

Modeling and Simulation of Object Based Software Systems

Design and Validation of Object Oriented Software Via Model Integration

A. Rasse, J-M. Perronne, B. Thirion

ASSESSING THE MODIFIABILITY OF TWO OBJECT-ORIENTED DESIGN
ALTERNATIVES – A CONTROLLED EXPERIMENT REPLICATION

Ignatios Deligiannis, Panagiotis Sfetsos, Ioannis Stamelos, Lefteris Angelis, Alexandros Xatzigeorgiou,
Panagiotis Katsaros

Transparent Modelling Of Objects’ Evolution

Dimitrios Theotokis, Anya Sotiropoulou, Georgios Gyftodimos

SIMULATION METAMODELING FOR THE DESIGN OF RELIABLE OBJECT
BASED SYSTEMS

Panagiotis Katsaros, Lefteris Angelis, Constantine Lazos

AN RT-UML MODEL FOR BUILDING FASTER-THAN-REAL-TIME SIMULATORS

Dimosthenis Anagnostopoulos, Vassilis Dalakas, Georgios-Dimitrios Kapos, Mara Nikolaidou

� �

�����������	�
������������������������������ ����

	�������
�������������
�

�
���������	
�������������������

�
������������������������������

������ �� !����"���#$�����%�$���&'()*���+������,�"�-��.��/��
0��������1%�����������������23����#�

�

�

���������
�
4�������������/�����5�/�%�+�-�������#�6���"�7�+��%������"�%��������/����7����/�%����"�##�/�+��

���8������������#�����/���������/����"�����5�������/����#����#�6���"���5��6��/������5���������

"�##�����"���5�����������������#��"�%��������������������%��#�����������������6��/������������
/������������/������"����%�"�+�������5������������"�7�+��%�����#�7�+�"���"����+�/��������.�%�

����������	
��������� �����/����+����������������������
��	���	
����6��/��/�������-�+����"�6����

�-�����5�%�"�+�/��/8��5����+�� ��"����/�#�/� ����������	���	
���� 6��/��/��#�%��������7�+�"���"�
%�"�+����
�

�

����������
�

9�1�/��9�����"���"�+��5���������"�+�����#�%���������"�+�,��/8��5��4���5����������
�

�

�

�� �������������
�

��"�+��5� /����+� ��#�6��� �����%�� ���� ��/�%�� %��� ��"� %��� "�##�/�+�� "��� ��� ����� ��/�����5�

/�%�+�-���������++�6�����"�7�+��%�����#��+���+�����+�/����������/��/�%�+�-����%�������/����++�"�
��"�"���5���//��/��%������������"�����++�+�7�+������������%����9�1�/��9�����"�%����"������"����

�����+�������������+�������"�����"������/�%�+�-������"����%�8������"���5����/����������:;<��4�������

���� ��"�����+�� �"7����5�� ��� ��%�� �#� ��"�/��7���� ��"� ����++�5���+����� ���� �//���/�� �#� �%�5��5�

����7����%�8����+���+����#�6�����"�/�����/�%�+�/���"������������/�%�����/���������/��/8���"�
7�+�"����������#�6��������%��%�"�+�"���������6�������/�������#��+����%�����7���/���%�/��%�����+���

��%���/����=���/�������������#������/��������������"�/��%���#�%�+�����/�����"���%����/�������

����������
��	
���������������>���?�: (<����/�#�/�������#������%��:@�'� <�����++�6������7�+�"�������
���/��9�1�/��9�����"�/��/�������"�%�"�+�/��/8��5���/���=������7��%����"����������/�%��5�������+��

��������+������"���5�������/������"����%�"�+�"�7�����5������5�������+����"������/��"����"�����

����/�%�����������"�����#�%�������#�%�"�+�����%�8��/��/8��5���"��+���+���%�+�%���������������+���
>#�5��� ?���

�

�

�
�

�
�

�

�
�

�

�

#�5��� A�,��/�����+���������������#����������/��������"�

�

� �������� �!"���
��

	�#"$�!"��� �$%#�
��

�Process = Local_Process0,
Local_ Process 0= (ac tion1 ���� Local_ Processn),
Local_Processn = (ac tionn ���� Local_ Process 0).�

� �

� &#% %�!�!"��� �$%#�
��

��

�������� �!"���

��'%�%�!�
��

�&&���('�
��

�)%(*!"���

�&%("�"(�&#�!��� ���$%#�('%(+%��
��

�'%(+"�,�
��
��

publ ic stat ic vo id main (String args[])�
{�
 �…�

 �}�
��

���#-�"�� �$%#�

� �

�

�

����������������/��/���������#�#�7������A�

− �����1�/��������"����+��������6��/���������/���+�����/�����"�7�"�"�������6��/��/�����+�+�7�+�A�����
����/����1�/�����"���������7���+���1�/�����������7�"�������%�+��%���������"����#�����������+����
�

��� "�����/�� /+������
� ���� ��������� �#� �� "�%���� ��"� ���� ����7���� ���+��"� ��� ������ ���������� ����

�����/�������"��5�����������#���������7�����������"�����5�������%�"�+��5���/����%�8�����%�
�����������"�����"���"����/�#����

− ��%�"�+��#�����"���%�/�����/����������: (<�������/��������/�%%��+�����"����%�"�+�������/��7��

����7�����#�%�"�+�����6�7��������5�����������������"�����5�����/���+�%�"�+��5��++�6������
�����#���%�+���%�����/����#�%�+��%�������#������������%�/�����������������������������������

���/�������#�%�++����������7��������/����"�6������/������7����+�/+�����

− ������/�+��/��#�5��������#����������%�����"�������������������/�#�/�����7�����=���"��

− ����7�+�"�������#���������7���+�%�"�+��������"���+��������#������������%�/�������������+���"�
�������/���� �+5����/�++�"������� ���� ��	������� >.��?� :@<�������+��"����� �� 7�+�"������ %�"�+�

6��/��/�������-�+����"�6��������������
��������	�����������������>����?�%�"�+�/��/8��5����+�

:@<��
− �%�+�%���������6��/���5����6�����������/�#�/������������������%��������������������������+������

�#� ���� 7�+�"���"� %�"�+� ����"� ��� ���� �/���5� ���� �#� "���5�� �������� :B<� ��� ������ �+���+��

�%�+�%�����������
�

�������������"�7�"�"������#�������������#�������������������������5��-�%�+���#���+�55�"������

6��/��6�++�������"�#������������������/���������-����/������"��/����������������������
��	����"�

����������	���	
��������/��7�+���
�

�

.� ���������/��0
���
�

���������%����"�����++�����������������������/���������%��"��/�����+���-���"������/�++�"�������

: <� >#�5���!��?�������%���+���+��#�%��=���������##�/���������������/����+��/����/����#������
����5�������#�����%����#�/��"�����"�#��/�������9�+������+�/�%������#��/�����6�++����/����"��"�

���A� ��+�5�%�7������ ��/�/+�/�6������6�����6������������ ���� >��������-��%����������?� ��"�����

>���������-��%����������?�>#�5���!��?����+�5����������/�����6�������������������5���"���"��������
�����+��#�%�#�6�"���������������/�����6����������%����������������/����+��/����/�����������"����

"�/����+���"�/����+C�����+�/�+�����7�����������"�6����+�/�+�/����++���>�,?�������+��"������+�5�>�?�

��"���5+���+�/����++��>�,?�/��"�����������+�/�+�����7������

�
�

�

�
�

�

�
�

�

�

�
�

����� �����%� ��� ���� ���/�� �#� �� ��%��� �#� ���+�%�� /��/����5�/��/���/��� ���/����D������� ��

"�/����+�D�"�/����+���������������������������"�#+�-���+�������+�/�%�������������%���������#��������
�#���5���� ��"���#�����+���� �//�"��5����������5�����+���� �++�����+�5��%����/�����������%�7���

6����7������������+���-�/��������/����#����������%�������E��/����+���#�6����������������7���#���

/+�����#���#�6��������%��6��/��%�������7�+�"���"�����7��"��������+�%�����������-�+����������

�
�

#�5���!�A��?���������?�/�/+���#���+�5��

�

�?� �?�

0��!��(!"���

�%!��(!"���

�%&�

&%&�

� �

�

1� ���
���������
��
�
���� ��������� �	
���/�������� ��� #��"��5� �� ������ ��"� �"����"� ���/���� ����� #���� ���� �����%� ��� ���

%�"�++�"������"������%�+���8���������������������/����%������������������"+����"��5���D�"������/����

6�������� ��/�%�+�-�%�/��/���/�����7���/������/����"�����/�����6�������"�"�D�"���������� ���
���������� !�	��� >9��?� :)<������ ���� ������/�%�� �� ����"�"�#������ "��/������� �#���#�6���

�����%��:&<���������������������/���"������������	
���/���������#�����������>#�5���*?A������/���+��

������7���+���"���/��#�5�������������������/���+�����/����+�������5���D�����������/������>/+�����?�

�#� ���� %�"�+�� ���� ����7���+� ���� "��/����� ���� ����7���� ����/����"� 6���� ���� ���/���� ��"� ����
/��#�5����������������+����������+��8�����6��������������/���#�%����������/��������������/�#�/������

�#�������+��8�������/������#������"��/��������#�������/�+�����+�/��������

�
�

12�� �!�*(!*��#���&%(!���
�
����5�� "�##����� +�7�+�� �#� �����/������ ���� ���/�#�/������ �#� ���� ���/���+� ����/��� ��+��� ��� ������

��"�����"� ���� �5���D������ ��"� ���� �����/������ 6������ �� �����%�� ���� ���� /+���� "��5�%� ��� ����

�������������6��/�����������"����"�����������/���+��5���D�������#����������/��������������/���+�
����/�� �#� ���� ������� %�"�+�� ��� ����"� ��� �� �6�
+�7�+� /��/�����+� %�"�+� : !<�� 6���� ��
/�++�"�

����7���+� ��1�/���/����+� ��1�/���/����"��"� �������/��� >#�5���*��?�� ����/+������ "��/����5�����

����/����������������+�%�������/������#������"��/��������#��������%������/+������"��/����5�����
����7����/����+���������/��������������������/��������������������+���������+������"������/������

����7�����#�������1�/������6��/����������+����"����������%�+�#����������/�#�/�����������/��/����/���

�+������5����+�D�"�����#����� ������7��F����/������/�������/������/����"��"���� ����6�����/��

6��/����������+#��/����++�"���������������7����
���

�

�

�
�

�
�

�

�
�

�

�

�

�

�

12.� �%'�3"���#���&%(!��
�

��/������7���+�/+�����������/����"�6������#������������%�/������������#������������%�/���������/�#������

"���%�/�����/���#���/���+�%��������������#����������%��������#�%��#��7���F�/�������=���/�����.�5���
*������6������"��/��������7����#���+�5��=�����"�6��������+�/�+�/����++������/��"����������+�5����"�

