it constitutes an efficient way for action and event identification that
is required in an event-based approach. AAE increases the level of the analysis and provides a more
detailed and systematic study of the event-based modelling. Moreover, it supports managers, designers
and researchers in (a) understanding the importance and effect of actors, actions and events and (b)
modelling actors, events and actions in a consistent manner. Consequently, it is suggested that this
methodology might speed up and simplify the modelling process.

Future work includes testing the presented methodology by applying it in the practical arena.
Subsequently, after further exploring implementation issues, we plan to develop an infrastructure
based on the conceptual architecture proposed in (Alexopoulou et al., 2008) that will support the
execution of event-driven processes.

References
Alexopoulou Nancy, Nikolaidou Mara, Chamodrakas Yannis, Martakos Drakoulis, 2008. ‘Enabling

On-the-fly Business Process Composition through an Event-based Approach’, Proceedings of the
41th Hawaii International Conference On System Sciences (HICSS 2008), Big Island – Hawaii, Jan
7-10, 2008.

Bae Joonsoo, Bae Hyerim, Kang Suk-Ho and Kim Yeongho, 2004. ‘Automatic Control of Workflow
Processes Using ECA Rules’. IEEE Transactions On Knowledge And Data Engineering, Vol. 16,
No. 8, pp. 1010–1023.

Chen Lin, Li Minglu and Cao Jian, 2006. ‘ECA Rule-Based Workflow Modeling and Implementation
for Service Composition’. IEICE TRANS. INF. & SYST., Vol. E89-D, No. 2, pp. 624–630.

Dayal U., Hsu M., and Ladin R., 1990. ‘Organizing Long-Running Activities with Triggers and
Transactions’. Proceedings of ACM International Conference on Management of Data (SIGMOD),
pp. 204-214.

Desai Anand, 2005. ‘Adaptive Complex Enterprises’. Communications of the ACM, Vol. 48, No. 5,
pp.32-35.

Haeckel, S. H., 1999. ‘Adaptive Enterprise: Creating and Leading Sense-and-Respond Organizations’.
Harvard Business School Press, Boston.

Joao M. Fernandes and Francisco J. Duarte, 2005. ‘A reference framework for process-oriented
software development organizations’. Software Systems Model, Vol. 4, pp. 94-105.

Jang Julian, Fekete Alan, Greenfield Paul, Nepal Surya, 2006. ‘An Event-Driven Workflow Engine
for Service-based Business Systems’, Proceedings of the 10th IEEE International EDOC
Conference (EDOC), Hong Kong, October 16-20, 2006.

Luckham David, 2002. ‘The Power of Events’. Addison-Wesley.
Mangan Peter and Sadiq Shazia, 2002. ‘On Building Workflow Models for Flexible Processes’. 13th

Australasian Database Conference (ADC2002), Melbourne, Australia. Vol. 5.

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

11

European and Mediterranean Conference on Information Systems 2008 (EMCIS2008)

May 25-26 2008, Al Bustan Rotana Hotel, Dubai

Mangana V., Themistocleous M., Irani Z and Morabito V., 2007. ‘Identifying HealthCare Actors

Involved in the Adoption of Information Systems’. European Journal of Information Systems,
16(01), pp.91-102.

Marlon Dumas, Wil Van Der Aalst, Arthur H. M. Ter Hofstede, 2005. ‘Process-Aware Information
Systems’. John Wiley & Sons INC.

Michelson M. Brenda, 2006. ‘Event-driven Architecture Overview’. Patricia Seybold Group.
http://dx.doi.org/10.1571/bda2-2-06cc.

Paton N. W. and Diaz O., 1999. ‘Active Database Systems’. ACM Computing Surveys, Vol. 31, No. 1,
pp. 63–103.

Pouloudi A. and Whitley E. A., 1997. ‘Stakeholder Identification in Interorganizational Systems:
Gaining Insights for Drug Use Management Systems’, European Journal of Information systems
6(1), pp.1-14.

Reichert, M.; Dadam, P., 1998. ‘ADEPTflex – supporting dynamic changes of workflows without
losing control’. Journal of Intelligent Information Systems, 10, pp. 93-129

ShuiGuang, D., Zhen, Y., ZhaoHui, W., LiCan, H. 2004. ‘Enhancement of Workflow Flexibility by
Composing Activities at Run-time’. Proceedings of the ACM Symposium on Applied Computing,
pp. 667-673.

Rinderle Stefanie, Reichert Manfred, and Dadam Peter, 2004. ‘On Dealing with Structural Conflicts
between Process Type and Instance Changes’. BPM 2004, pp. 274–289.

Widom J. and Ceri S., 1996. ‘Active Database Systems: Triggers and Rules For Advanced Database
Processing’. Morgan Kaufmann.

Nancy Alexopoulou et al.

Towards a Structured Methodology for Event-Based Enterprise Functionality Modelling

12

	1 INTRODUCTION
	2 EVENT-BASED DESCRIPTION OF ENTERPRISE FUNCTIONALITY
	3 A STRUCTURED METHODOLOGY FOR EVENT-BASED ENTERPRISE FUNCTIONALITY MODELLING
	4 DEMONSTRATING THE PROPOSED MODELLING METHODOLOGY THROUGH A SIMPLIFIED MEDICAL EXAMPLE
	5 CONCLUSIONS