���8���������+��#�%�����+�������5+���+�/����++������7�������/��+�/�+�/����++������++�6��5�>�����?�

����6�+8��5�/�/+����������������/����D�������#����������/��������"�����/��/������-�/�������#��++�����
+�/�+�/����++�����"��#�����5+���+�/����++��6��/����7�"������5+���+�����7����#����������%������

���/�#�/�������#�����5+���+�/����++��6�++��������"����+�"����������+�/�%�������+5����%�6��/������

����� �������"� %���� ��� 7�+�"���"� ��� 5�������� ���� ���7�� %�������"� ��������� >G� !?�� 9�+�� ����
����7���+�����/���6��/����7����������/�#��"���������6���6�++����7�+�"���"�����6�++������������������-��

��/������

��

#�5���*A����+�����%�"�+�

�

�?�

��5�

�!�*(!*�%�4��#���%���

���
>+�/�+�����7��?�

�

����7����

���/��

��5����

���/��

�

�

�%'�3"���4��� ��?� /?�

5
%,�

5
%,�

5
%,�

5
%,�

5
%,�

5
%,�

5��� 5�
��5�
��

5�
��5
��

5�
��5�
��

����",*��!"���4����!��(%��

��%&�

�!��!�

&%&�

�����

�

0�����������

�����������

� �

�

121� ����",*��!"�����&%(!���

�
.�%� ���� ���/���+� ��"� ����7���+� ����/���� ���� ���/�#�/������ �#� �� /��#�5������� ��+��� ��� "�#���� ��

����/�+�����+�/�����������������/���#�%����������/������>/+�����?����/�%����"������/����6��������

�������7�"���������/�#�/�����7���"�#���"���������=���%������4���5������/�%������������������7����
>#������ ������ %�/�����?� ��� /�%����"� ��"� ���/����D�"�� ���� ���� ��1�/�� "��5�%� ��� #�5��� *�/�

�++��������������1�/��/��#�5����������"�#������+�/�%������#��/�������

�

�

�

6� 	�
������������
��
�

������%��#��++�7�+�"���������+��������%�8����#�6���"���5���+���+����"��������������"���5��������������
���/�#�/��������/���++��/������"���������=���%�����:*<���%��5�����/��/8��5�%����"����6��%�1��

/���5�����/������"�����5�����"A���%�+��������"�%�"�+�/��/8��5��������%����"���������/�%������7��

����/�%�+�%�������������������+���������/��������%�6����������"���5��������������5�����##�/��7��
���6�� ��� ���� ��%����� /��/8��5� ���+�%��� ��"�+� /��/8��5� %����"�� �=���� ���� ���� �#� #�%�+�

%����"�� 6��/�� ��7�"�� �� %����%���/�+� /����-�� #�� ���� �5����� "��/������� �#� ��%�� ����/��� �#�

��#�6��������%��� �������������� �����/���"�� ����
��	�� �	
���6�++���� �-�����"� 6���� �� ��/����
�+5���� ��������� /�++�"� ������ ���� ��	������� >���#� :@<� ����"� ��� ���� ��%����/�� �#� ���� ������
�

������	�� ������ >���?�� ���� �� �����%� ��� ���/���"� ��� �� ���� �#� /�%�������� 6����� ����7���� ���

"�#���"����#������������%�/������������#�%�+��%�6��/�����/�%%��+�����"��������#��+"��#�/��/8��5�

��7�"�����/+�����"������%��5�����%��������"��/������"����+����%��������/����#��#��������������/����
�����%��:!�*<C�����++�6�����������#����������%�"�+�/��/8��:@<����������7�����#���������������������

�	
����"��/���"��������#�%��#�#������������%�/��������%%�"����+��#��"���/������"��/��>#�5���;��?�

6���� ���� .��� ��������� ��"� ����� ����+������ ����� ��/�%��� ��7������ ���� +�/�+� ����7���� �#� ����
����
��	���	
������+��#�%��++���������7���+�/+��������"��++���������/����"�#������������%�/�������

.�5���;����������������.�������+�������#���������7����#������	�����	��	�����>�,?�/+�����5����/�++��

"��/���"��������#������������%�/��������#�5���*������
�

�

�

�
�

�

�
�

�

�

�
�

�

����5+���+�����7�������������"�#�%��++�����������/����#��������+�%������/�%����������"��++������
�����/������ 6������ �� ����/�+��/��#�5������� >G�*�*?�� ���.���� �� ��/����+���+��5� >���$�%?� ��7�"���

%�+���+��������/����#��+�%������/�%���������6��/���5���6��������������/����#���������7���+�/+������

�#����������������������	
�����������#���-�+�/�+�/����++�����/������>���?���������/����"�����6��/������
+���+���#������/������>�������������?�6�++������#�-�"�6��������+���+��#���������/�+��+�/�+�/����++���

����&�'���5+���+�����7���>#�5���B?�����-�����"���������++�+�/�%���������>�HH�?��#�����+�/�+�>���?���"�

5+���+�>��?�/����++��������������-�/���"�/��/����+����"����/����D�"�������������/���������5�����

.����+���+��5��������>�F�?���
�

�

�

((&�'���)��*���+$�%�((���,$�%�((�---((���$!%�#�.�/��-���0��+�.���+-����-----1-�

#�5���BA��5+���+�����7������.���

�

#�5���;A�.�������+������

�

�%�
�� ������������)�2�3��� ��

2�3�� ��������������)�*����������� 4�5���&��&�%�3�6����#����
�&��&�%�3�6���)�*������������� ��4�5��&7�&�%�3�6��� �#����
&7�&�%�3��6������)�*�������������� ��4�5��2�3�� �� �#-���

�?������7���+�"��/��������#����,����.���

�

���#-�"�� �$%#� 	�#"$�!"��� �$%#�

/��#�5�������
���++�+�/�%���������

�������0+������������0,�
/+������ ��/������

������/���
��/����+���+��5�

�������0�����$����0�����

.����7����
�/�����

�����

.���������
+�/�+���/����

�)*�����#-�

��?��%�����5�#�%����+�����%�"�+�/��/��������

7�+�"������%�"�+�

� �

�

�����&�'�������7���+�%�"�+�6�++����7�+�"���"�������������%�"�+�/��/8�����������+��++�6������

�����/��7����%�+�������#�����"�##�����������+���-�/�������/��������#�����%�"�+����/�#��"�����"������

����������+�/�������"�##������/���������6���������/����+������������/��7���-�+��������++�6����%����
�%��7�� ���� /��#�"��/�� ��� ���� /�����/�� ���6���� ���� �-��/��"� ����7���� ��"� ���� %�"�+�� 6��/��

"��/�������%�������#���������-������7��������#�7�+�"�������/������/�%�+�%����"���� �����/��#��

���������7��+������������������
��	���	
���������"��5��������������6�++����5�7������������5����
��������� 6��/�� ������� ����� I�	��"���� �		
� ���������� "������I�� ��"��"�� �"����"� +�/�%������

�=��������7���++�������/�����%�������#���/��+�5�����%������������/��/8�"��������/��+�/�+�/����++��

6�++��+6���������+�����/�����������6�+8��5�/�/+������"��������������/���������/��/8������//���/���#�
���������/������#����/��+�/�+�/����++����"��������#�����+��������"��-�/����������������������/�++�"��

��	������%����0��+�)�/��+-����1�����������#����������������7��+���"��������%�"�+������ ���+�D��

��"�/���������=���/���#��/�����������+��"���������7��+�����������"���5���/��������%�"�#������%�"�+�

�//�"��5�����������+����������"����

�

�

�

7� ��0
���������������
�
�

���� #�%�+� ���/�#�/������ ��/���=���� ��"� ���� ���� �#� %�"�+� /��/8��5� ���+�� "�� ���� ��7���� %�"�+�
%��%��/��"���5�����"�7�+��%����/�/+�������8�������������:B<����������5�5����/��%�+�%���������

%�"�+����7�������������"�������5�����-�+�/������7�����+�����������%���/���5�"���5�����+�%���

�%��5������� "���5��������������� ���� ������5�7��� �� ��+������ 6��/�� ���/�%%��+�����"�#������
�%�+�%��������� �#� #������ ������ %�/������� ��� ���� ������� ��������� �	
���� ���� ����7��� �#� ��/��

/�%����������"��/���"������#������������%�/����������������#�������������������/�������/��/�%�������

6���������%�+�%���������6��/��/������"�������������
���������������/�������������%�+�����#������
������%�/���������������������+���������������/�"��6��/��/��#�%�������������7�������/�#��"��������

����������	
�����"�/��/8�"������������
��	���	
���������%�+�%����������#���������
������������

#����������7����#���+�5���"��#�����+�/�+�/����++��������6�����#�5���&��

�
�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

� �

������%�+�%���������"��5�%�/���������#�����%����#��+�%�������/+�"��5A��
− ����%03��������6��/��"�#������++�����������+���/�������#���/�%�������>�+��������#�����#������������

%�/����?���

− ������/�+�,����++��/+����>�%#�6��/���-�+��������������/������#�����+�5����������/�����5�7��5����
������7���"��/���"���� ����//��������#�������������%�+�%����������%0��������� ��"�+������+�/�+�

��1�/��/�++�"�������#�%��������/�#�/�����7����������+�/�+���1�/���������������/������������#�

����+�/�+�/����++����"�/���5����//�"��5��������������������������������������7����>�������������
����?�����

�,

������>?�
����>?��

����>?�

/���5������>�����?�

������

������>?�
���>?��

����>?�

�

�,J������

0�����/�2�

��5

����/��

K���

������>?�

�

��9���,��9L

����>?��

�

�

�����,��9L

�����>?��
�

MM���%�+�%�����NN�

�8�!��(!"��� ��)%(*!"���

�
�,J����#�/�

������>?�
���>?��

���>?�

�

MM�����#�/��NN�

#�5���&A��%�+�%����������#����,�����5���������
�������������

/����-��

��%&�

�!��!�

&%&�

�����

�

0�����������

�����������

� �

− ���� �%0���� /+���� 6��/�� �%�+�%������ ��� ��� �����/�� 6���� ���� ����7���+� �%03�������� ��"�

��������� ���� ������ /+���� �#� �++� ���� ������� �#� �� +�/�+� ����7���� ��/�� ����/�+�� ������ >2����

��	����	��� &�����	�#� �%�+�%����� ���� ���/�#�/� ����7��� ����/����"� 6���� ���� ������ �#� ����

/�%����������/���#����������/+��������+��"�#����������/�����F�����������������������/����"�6����
���%� ��"�����/�++��#�����/������"��5�%����"��/���������� �"����������#������������#�����+�/�+�

/����++����
�
��������6������������
��������������7�"�������#��%����������"�/��������+�������#���������/�����

>��������������	
���?�����������%�+�%���������>��������������	���	
��?���

�

�

�

9� ����
����������0���0����	���
�

�����������������6������#������+�����#���������+�%����"�#����#�6���"���5������������5���%�"�+�
����"������/�� >��������������
��	�� ��"� ����������	���	
���?�����"����"����������1�/��������"�

�/����/����6�����6��/��/�����+�+�7�+����"�#�%�+����/�#�/�����������"����#������������%�/�������.�%�

���� ��#�%������ >��1�/�� /��#�5������� ��"� ����7��?� /�������"� ��� ���� ������� ��������� �	
���� ��
����
��	���	
�������������"�6��/��#�����������/�#��"�����7������� ����������	���	
����"����"����

����� ���/�#�/������ ��� �������"� ����5� ���� ����
������ ������� 6��+�� /��#�%��5� ��� ���� 7�+�"������

��#�%�"���7����+�����/��%�"�+�/������"�����������%����/���#�#������������%�/������6��/���"�/���

���� 5���� ���6���� ���� "�##����� %�"�+��� ���� ������� �����/�� ����� �++�6�� ���� /������� ����������
���6���������5�������%�"�+���������5�����������+�����5�������#�����"�##�����������������#�6���

"�7�+��%����� ���� /����� 6�8� 6�++���� #�++�6�"�������� �%�+�%��������� �#�����#�%������ %�"�+��

��%��5� ��� �������%���/�����7��� ����%���/�����+����������6��������"�##�����%�"�+��������"������
/��/������#�%�"�+�����#�%������6�++��7�����++��%�8������"�7�+��%������/������������"��7���%���

�+���+����

�

�

�

����������
�

: <� ����7�++������"����=��
��������,���������O��/��	
��,������� >!((?������6�������#�+��#�����+
��%���

�����%�.�%�+�4���5����"�P�+�"����������E!((����������,���"����

:!<� ������+"�>));?���������������	��������������/����++�������/����++��
:*<� ����O�"������"�������.��8�+���.����������������������������//�����"����/������+���>!((?�����������
�

�	�9����:��������	�-��	
��4%"��;�������"��<������
��		��������5��

:;<� �����/�� >));?�� �� ��4	�����
� ��������� ��
� 8������ 9�"� ��������	���� ��/��"� �"������� ����

���1�%��F,�%%��5�����+�����5�,�%�������/����"6��"�,�����,�+�#������

:B<� ����%%�������+%����	��������	�P+����"���>))B?��8�������������=�7�������	��&���������� ���������
�

�	�9������""�����K��+�������"��5�������/���������

:&<� ��� ��%��� >!(((?��8��������� %	��������� 8�������
� ��
� &���� ����� ��������	�� 9�"� ����� �""�����

K��+��������"��5������/����������

:@<� 	����5����	��Q�%��>)))?��%	���������-������	
����>�?������	�������	����K�+���R�������,��/�������

�Q��

:'<� ����88��S���8���/��������5�+����	���+D%���� >))'?���%�+�%�����5������/����������9����F���L�� ���
��	���
����� 	�� ,�
� 3777� 9	�;�"	�� 	�� 3�
������4�����"� �	����� ����������	�� ���"��<����� �����

,�%�������/�������������)(
 (��

:)<� 9�1�/������5�%��������������AFF666��%5��5F�

: (<�9�1�/�� ����5�%���� ������ >!((*?�� 9��� ���#��"� ��"�+��5� ���5��5�� ���/�#�/������� P������ �B��

����AFF666��%5��5F"�/�F#�%�+F(*
(*
(��"#�

: <����������� ������� >!((!?�� ,��/����� ��5�%%��5� #�� ���� ,����+� �#� ��-���"�� K�+8��5���%�� �
��

�������7�+��! ��LT ����� !
*&��

: !<���������	�����������������������������#������7�����"�+��5���"�����5�������%	���������3�
������

�+������"������������

�

ASSESSING THE MODIFIABILITY OF TWO OBJECT-
ORIENTED DESIGN ALTERNATIVES – A CONTROLLED

EXPERIMENT REPLICATION

Ignatios Deligiannis1, Panagiotis Sfetsos1
, Ioannis Stamelos2, Lefteris Angelis2

Alexandros Xatzigeorgiou3
, Panagiotis Katsaros2

1Dept. of Informatics, Technological Education Institute of Thessaloniki, Greece
{igndel, sfetsos@it.teithe.gr} http://sweng.csd.auth.gr/htmls/people_files/deligiannis.html

2Department of Informatics, Aristotle University of Thessaloniki, Greece
{stamelos, lef@csd.auth.gr}

3Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
{achat@uom.gr}

ABSTRACT

This paper presents a replication study of a controlled experiment, investigating the impact of
many design characteristics on one of the most desirable quality factors, modifiability. Two
alternative design structures were used; a responsibility-driven (RD) versus a control-oriented
“mainframe” (MF) design. Two groups of undergraduate students participated, each performing
on one of the two designs. The subjects designed, implemented in Java, and tested a set of three
maintenance tasks in order to assess the degree of their understanding, effort, and performance.
The results indicate that the RD version due to its delocalised structure, exhibited higher
correctness, better extensibility, and design stability, than the MF version. In order to provide
an objective assessment of the differences between the two versions, a considerable number of
metrics were used on the delivered solutions, quantifying separately each produced design’s
characteristics.

KEYWORDS

Object-Oriented, experiment, maintainability, design, metrics.

1 INTRODUCTION

The necessity for change is indissolubly related with the development process, and it results
from the fact that with the progress of time, additional knowledge is accumulated both from
software developers, as well as from customers using the software. The Object-Oriented (OO)
paradigm, by providing a number of mechanisms, such as inheritance and encapsulation, has
been claimed to enhance understandability, due to increased cohesion of class structures, and
manage more efficiently complexity. Hence, it is considered having particular affinity to
modifiability, which is one of the most important quality factors by which the OO paradigm
aims at reducing the maintenance costs of a system. This was also supported by a number of
empirical studies [1].

Hence, a considerable number of researchers and practitioners in Software Engineering field,
have turned their concerns in even more effectively applying the OO mechanisms and
techniques, aiming at producing even more understandable and maintainable software, i.e. more
qualitative systems. Particularly the designers, often facing the dilemma of choosing among
different available design structure solutions, have focused on design quality and the various

 1

mailto:sfetsos@it.teithe.gr
http://sweng.csd.auth.gr/htmls/people_files/deligiannis.html

design characteristics from which it stems. They aim mainly at some most desirable quality
factors, such as understandability, performance, correctness and reusability.

The role of empirical research is to provide empirical evidence with proper grounding, whether
and to what extent the above-mentioned aims and quality factors have been met. Experimental
replication, that is an empirical study conducted under identical conditions as a basic
experiment, is desirable in empirical investigation for several reasons: a) it can help us to know
how much confidence we can place in the results of the experiment; b) it enables us to estimate
the mean effect of any experimental factor [2]; c) the results of an experiment can be more
easily generalised than those of a case study.

2 DESIGN OF THE EXPERIMENT

The research reported in this paper is a replication study of a controlled experiment carried out
by Arisholm et. al. [3]. The main goal of the study is to investigate to what extent design
characteristics affect the modifiability of OO software. Thus, to investigate how design
characteristics affect modifiability, we need mainly to focus on structural characteristics, since
they describe more precisely the structure of a system. In order to achieve an assessment of
these characteristics, we need a set of proper metrics, since only them can provide an objective
assessment.

In this study, two alternative designs of a system were used, implementing the same
functionality. They were written in exactly the same manner, namely, programming style,
naming conventions, and documentation. Similar skilled subjects performed a given set of
change tasks. The experiment investigates the same hypotheses as the initial study, using
similar settings. However, it deviates from the original experiment in three points: a) Java was
used, instead of Mocca programming language; b) the subjects carried out the modification
tasks realistically; implementing in code, compiling and running, separately for each requested
task; c) a wide range of metrics were applied upon the produced code. This was considered
particularly useful, since we believe by applying a considerable number of metrics, available in
the literature, and capturing major design characteristics, a more accurate and detailed
assessment of the delivered solutions could be obtained. This provides an in depth
understanding of what design characteristics mostly affected the subjects’ behavior and
therefore modifiability.
The hypotheses tested were the following:
(H1) Change effort: The RD design requires more change effort than the MF design.
(H2) Learning curve: The RD design has a stronger learning effect (one learns more easily
from previous tasks) than the MF design.
(H3) Correctness: The solutions for the RD design contain more errors than the MF design.
(H4) Change complexity: The RD design has higher change complexity than the MF design.
(H5) Structural stability: The RD design has better structural stability than the MF design.
The statistical test will attempt to reject the null hypothesis, which is the opposite of H1 to H5.

Forty-three students were used as participants to perform modification tasks on the two system
designs, MF and RD. All were undergraduate at the second semester of their studies, at the
Dept. of Information Technology of the Technological Education Institute of Thessaloniki,
Greece, enrolled in the class of OO Programming. Each lecture was supplemented by a
practical session using the Java programming language. They were randomly assigned to two
groups, 22 performed in MF and 21 in RD design.

Experimental material: The application used was a system implementing a ‘Coffee Machine’
system [4]. Each system documentation included: a) a description of its functionality, followed
by a figure showing the logical parts of the machine; b) the Java code, consisting of 11 and 16
classes, and 286 and 391 lines of code, for the MF and RD version respectively. The two

 2

designs were classified according to Coad and Yourdon’s quality design principles [5, 6]. Thus,
the MF design, not adhering to them, is considered to be the “bad” design, while the RD design,
which adhered to the principles, is considered to be the “good” design.

Experimental tasks: The participants were asked to perform three modification tasks. Each task
was coded, compiled, and tested realistically, as it happens in practice. This was actually one of
the differences with the original study. The main purpose on the test was to motivate the
subjects to produce solutions of good quality, before proceeding to the next task.

Procedures: No time-constraint was specified to complete all the tasks. However, they were
told to perform as quickly and correctly as possible, hence they were requested to mark their
performance time. Additionally, they were given a debriefing questionnaire to complete,
expressing their subjective opinion concerning a number of issues.

Experimental Design: We applied statistical analysis on the collected data to interpret the
results in order to draw meaningful conclusions from the experiment. The choice of the design
affects the data analysis and vice versa. In this study, the type of design applied is a randomized
within-subjects design [7]. The independent variable is the design principles under
investigation. The experiment context is characterized as multi-test within object study ([7] p.
43). An advantage of using such a design is that it simplifies the statistical analysis. The
participants were assigned into two groups as mentioned above.

Dependent variables: For hypotheses testing the following variables were examined:
 Change Effort – Time in minutes for each completed task.
 Correctness – The completed task was examined whether it worked correctly or not.
 Learning Curve – The normalised difference in effort to understand the last change (c3)
versus the first change (c1) for each subject, for design MF and RD respectively.

MF} RD,{ ,
)3,d(Understan)1,(Understand
)3,d(Understan-)1,(Understand)(Curve Learning ∈

+
= d

cdcd
cdcdd

 Subjective Change Complexity – Measured from the questionnaire by two of participants’
subjective answers, regarding Solution difficulty, and Solution confidence.
 Structural Stability – The impact changes have on the design, measured by the differences in
the average values of the measures before and after each change.

3 EXPERIMENTAL RESULTS
To interpret the results, we consider examining the following factors: a) participants
performance time; b) each task required modifications based on measurements extracted from
participants’ solutions. Hence, eight structural metrics, capturing structural design
characteristics, were applied, provided by the Together© CASE tool.

Considering Task 1, all data shows that the two designs required similar treatment, hence both
groups performed almost similarly. Both groups had to add similar trivial code in two classes, a
method call, and a new method. Task2, required adding new functionality mainly based on
inheritance. However, it differed between the two groups. MF design, with its centralised
structure, was more demanding, mainly due to its procedural approach. RD group, by its OO
structure, providing more reuse efficiency, led to better performance. Task 3, which required
performing a ‘check’ before proceeding to ‘produce’ a requested drink, was more difficult for
RD group to accomplish. MF group was forced to apply a procedural approach in a centralised
structure, as in task2, where the most of the functionality was captured in one class by using
many if-statements. On the other side, RD group with its decentralised structure faced a
‘delocalised plan’ [9] approach (OO technology’s “weak point”), since the required ‘check’
captured a long message path between five classes.

 3

To make a scientific statement with a reasonable degree of confidence, the significance level
for the hypotheses test were set to α=0,1.

 Change Effort (H1): Hypothesis H1 is not supported. Total effort shows no significant
difference between the two groups (t-test, p=0,69) (Fig.1). However, considering each task
separately, task2 showed a significant difference against MF group, while task 3 against RD
group.

Learning Curve (H2): Hypothesis H2 is not supported. Data shows no significant difference
between the two groups (t-test, p=0,863) (Fig.2). In total, MF group required more time to
understand than RD group. Particularly, task2 is considerably more difficult to understand for
MF group, mainly due to procedural structure (many ‘ifs’) in one method. In contrast, RD
group understood more easily due to reusability efficiency. Considering task 3, MF group
understood more easily because they had to work with the same method as in task2 (learning
effect), while RD group’s functionality was split in 5 classes.

1717N =

DESIGN

RDMF

EF
FO

R
T

140

120

100

80

60

40

20

Figure 1. Performance effort

1717N =

DESIGN

RDMF

LE
A

R
C

U
R

1.0

.5

0.0

-.5

-1.0

-1.5

Figure 2. Learning curve

Correctness (H3): Hypothesis H3 is not supported. RD group performed significantly more
correctly than MF group (t-test, p=0,09) (Fig.3).

Subjective Change Complexity (H4): Hypothesis H1 is supported. Considering confidence,
Task1 showed no difference between both groups. In Task2 and 3, MF group participants
indicated greater confidence than RD group. Considering difficulty, Task1 and 2 showed no
considerable difference, while Task 3 showed significant difference against RD group (t-test,
p=0,669) (Fig.4).

2122N =

DESIGN

RDMF

C
O

R
R

E
C

T

10

9

8

7

6

5

4

Figure 3. Correctness

1717N =

DESIGN

RDMF

C
H

C
O

M
P

LX

40

30

20

10

Figure 4. Subjective Change Complexity

 4

Structural Stability (H5): Hypothesis
H1 is supported. Data extracted from 8
metrics values indicated a significant
difference between the two groups
(Wicoxon, p=0,069, t-test, p=0,114)
(Fig.5). The selected metrics were the
following: Coupling Between Objects
(CBO), Response for a Class (RFC),
Weighted Method Per Class (WMPC1
&2) [10], Lines Of Code (LOC),
Method Invocation Coupling (MIC) [8],
No Of Attributes (NOA) [11], No Of
Operations (NOO) [12]

METRIC

WMPC2
WMPC1

RFC
NOO

NOA
MIC

LOC
CBO

Va
lu

e

40

30

20

10

0

-10

MF

RD

Figure 5. Structural Stability
.

3.1 Comparing the results with the original study
To compare the results between the two studies, we first have to consider the conditions under
which they were conducted, since their impact determines subjects performance and therefore
to results. Three were these differences, discussed later in section 4: a) programming language
used, b) implementation manner, and c) metrics set applied to solutions. However, the two
studies differ in hypothesis 1.

4 THREATS TO VALIDITY
This section discusses threats to validity and the attempt to alleviate them. The external validity
of this study depends basically on the population selection, the choice of the design alternatives,
and the choice of modification tasks. Considering the internal validity, this may be threatened
for example by, unclear experimental materials, ambiguous questions, and skewed group
assignments. An ultimate means to improve the validity of the original study, according to its
authors, is by replication. Hence, we focused on those threats that were related to the
differences between the original and our study. These are the following:

Programming language, Java vs. Mocca: In this study Java was used, while in the original
study Mocca programming language was used. We consider Java currently is the most widely
used programming language [13]. Also the participant students in this study had good
knowledge of it. However, this could lead to differences between the two studies.
Coding realistically vs. Pen and Paper: The changes were coded using an advanced editor,
while in the original study pen and paper were used. As the original study authors mentioned,
using a computer one provides a number of advantages. We consider the main advantage is that
subjects perform closely to realistic situations that happen in industry. However, there is a risk,
due to students’ not professional experience. Namely, one could spend a long time in a trivial
task, when coding, compiling, and running a program, mainly caused by a “misunderstandable”
compiler message. This practice could also lead to differences between the two studies. To
alleviate this threat, an instructor was available
Selection. This is the effect of natural variation in human performance. Volunteer students were
used, considered more motivated and suited for the task than the whole population. Hence the
selected group is not representative for the whole population. Our concern was to select the
most capable of the students from the course, offering them a degree bonus for their
participation. An additional reason for this kind of selection was that we considered excluding
those not really willing to participate, because they might not perform properly.

 5

5 CONCLUSIONS

Examining the results, the following conclusions could be drawn: In general, design structure
seems to play a major role in modifiability; Since, it is a creative process, guided by design
principles could lead to quality solutions; a) Extensibility, in this study captured by task2, is
more efficiently and effectively applied on a decentralised structure, better providing
understanding and reusability conditions. b) ‘Delocalised plan’ is a potential drawback within
OO paradigm. However, we believe that it could be to some extent alleviated by applying
proper design techniques. As such, we consider some design patterns found in literature [14]
[15], which could guide us to more effective members placement, hence yielding a more
cohesive and less coupled design; c) RD design supports correct solutions.

The results give us the motivation for further research on a task solution basis. This could
provide the necessary information to gain a better understanding of each task structure and
implementation difficulty. Hence, we will consider first separating each task implementation,
where a proper set of metrics would be applied providing metric values before and after task
completion. These metrics values compared to both objective performance values (time spent),
as well as subjective values (questionnaire), could help us to more precisely explain which
structural design characteristic and to what extent affect subjects understanding and therefore
the ability to perform efficiently and effectively.

ACKNOWLEDGEMENTS

The authors thank the students who participated in this study, at the Dept. of Informatics at
Technological Education Institute of Thessaloniki. Also, we thank the anonymous reviewers for
providing useful comments.

REFERENCES

1. Deligiannis, I., Shepperd, M.,Webster, S.,Roumeliotis, M., A Review of Experimental Investigations

into Object-Oriented Technology. Empirical Software Engineering Journal, 2002. 7(3): p. 193-231.
2. Fenton, N. and S.L. Pfleeger, Software Metrics, A rigorous & Practical Approach, Second Edition.

International Thompson Computer Press, 1997.
3. Arisholm, E., D. Sjoberg, and M. Jorgensen, Assessing the Changeability of two Object-Oriented

Design Alternatives - a Controlled Experiment. Empirical Softw. Engineering, 2001. 6: p. 231-277.
4. Cockburn, A., The Coffee Machine Design Problem: Part 1 & 2. C/C++ User's Journal,

1998(May/June).
5. Coad, P. and E. Yourdon, Object-Oriented Design. first ed. ed. 1991: Prentice-Hall.
6. Coad, P. and E. Yourdon, Object-Oriented Analysis. second ed. 1991: Prentice Hall.
7. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A., Experimentation in

Software Engineering - An introduction. 2000: Kluwer Academic Publishers.
8. Marinescu, I., R., An Object Oriented Metrics Suite on Coupling. Universitatea. 1998.
9. Wilde, N., Mathews, P., and Ross, H., Maintaining Object-Oriented Software. IEEE Software, 1993

(Jan): p. 75-80.
10. Chidamber, S. and C. Kemerer, A Metrics Suite for Object Oriented Design. IEEE Trans. Softw.

Eng., 1994. 20(6): p. 476-493.
11. Henderson-Sellers, B., Modularization and McCabe's Cyclomatic Complexity. Communications of

the ACM, 1992. 35(12): p. 17-19.
12. Chen, J.-Y. and J.-F. Lu, A new metric for object-oriented design. Information and Software

Technology, 1993. 35(April): p. 232 - 240.
13. Goodley, S., Java on course to dominate by 2002. 1999, http://www.vnunet.com/News/87054.
14. Gamma, E., Help, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object-

Oriented Software. 1995: Addison -Wesley.
15. Larman, C., Applying UML and Design Pattrens. 2002: Prentice Hall PTR.

 6

http://www.vnunet.com/News/87054

Transparent Modelling Of Objects’ Evolution*

Dimitrios Theotokis1, Anya Sotiropoulou1, Georgios Gyftodimos2

1Department of Computer Science and Technology, School of Science and Technology, University of

Peloponnese, GR 22100 Tripolis, Grecce, Fax +30 2710 372160
{dtheo,anya}@uop.gr

2Department of Informatics and Telecommunications, National and Kapodistrian University of
Athens, Panepistimiopolis, Ilissia, GR 15784 Athens, Greece, Fax +30 210 7275214

geogyf@di.uoa.gr

ABSTRACT

Supporting behavioural changes and in particular unanticipated ones is essential for achieving the
behavioural evolution of objects. Object evolution is an important feature for war game simulation
systems. This is the case because a unit’s behavioural landscape may be altered during the course of a
simulation either by virtue of the simulation itself of by user intervention. For instance, an armoured
vehicle unit may become a scout and later an artillery observation unit. In this article we present how
objects’ evolution can be modelled and realised transparently using a role-based system as part of an
High Level Architecture/Run-Time Infrastructure (HLA/RTI) federation.

KEYWORDS

Behavioural changes, Behavioural landscape, High Level Architecture, Object evolution, Role
modelling

1 INTRODUCTION

Although, the object-oriented paradigm better models the real world, it is widely accepted that it does
not provide the adequate infrastructure for modelling the evolution of real world objects [5,7,8,14].
The static nature of the inheritance hierarchy compounded by issues related to the common ancestors
dilemma, code scattering and tangling as well as the invariability of the self-reference are the reasons
for which the evolution of objects and classes alike is inhibited [12]. Viewing information systems and
in particular war game simulation systems as “living systems” [10] one can identify that object
evolution is an essential feature such systems should support. Object evolution becomes important - if
not essential - in military simulation systems and in particular battlefield simulation. This is attributed
to the need for the accommodation of change, which in many occasions is unanticipated. In what
follows we address the issue of objects’ behavioural evolution in terms of roles, which are considered
as behavioural adjustments or modifications of objects’ initial behavioural specification. A framework
that supports role-based object evolution, namely ATOMA [13,14], is utilised on top of an HLA/RTI
[1] federation in order to propagate behavioural changes throughout a federation.
 The remaining of this article is organised as follows: The benefits obtained from the use of roles as
a means of accommodating behavioural changes is presented in section 2. In section 3 a description of
the ATOMA framework and run-time system is given focusing on the modelling and implementation of
behavioural changes in terms of roles. A brief comparison with other role-based approaches is also
given. In section 4 the HLA/RTI architecture is presented in brief. Next, in section 5, the proposed
approach is presented providing a description of how behavioural changes are accommodated
throughout an HLA/RTI federation. Finally, section 6 concludes the paper and addresses future
research directions on behavioural evolution, within an HLA/RTI federation.

*This research was supported in part by Pythagoras program (MIS 89198) co-funded by the Greek Goverment (25%) and the European
Union (75%).

mailto:geogyf@di.uoa.gr

2 MODELLING BEHAVIOURAL CHANGES

According to Sowa [9] conceptual structures are natural types, “that relate to the essence of entities”
and role types “that depend on an accidental relationship to some other entity”. For instance, in a
battlefield simulation an armoured vehicle is a natural entity. Viewed as a scout unit or as an artillery
observation and control centre can depend on the needs of the simulation and the availability of
resources. As such, a scout unit or an artillery observation and control centre are roles that can be
played by an armoured vehicle. Roles may be played when the accidental relationship becomes
effective, as many times as it becomes so, and more importantly they can be played in association with
each other. In other words, an armoured vehicle may be at the same time a scout and an artillery
observation and control unit. In fact, a natural entity may play as many roles as are applicable in a
given context. For example, if the need occurs the same armoured vehicle may also become an
infantry transport unit. Role acquisition and abolishment may be the result of human intervention or
the result of changes in the context that the entity is found. Such changes may occur either because the
internal state of the object changes, for instance the hill-climbing ability of a particular unit may be
reduced when the unit receives an enemy fire hit, or because an object is viewed by other objects from
another perspective, e.g. a unit becomes a scout unit.

ArmouredVehicle

Tank Scout ControlUnit

ScounTank TankControlUnit
Figure 1: An example

 In traditional object-oriented implementations and models all different behavioural scenarios must
be explicitly modelled in terms of “kind-of” and “part-of” hierarchies or graphs. For instance, given
the class hierarchy illustrated in Figure 1, if a tank unit is required to behave as a scout unit or as an
artillery control unit, the corresponding subclasses must be a priori available. This imposes several
problems:

1. All possible combinations of behavioural landscapes must be available during the design
phase.

2. The resulting design introduces entities that do not really exist in the real world per se, but are
only present to assist in resolving possible functional requirements

3. Class explosion results as the different behavioural landscapes played by natural entities (real-
world entities) increases.

4. The resulting classes contain extrinsic behavioural characteristics thus introducing both code
scattering and tangling.

5. There is no provision to accommodate unanticipated behavioural changes, except for
redesigning the entire hierarchy to provide the necessary amendments.

6. For each particular behavioural requirement an instance must be created resulting in object
schizophrenia, since the same unit is represented by two or more instances of different classes.

7. Deletion related problems: two or more instances of the same real world entity may co-exist,
for instance a particular tank may exist on its own accord, but may also exist to model a scout
vehicle. Apart from violating the underlying semantics related to instance existence, instance
deletion (destruction) becomes inconsistent. When removing the instance of the tank-scout
vehicle the tank part of it still remains as an instance of the tank class part. Moreover, if the
instance of the tank is removed, due say to its destruction by enemy fire, the tank part of the
tank-scout instance still remains.

 The issue that causes the aforementioned problems is related to the lack of concern separation. It
becomes evident that acquirable behaviour is time constraint and does not identify an object by virtue.
It is only a means to an end, not the end itself as it accommodates for a temporary need. It is thus, and
according to Sowa [5], a role type. Roles exist independently of the natural types (classes) and
augment their behaviour when the need occurs and only then.

ArmouredVehicle

TankRole

Control
Role

Figure 2: Behavioural evolution

 Figure 2 illustrates the behavioural evolution of the problem area shown in Figure 1, in terms of
roles. Class ArmouredVehicle represents the generic class for all armoured vehicles, whether tanks,
scout units or artillery control units. The notions of a tank and artillery control unit are modelled as
roles, which are assigned to instances of the class ArmouredVehicle, according to the requirements
that exists at a given time.
 To this extent the notion of roles employed here does not differ from those proposed by Gottlob et
al. [4], Steinmann [10], Albano et al. [2], Bachman [3], Kristensen [6], amongst others. However, the
realisation of roles and their underlying semantics present a number of issues addressed in the
following section.

3 ROLES IN THE ATOMA FRAMEWORK AND RUN TIME SYSTEM

 Under the ATOMA framework and run-time system classes and roles are two separate first class
objects. Classes can exist on their own, while role instances exist in conjunction with the class
instances they behaviourally modify. Role hierarchies are not supported by the framework at least at
the definition layer. Role specialization is achieved by considering a role as a behavioural modification
of an existing role. Key to the framework and run-time system is a three-layered architecture. The
description layer provides the definitions and descriptions of classes and roles. The composition layer
employs the mechanisms that enable the behavioural modification of classes in terms of roles, while
the provision layer contains instances of both classes and roles.
 What follows is a list of the key characteristics of roles and role playing under the ATOMA
framework and run-time system:

1. A role comes with its own attributes and behavioural definition.
2. Roles depend on relationships with classes or class instances.
3. An object may play different roles at the same time.
4. An object may play the same role several times.
5. A role may be assigned to or removed from an object dynamically.
6. The removal of a role implies that all roles that may have been added to this role are also

removed.
 From an implementation perspective the behaviour of a role is not weaved into the object it
behaviourally modifies. Instead dynamic proxies are constructed in order to achieve the behavioural
modifications of an object by a role.
 Role addition and activation are two separate procedures. A role may be added to an object but may
remain inactive until it is explicitly activated. Role activation can occur either because an event
triggering the role occurs, or because a condition holds or due to a combination of both. In this light
role handling in the ATOMA framework differs from those in [4, 10].

4. HLA/RTI
 The High Level Architecture provides an architecture for modeling and simulation. The intent of
this architecture is to foster the interoperation of simulations and the re-use of simulation components.
HLA is defined by three concepts:

• The object model templates
• The Runtime Infrastructure (RTI)
• The HLA compliance rules

 The RTI and compliance rules are unchanged across all HLA-compliant simulations. However,
each group of interacting simulations, or federation, must define a basis for the exchange of data and
event between simulations.

4.1 Object Model Templates

 The format and content of this basis is defined by the Object Model Templates (OMT). The
definition of the Federation Object Model (FOM) is one part of the process of creating an HLA
compliant federation. The Object Model Templates are used to describe the objects that will exist in
the federation, the object attributes (the data that describe the state of the object), and the interaction
that may occur between the objects in the federation.

4.2 The RTI

 The RTI is a collection of software that provides commonly required services to simulation
systems. These services fall into five categories:

• Federation Management
• Declaration Management
• Object Management
• Ownership Management
• Time Management

 For the interested reader a more detailed description of HLA/RTI can be found in [1].

4.2.1 Definition of RTI federation

 An HLA/RTI federation is the combination of a particular FOM, a particular set of federates and,
and the RTI services. A federation is designed for a specific purpose using a commonly understood
federation object model and a set of federates that may associate their individual semantics with that
object model [1].

5. REALISING BEHAVIOURAL CHANGES IN A FEDERATE BASED
SIMULATION

In order to accommodate for the behavioural evolution of objects participating in a distributed federate
based simulation we have employed a role-based system, namely ATOMA [14], as a intermediate layer
between each federate and its HLA/RTI component. Each federate’s behavioural landscape is
controlled by the role-based system. Role addition and removal occurs at this layer and is seemingly
propagated to each federate via the HLA/RTI component. Transportation across the federation is
achieved, as streams of byte-codes, which are resolved by each federate’s ATOMA framework
component. Figure 3 depicts schematically the architecture. Upon receipt of a behavioural
modification the HLA/RTI component forwards the modification to the ATOMA layer, which is
responsible for applying the behavioural change to the corresponding object in the federate leyer, for
which it holds a representation.

Federate

ATOMA
Framework

HLA/RTI

Federate

ATOMA
Framework

HLA/RTI

Figure 3. System Architecture

 For example assume that within federate A an instance of a tank is assigned the role of a scout unit
according to the semantics governing the Atoma run-time system described in section 3. This change
is propagated to all the federates participating in the federation. Upon receipt of the appropriate
message/event each federate’s HLA/RTI component forwards this change to the federate’s ATOMA
layer, which applies the behavioural change to the appropriate object.
 In order to achieve this functionality the Federation Object Mode (FOM) provides the necessary
description for a behavioural modification. This description consists of an object whose attributes
contain the following information:

1. The object that will be behaviourally modified. This is actually the object cross-federation
unique identity.

2. The actual code that realises the behavioural modification. This is an array of bytes that is
resolved to a role by the ATOMA layer, which is also responsible for applying the change to
the corresponding object in each federate.

3. An indication whether the role should be activated immediately or not.
4. The condition(s) and event that will activate the role of a later time. This information is

optional.
 In terms of the FOM definition as depicted by a federation FED tile this information is structured
as follows:

(class BehaviouralChange
 (attribute Recipient)
 (attribute RoleName)
 (attribute Code)
 (attribute Activation)
 (attribute ActivationRole)
)

 When a role is to be activated at a later time this is achieved in terms of a message transmitted via
the interactive mechanism supported by the RTI infrastructure. The message has the following
structure:

(class RoleActivation reliable
 (parameter RoleName)
 (parameter Recipient)
)

6. CONCLUSIONS

The use of role-based systems for modelling and realizing the evolution of objects’ behavioural
landscape provides a natural and intuitive approach for realising “living” information systems. Role
carry the semantics of a changing world and in doing so aid in the modelling of the system that abide
to change, particularly when considering the time dimension. Roles under the ATOMA framework
differ from other proposed role-based systems in two ways: The first one, although an implementation
related one, bares some important semantic issues. An object does not directly relate to the roles it
plugs at a given time. It only relates to a proxy for all its roles. Consequently, it is only responsible for
delegating behaviour related requests, that it cannot handle, to its proxy, which in turn directs them to
the corresponding roles. This provides a multi-role invocation scheme a characteristic present in real
world “living systems”. The second on concerns the activation semantics for roles. Existing role
systems handle role activation at the same time of role acquisition and role deactivation at the time of
role removal. Under the ATOMA run-time system these two notions are separate, thus providing a
degree of flexibility missing in most role-based systems. Coupled with HLA/RTI such a system
supports the behavioural evolution of a federate-based military simulation system, thus providing a
more realistic representation of the simulated objects.

REFERENCES

[1] DMSO https://sdc.dmso.mil/
[2]A.Albano, R.Bergamini, G.Ghelli, & R.Orsini, An object data model with roles, in: R.Agrawal, S.Baker, D.Bell

(Eds) Proceedings of the 19th International Conference on VLDB, Morgan Kaufmann, Dublin; 1993 pp.39-51

[3]C.W.Bachman & M.Daya, The role concept in data models, in Proceedings of the 3rd International Conference
on VLDB, 1977;pp.464-476

[4]G.Gottlob, M.Schrefl & B.Röck, Extending object-oriented systems with roles, ACM TOIS 14(3) (1996)
pp. 268-296

[5] G.Kiczales. E.Hilsdale, J.Hugunin, M.Kersten, J.Palm &W.Griswold. (2001) An overview of AspectJ. In Proc.
Of 15th. ECOOP, LNCS 2072, p. 327-353, Springer-Verlag,

[6] B.B.Kristensen, Object-oriented modelling with roles in J.Murphy, B.Stone (Eds) Proceedings of OOIS 95, 18-
20 December 1995, Dublin, Springer 1996, pp.57-71

[7] M.Mezini (1998) Variational Object-Oriented Programming Beyond Classes and Inheritance, Kluwer
Academic Publishers

[8] H.Ossher & P.Tarr. (2000) Multi-Dimensional Separation of Concerns and the Hyperspace Approach. In
Proceedings of the Symposium on Software Architectures and Component Technology: The State of the Art in
Software Development. Kluwer.

[9] J.F.Sowa. (1984) Conceptual Structures: Information Processing in Mind and Machine, Addison-Wesley, New
York

[10]D.Stamoulis, D.Theotokis, D.Martakos, & G.Gyftodimos. Ateleological Development of Design Decisions
Independent Information Systems. In Adaptive Evolutionary Information Systems, Editor: Nandish Patel,
IDEA Publishing Group, ISBN 1-59140-034-1.

[11]F.Steinmann On the representation of roles in object-oriented and conceptual modelling, Data & Knowledge
Engineering 35(2000) 83-106

[12]A.Taivalsaari (1996). On the notion of Inheritance, ACM Computing Surveys, Vol 28 Number 3, pp 438-479
[13]D.Theotokis. G.D.Kapos, C.Vassilakis, A.Sotiropoulou & G.Gyftodimos, Distributed Information Systems

Tailorability: A Component Approach in Proceedings of the IEEE Workshop on Future Trends on Distributed
Computing, Cape Town, 1999, pp. 95-101

[14]D.Theotokis. (2003) Approaching Tailorability in Object-Oriented Information Systems through Behavioural
Evolution and Behavioural Landscape Adaptability to appear in the Journal of Applied Systems Studies special
issue on “Living Evolutionary and Tailorable Information Systems: Development Issues and Advanced
Applications

SIMULATION METAMODELING FOR THE DESIGN OF
RELIABLE OBJECT BASED SYSTEMS

Panagiotis Katsaros Lefteris Angelis Constantine Lazos

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
{katsaros, lef, clazos}@csd.auth.gr

http://delab.csd.auth.gr/~katsaros/index.html

ABSTRACT

Replication is a suitable approach for the provision of fault tolerance and load balancing in distributed
systems. Object replication takes place on the basis of well-designed interaction protocols that
preserve object state consistency in an application transparent manner. The published analytic
performance models may only be applied in single-server process replication schemes and are not
suitable for schemes composed of miscellaneous policies, such as those arising in object based
systems. In this work we make use of a simulation metamodeling approach that allows the
comparative evaluation of composite fault tolerance schemes, on the basis of small size uniform
experimental designs. Our approach opens the possibility to take into account different design
concerns in a combined manner (e.g. fault tolerance combined with load balancing and
multithreading). We provide results in terms of a case system study that reveals a dependence of the
optimal adjustments on the system load level. This finding suggests the device of dynamically
adjusted fault tolerance schemes.

KEYWORDS

object replication, fault tolerance, simulation metamodeling

1 INTRODUCTION

Distributed object applications and services are composed of a number of objects with instances that
interact to accomplish common goals. When designing and deploying such an application there are
many decisions to be made with regard to the composition of objects into processes, the distribution
of processes across nodes, the threading policies for the processes and the appropriate software
replication for the provision of the required levels of fault tolerance and/or load balancing. All these
decisions affect the resulted quality of service (QoS).
 In this paper we provide a quantitative technique for the selection of a composite replication
scheme that assures the required fault tolerance effectiveness. A scheme’s effectiveness is determined
by the response times of the fault-affected service requests, which often have to conform to a
specified service quality level. The proposed simulation-based evaluation takes place on the basis of a
simulation metamodeling approach that allows us to take into account different design concerns in a
combined manner (e.g. fault tolerance combined with load balancing and multithreading).
Metamodeling is used for the prediction of system performance and its optimum operating conditions.
 In the design of fault tolerance, different candidate policies may be considered and their optimum
operating conditions is the unique criterion making feasible their comparison. The reason lies in the
mechanisms used in replication protocols for minimizing loss of computation in the presence of faults.

2

One such mechanism well known as checkpointing saves the objects’ states from time to time on
stable storage. Another mechanism is the object state transfer (synchronization) of a live or recovered
object to the states of the other replicas. In both cases the participating objects have to be
operationally quiescent, i.e. not to be in-between an invocation service or to be blocked, because of a
synchronous invocation of another object. In the course of a state transfer, the received invocations
cannot be processed, before the end of it. Thus, placement of checkpoints and state transfers has a
major impact on the perceived quality of service: excessive checkpointing (state transfers) result in
performance degradation, while deficient checkpointing (state transfers) incurs expensive recovery.
Moreover, in schemes composed of multiple policies for the constituent objects, checkpointing
performance also depends on the structural dependencies imposed by the objects’ invocation flows.
 In [6] we used the term “tightest effective checkpoint intervals” for the checkpoint (state transfer)
placement that yields a scheme’s optimum effectiveness. We also provided a heuristic decision-
making procedure that converges to the forenamed checkpoint placement. This procedure takes
advantage of an initially unknown number of simulation runs that depend on the number of interacting
objects. Its efficiency is bound to the observed effectiveness variations, because it trades the gains of
a checkpoint interval reduction, against the overhead imposed to the vast majority of service requests
(which are not affected by the occurred faults). This trade-off is suitable for the choice of a minimal
cost checkpoint placement, in respect to a specified service quality level. However, it is not an
efficient way for determining the required tightest effective intervals.
 In the present paper this problem is bypassed by the use of small size uniform experimental
designs with an a priori known number of runs.
 In related work we can refer only to the work published in [8], where the authors propose a hybrid
mathematical programming and analytic evaluation algorithm for a different trade-off problem: to
determine process replication or threading levels, such as to avoid unnecessary queuing delays for
callers or unnecessary high consumption of memory. Their approach while more efficient compared
to simulation metamodeling, does not allow taking into account different design concerns in a
combined manner (e.g. fault tolerance combined with load balancing and multithreading).
 On the other side, the most recent work regarding the estimation of the optimal checkpoint interval
is the one published in [2]. This work concerns with minimizing the program execution time and
maximizing the effectiveness in a single node in a mobile environment with handoffs. The whole
approach fits to a different computational environment and as other analytic models is also not
suitable for the evaluation of schemes composed of miscellaneous policies.
 Section 2 constitutes a short introduction to object-based fault tolerance. Section 3 outlines the
core evaluation approach. Section 4 introduces the used case system study and summarizes the
obtained results. Finally, the paper concludes with a discussion on future research prospects.

2 FAULT TOLERANCE IN OBJECT BASED SYSTEMS

Fault tolerance for object-based systems has been recently standardized [10] in a plain specification
(OMG FT-CORBA) of robust support for applications that require a high level of reliability. To
render an object fault tolerant, several replicas of the object are created and managed as a single
object group. The OMG FT-CORBA standard allows the definition of appropriate fault tolerance
properties, for each constituent object group. The supported strategies include request retry,
redirection to an alternative server, passive (primary/backup) replication and active replication.
 The provided support [9, 4, 11] offers protection against object faults that do not recur after
recovery. Some of them may be hardware dependent (e.g. insufficient memory) and others may be
attributed to media failures, power outages, human lapses, catastrophic events, the use of local timers,
the use of multithreading etc. The faults conform to the fail-stop model, which means that objects fail
by crashing, without emission of spurious messages. There are not any assumptions about the network
topology or the protocols making up the interprocess communication service, except that
communication is accomplished through loss less FIFO channels. Network partitioning and
commission faults are not addressed.

3

 In active replication all the group replicas execute each request independently, but in the same
order. Checkpointing on a regular basis is not required. In passive replication only one object replica -
the primary - executes the methods invoked on the group. Checkpointing takes place on a regular
basis. In the presence of a fault, a backup replica is promoted to be the new primary. The state of the
new primary is restored to the last checkpointed state of the old primary and the requests logged since
the last saved checkpoint are then reapplied.
 A fault tolerance scheme for an object-based system may be composed of miscellaneous policies.
The term miscellaneous refers to the replication styles for the objects that comprise the system, with
possibly different fault tolerance properties (e.g. different checkpoint placement). The simulator
described in [5] allows us to realistically model the interaction effects regarding:

• the simultaneous resource possession, caused by the synchronous, often nested object
invocations, which block the callers, until they get a reply,

• the hardware resource contention, as a result of the chosen replica placement,
• the load and the blocking costs caused by the recurrent checkpointing activities and the

state transfers between replicas of the same group and
• the load, caused by a replica restart (repair) or re-invocation of the logged requests,

according to the OMG FT-CORBA specification [10].

3 THE CORE EVALUATION APPROACH

The core evaluation approach allows the comparison of (combined) fault tolerance (and load
balancing) schemes, with at least one recurrent checkpointing activity. A scheme’s effectiveness is
measured by the mean of the fault-affected requests’ response times. We consider a service request to
be affected by the occurred faults if

• its dispatch to the assigned service object is delayed or
• its dispatch causes the generation of synchronous invocations that are queued somewhere

in the system,
as a result of at least one detected object fault. Regarding actively replicated objects a synchronous
invocation is considered to be affected by an object fault, if it is delayed because of blocking to
enforce operational quiescence and/or a state transfer for an object replica recovery.
 More frequent checkpoints are considered to be effective, when they result in a reduction of the
fault-affected requests’ response times. If there is no chance of further improvement for all possible
interval reductions in a vector of n intervals - where n the number of objects with a recurrent
checkpointing activity -, this vector specifies the tightest effective checkpoint intervals.
 For a (combined) fault tolerance (and load balancing) scheme, the tightest effective intervals
determine the minimum response times that the scheme may achieve for the fault-affected service
requests. We say that this vector characterizes the scheme’s optimum effectiveness for the applied
object fault model. These checkpoint intervals constitute the unique criterion that makes feasible the
comparison with other schemes composed of possibly different replication policies, checkpoint
placement mechanisms and/or load balancing strategies.
 The tightest effective intervals were found by metamodeling [7] based on a small size uniform
experimental design with an a priori known number of runs. The uniform experimental designs [3]
have been suggested for computer and industrial experiments specifically for cases where the
underlying relationships are unknown. They are space-filling designs with experimental points
scattered uniformly on the domain. They can explore complicated nonlinear relationships between the
response variable and the factors with a reasonable number of runs and have been proved robust to the
underlying model specifications. A great number of them has been tabulated in [12], where we also
selected the design used in our work.
 The checkpoint intervals that were found to be significant were set to the values minimizing the
fault-affected response times. For the non-significant ones or when multiple minima were detected,
the values minimizing the fault-unaffected response times (lowest cost fault tolerance) were selected.

4

4 A CASE SYSTEM STUDY

The system model used (Figure 1) in the case study is comprised of four (4) interacting state owning
objects (obj1, obj2, obj3, obj4) and four (4) stateless service objects (instances of the class
SrvRequestAccepting). Received class-1 and class-2 requests are assigned to the available
service objects in a random probabilistic fashion with equal probabilities.

:SrvRequestAccepting obj1:classA obj2:classB obj4:classDobj3:classC
srv_request

[Class1Request]

[Class2Request]

[Class1Request]

Figure 1. Message sequence for the objects of the case system

STATE
TRANSFER
COMPLETE

P:N P:F

P:RP:ST

FAULT RESTART AS
BACKUP

RESTART AS
PRIMARY

REPLAYED
LOG

STATE
TRANSFER

RESTART AS
PRIMARY

FAULT

FA
ULT

(b)

REPLAY THE
LOGG

STATE
TRANSFER
COMPLETE

B:N B:F

B:RB:ST

FAULT

RESTART AS
BACKUP

RESTART
AS BACKUP

STATE
TRANSFER FAULT

FA
U

LT

(a)

RESTART AS
PRIMARY

STATE
TRANSFER

(a) the primary replica (b) a backup replica

Figure 2. Passive replication with one primary and one backup object per group

 Objects are replicated according to the passive policy of Figure 2, with one primary and one
backup per object group. We consider the concurrent execution of the two replicas that alternate in
the primary and the backup roles, as shown respectively in the state transitions of (a) and (b). State
transfers (for the state owning objects) correspond to backup state updates for a live backup and
always result in a persistent checkpoint. They take place on a regular basis according to the specified
checkpoint placement. Thus the applied composite schemes result in checkpoint placements specified
as quadruples. Generally, in any composite scheme, only the constituent policies that are based on
regular checkpointing contribute to the number of experiment’s factors. This justifies the applicability
of the proposed tightest effective intervals based evaluation in real size applications and services.
 State transfer transitions (P:N→P:ST, B:R→B:ST) are also used as a state update of a recovered
backup to make feasible a potential replacement of the primary in case of fault. When a failed primary
is detected, the corresponding backup replaces it and a replica restart is then scheduled to occur
(P:F→(b)) for the new backup. A recovering primary (P:R) either restarts or executes the invoked
requests having logged since the last checkpoint. A recovering backup (B:R) either restarts or waits
for a state transfer (B:R→B:ST), to become operational (B:N). Each replica restart restores it to the
last checkpointed object state. According to the OMG FT-CORBA specification [10], re-invoked
requests are detected and the same operations are not performed more than once.
 The state transitions of Figure 2 are used in two distinct fault tolerance schemes:

5

• one with load-dependent checkpoint intervals (LDSC) and
• another one with periodic checkpoint intervals (PSC),

for the objects, which own state. The first scheme assumes a specified number of serviced invocations
between checkpoints and the second one results in a fixed time interval between them. Resource
consumption for the performed state transfers depends on the object state sizes and the required CPU
time (state transfer speeds in sec/KB).
 The four (4) service objects (obj0, obj5, obj6, obj7) are placed to the available nodes as
specified in Table 1. Computational resource consumption is exponentially distributed both for the
invoked requests and for the performed state transfers. Collocated object replicas are processed in a
processor sharing discipline and each of them is placed on a separate object server. Finally, Table 1
summarizes the used parametric object fault model.

Table 1. System model parameters

service objects: objX:SrvRequestAccepting (X=0, 5, 6, 7)
load balancing: random probabilistic with equal probabilities of request assignment to service object X
class 1 request arrivals: exponential with rates (sec)
class 2 request arrivals: exponential with rates (sec)

2.6
2.6

2.4
2.4

2.2
2.2

 obj1:classA obj2:classB obj3:classC obj4:classD
object state size (KB): 0.9 1.1 0.8 0.6

object replicas:
rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

repX0
objX

repX1
objX

class 1 service (exp.) 0.52 0.57 0.6 0.6 0.83 0.83 0.32 0.32 0.2 0.2
class 2 service (exp.) - - 0.28 0.28 0.83 0.83 - - 0.2 0.2
reinvoked requests (exp.) - - - - - - 0.1 0.1 - -
state transfer speed -sec/KB
(exp.)

0.8 0.8 0.6 0.6 0.6 0.6 0.8 0.8 - -

object replicas placement:
process node 1 rep00 (obj0) rep51 (obj5) (stateless) service object
process node 2 rep01 (obj0) rep50 (obj5) (stateless) service object
process node 3 rep11 (obj1) rep21 (obj2) rep40 (obj4) state owning object
process node 4 rep10 (obj1) rep20 (obj2) rep41 (obj4) state owning object
process node 5 rep30 (obj3) state owning object
process node 6 rep31 (obj3) state owning object
process node 7 rep60 (obj6) rep71 (obj7) (stateless) service object
process node 8 rep61 (obj6) rep70 (obj7) (stateless) service object

fault rarity (r): 21600 sec

object replicas:
repX0
objX

repX1
objX

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

fault process (exp.) 2*r 2*r 2*r 2*r r r r r 2*r 2*r
restart times (exp.) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
fault monitoring interval -
periodic (sec)

15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Table 2. Optimal checkpoint placements and fault-affected response times (effectiveness)

request arrival rates
(class-1 and class-2)

fault tolerance
scheme

checkpoint
interval obj1

checkpoint
interval obj2

checkpoint
interval obj3

checkpoint
interval obj4

selected optimal
placement

class-1 fault-
affected

class-2 fault-
affected

indicative
QoS

improvement
2.2 2.2 LDSC-based 100 requests 100 requests 100 requests 100 requests 100 100 100 100 115.2 sec 115.737 sec 88 %
2.2 2.2 PSC-based 97 sec 97 sec 97 sec 97 sec 97 97 97 97 129.291 sec 131.020 sec 83 %
2.4 2.4 LDSC-based non

significant
non
significant

12 requests non
significant

70 26 12 70 35.2019 sec 34.4863 sec 39 %

2.4 2.4 PSC-based 97 sec 23 sec 23 sec 97 sec 97 23 23 97 34.1743 sec 33.8495 sec 33 %
2.6 2.6 LDSC-based non

significant
12 requests 12 requests non

significant
56 12 12 56 26.2596 sec 25.6086 sec 46 %

2.6 2.6 PSC-based non
significant

23 sec 23 sec non
significant

60 23 23 60 24.7089 sec 24.2021 sec 41 %

 For the four checkpoint placements (factors) and for three levels (namely 12, 56 and 100 for the
LDSC-based scheme and 23, 60 and 97 for the PSC-based one) per factor, the chosen uniform design
required only nine (9) runs in each load case. Table 2 summarizes the obtained optimal checkpoint
placements, the selected optimal placement (the one with the minimum fault-unaffected response
times) and the resulted fault-affected response times (effectiveness). PSC-based fault tolerance is
equally effective to the LDSC-based one, in moderate load levels (arrival rates: 2.4 and 2.6), but falls
short in high load levels (arrival rate: 2.2). The last column quantifies an indicative response time
improvement, compared to the worst-case adjustments from those included in the experimental
designs. Appropriate checkpoint placement results in response time reductions of up to 88%, for the
heavy loaded system cases.

6

 Finally, the tightest effective intervals based evaluation reveals the load levels (arrival rate: 2.2)
for which the effectiveness of the tested schemes can be unacceptable. This behavior is related to the
resulted queue lengths in the available service objects. Large queue lengths cause late request
dispatching and in case of an object fault, the entire population of the queued requests contributes to
the obtained mean. If a load level with the forenamed behavior cannot be excluded, this suggests the
use of active replication in one or more objects. Table 3 summarizes the fault tolerance costs for the
selected optimal checkpoint placements.

Table 3. Fault tolerance costs for the optimal checkpoint placements

request arrival rates
(class-1 and class-2)

response times
without f. t.

(class-1)

response times
without f. t.

(class-2)

% overhead for the fault-
unaffected requests

(LDSC-based, class 1)

% overhead for the fault-
unaffected requests

(LDSC-based, class 2)

% overhead for the fault-
unaffected requests

(PSC-based, class 1)

% overhead for the
fault-unaffected requests

(PSC-based, class 1)
2.2 2.2 19.0543 sec 18,1990 sec 14.5 % 15.3 % 28.7 % 29.8 %
2.4 2.4 9.7565 sec 8.9463 sec 25.7 % 27.7 % 25.9 % 27.6 %
2.6 2.6 7.1186 sec 6.3596 sec 22.5 % 24.5 % 18.8 % 19.6 %

5 CONCLUSION

For (combined) fault tolerance (and load balancing) schemes, simulation metamodeling on the basis
of small size uniform experimental designs allowed us to identify the significant checkpoint intervals
and the optimal checkpoint placements with the minimum possible cost. The identified tightest
effective intervals constitute the unique criterion that makes feasible the comparison of schemes
composed of possibly different replication policies, checkpoint placement mechanisms and/or load
balancing strategies.
 Future research prospects include the development of a UML reliability-modeling framework like
the one of [1] and the device of a coherent multiobjective optimization method, for fault tolerance
performance evaluation.

REFERENCES

[1] Balsamo, S. & Marzolla, M. (2003). Simulation modeling of UML software architectures, Proc. of the

European Simulation Multiconference, Society for Computer Simulation, Nottingham, 562-567
[2] Chen, X. & Lyu, R. (2003). Performance and effectiveness analysis of checkpointing in mobile

environments, Proc. of the 22nd IEEE Symposium on Reliable Distributed Systems (SRDS 03), Florence,
Italy, 131-140

[3] Fang, K. T. & Lin, D. K. J. (2003). Uniform experimental designs and their applications in industry,
Mathematics Department Technical Report No. 296, Hong Kong Baptist University

[4] Felber, P., Guerraoui, R. & Schiper, A. (2000). Replication of CORBA Objects, Distributed Systems,
Lecture Notes in Computer Science 1752, Springer Verlag, 254-276

[5] Katsaros, P. & Lazos, C. (2003). A simulation test-bed for the design of dependable e-services, WSEAS
Transactions on Computers, WSEAS Press, 4/2, 915-919

[6] Katsaros, P. & Lazos, C. (2004). Optimal object state transfer – recovery policies for fault tolerant
distributed systems, Proc. of the International Conference on Dependable Systems and Networks (DSN 04),
IEEE Computer Society - IFIP, Florence, Italy

[7] Katsaros, P., Angelis, L. & Lazos, C. (2001). Applied multiresponse metamodeling for queuing network
simulation experiments: problems and perspectives, Proc. of the 4th EUROSIM Congress on Modelling and
Simulation, EUROSIM, Delfts, The Netherlands

[8] Litoiu, M., Rolia, J. & Serazzi, G. (2000). Designing process replication and activation: a quantitative
approach, IEEE Transactions on Software Engineering, 26/12, 1168-1178

[9] Narasimhan, P., Moser, L. E. & Melliar-Smith, P. M. (2002). Strong replica consistency for fault-tolerant
CORBA applications, Journal of Computer Systems Science and Engineering

[10] OMG (2001). Fault tolerant CORBA, Object Management Group, TC Doc. 2001-09-29, September 2001
[11] Szentiványi, D. & Nadjm-Tehrani, S. (2002). Building and evaluating a fault-tolerant CORBA

infrastructure, Proc. of the Workshop on Dependable Middleware-Based Systems (WDMS'02),
International Conference on Dependable Systems and Networks (DSN 2002), Washington, DC, USA

[12] Uniform Design web pages (2000). http://www.math.hkbu.edu.hk/UniformDesign/

AN RT-UML MODEL FOR BUILDING
FASTER-THAN-REAL-TIME SIMULATORS*

Dimosthenis Anagnostopoulos1, Vassilis Dalakas2,
Georgios-Dimitrios Kapos1, Mara Nikolaidou2

1Harokopio University of Athens, 70 El. Venizelou Str, 17671, Athens, Greece

{dimosthe, gdkapos}@hua.gr
2University of Athens, Panepistimiopolis, 15771, Athens, Greece

{vdalakas, mara}@di.uoa.gr

ABSTRACT

Faster-than-real-time simulation (FRTS) is widely used for training, control and decision making
purposes. FRTS experimentation proves to be rather demanding, requiring a consistent specification for
developing such systems. This paper presents guidelines for an implementation framework, based on an
industry standard, the Unified Modeling Language (UML). In particular, using the OMG UML Profile
for Schedulability, Performance and Time Specification (abbreviated by Real-Time UML or RT-UML),
specific timing attributes can be included in the derived UML model, which makes FRTS independent
of the application examined. Thus, the implementation of relative program modules can be analyzed and
realized, following the guidelines of this model, ensuring the reliability of the results within
predetermined time frames.

KEYWORDS

Faster-than-Real-Time Simulation, RT-UML, Simulation Methodology, Systems Analysis.

1 INTRODUCTION

FRTS is used when attempting to reach conclusions for the behavior of a real system in the near future
[3]. In this type of simulation, model execution is concurrent with the evolution of the real system. Thus,
the advancement of simulation time must occur faster than real world time. Furthermore, FRTS
implementation becomes more demanding, due to the hard requirements real time systems have for
interacting with other agents [4].
 In [1] a conceptual methodology for FRTS was described, aiming at providing a framework for
conducting experiments dealing with the complexity and such requirements. The following simulation
phases have been identified: modeling, experimentation and remodeling. During experimentation, both
the system and the model evolve concurrently and are put under monitoring. Data depicting their
consequent states are obtained and stored after predetermined, real-time intervals of equal length, called
auditing intervals. In the case where the model state deviates from the corresponding system state,
remodeling is invoked. This may occur due to system modifications, which involve its input data,
operation parameters and structure. To deal with system modifications, remodeling adapts the model to
the current system state. When model modifications are completed, experimentation resumes.
Remodeling can also be invoked when deviations (expressed through appropriate statistical measures)
are indicated between the system and the model due to the stochastic nature of simulation, even when
system parameters/components have not been modified.
 Experimentation phase thus comprises monitoring, that is, obtaining and storing system and the
model data during the auditing interval, and auditing, that is, examining a) if the system has been

*This research was supported in part by Pythagoras program (MIS 89198) co-funded by the Greek Goverment (25%) and the European
Union (75%).

modified during the last auditing interval (system reformations), b) if the model no longer provides a
valid representation of the system (deviations), and c) if predictions should be used in plan scheduling.
Evidently, if conditions (a) or (b) are fulfilled, remodeling is invoked without examining condition (c).
 Specific measures are monitored to determine whether system reformations have occurred. The
variables used to obtain the corresponding values are referred as monitoring variables. Auditing
examines monitoring variables corresponding to the same real time points (i.e. the current system state
and simulation predictions for this point) and concludes for the validity of the model.
 To achieve a consistent transition from the analysis of FRTS systems to the implementation of the
corresponding program modules, a detailed and multi-facet specification is provided here, using UML
[5, 6]. The descriptive capabilities of distinct types of UML diagrams are utilized to specify different
aspects of FRTS systems: distinct entities and their roles, overall down to detailed logic of FRTS system,
synchronized communication, and data specification. Furthermore, in the proposed specification we use
elements from the RT-UML [7]. This profile, also used in [2], enables the detailed specification of
critical time and synchronization requirements for FRTS components and the overall performance
evaluation. Therefore, a detailed and integrated specification for FRTS systems is given, leading to
standardized implementations of such systems that meet strict time requirements. Implementation may
also be facilitated with the use of tools that support code generation given a UML model. Construction
and execution of FRTS can now be performed assuring the validity of the results.
 In section 2 we review RT-UML used in the specification of FRTS systems. An overview of the
model, emphasizing on the identification of the discrete roles for actors and entities within FRTS, is
presented in section 3. Due to the large extend of the detailed FRTS specification, section 4 provides
only sample diagrams that specify how FRTS components implement their functionality in terms of
events, activities, and actions, all of which have precise time orientation. Finally, in section 5, some
conclusions are drawn.

2 RT-UML OVERVIEW

In UML, system modeling is based on different kinds of diagrams providing views of three main aspects
of the system: structure, dynamic behavior, and management. In this paper, we define the structural and
behavioral characteristics of FRTS with use case, class, activity, and sequence diagrams.
 The UML diagrams just mentioned, do not provide the required degree of precision (regarding
timing issues) for the specification of FRTS. Thus, we propose the use of RT-UML, which enhances
UML diagrams. RT-UML does not propose new model analysis techniques, but it rather enables the
annotation of UML models with properties that are related to modeling of time and time-related aspects.
Therefore, timing and synchronization aspects of FRTS components are defined and explained in terms
of standard modeling elements. RT-UML has a modular structure that allows users to use only the
elements that they need. It is divided into two main parts (General Resource Modeling Framework and
Analysis Models) and is further partitioned in six subprofiles, dedicated to specific aspects and model
analysis techniques. To give emphasis on time and concurrency aspects of FRTS systems, one is able to
use elements only from the General Time Modeling and General Concurrency Modeling subprofiles.
 Each subprofile provides several stereotypes with tags that may be applied to UML models. A
stereotype can be viewed as the way to extend the semantics of existing UML concepts (activity, method,
class, etc.). For example, a stereotype can be applied on an activity, in order to extend its semantics to
include the duration of its execution. This is achieved via a new tag added to the activity, specifying the
execution duration. Stereotypes define such tags and their domains.
 The proposed FRTS model consists of RT-UML-enhanced diagrams, which are annotated according
to the conventions used in the RT-UML profile specification and its examples [7]. Stereotypes applied
to classes in class diagrams are displayed in the class box, above the name of the class (a in Figure 1).
However, when tag values need to be specified for a certain stereotype, a note is also attached (b in
Figure 1). In sequence diagrams, event stereotypes are displayed over the events, while method
invocation and execution stereotypes are displayed in notes (c in Figure 1). In activity diagrams, notes
are also used to indicate the application of a stereotype on an activity, state or transition (d in Figure 1).

ObjectA ObjectB

<<EventStereotype>>

<<MethodInvocationStereotype>> <<MethodExecutionStereotype>>

ClassName ClassName
<<StereotypeName>> <<StereotypeName>>

{tag1=value1,

tag2=value2, ...}

Activity

State1

State2

<<ActivityStereotype>>

<<StateStereotype>>

<<TransitionStereotype>>

(a) (b)

(c) (d)

<<StereotypeName>>

Figure 1. RT-UML notation

 The RT-UML stereotypes used in the proposed FRTS model are briefly discussed here. In class
diagrams of this paper we use the CRconcurrent and RTtimer stereotypes. CRconcurrent is used for
classes of objects that may be executed concurrently. The method invoked when the object moves to
“executing” state is specified with the CRmain tag. RTtimer models timer mechanisms. It defines two
tags: tag RTduration specifies the time period after which the timer produces an event, while RTperiodic
indicates whether the timer is periodic or not. RTaction is used in activity diagrams for methods,
specifying the time instance they start (tag RTstart) and their duration (tag RTduration).

3 FRTS: A HIGH-LEVEL DESCRIPTION

This section is an overview of FRTS systems in terms of UML constructs. The use case diagram
depicted in Figure 2 presents the entities involved in FRTS. Both the system and the model are separate
from the main module of FRTS and can be viewed as distributed systems. System environment (SE)
represents the actual system, as well as a surrounding mechanism which is responsible for performing
monitoring of the real system. We consider it as a separate entity that interacts with the FRTS system.
Model environment (ME) includes the model and its execution environment (MEE), while the FRTS
System process is the software module responsible for controlling FRTS. Finally, the user is the actor
that enables the whole process, defining the case study.
 In particular, the user provides the experiment specifications and manages the FRTS System process
by starting or stopping the experiment. System and model environment entities provide raw system data
and raw model data, respectively. How these values are collected and stored in both environments is not
of our concern. We examine only the interchange of data. The FRTS System process performs Auditing
to identify potential deviations between the model and the system. In case such a deviation is indicated
exceeding a respective remodeling threshold, remodeling is invoked (Remodeling), which results in the
construction of a new model that replaces the one currently used (Model management).
 The sequence diagram in Figure 3 emphasizes the communication between the entities described in
the previous diagrams (User, FRTS System, ME and SE), in terms of message exchange. Initially, the
user provides the experiment specifications (SetExperimentSpecifications) and starts the process. Thus,
the FRTS System starts system monitoring (message to System Environment), initializes and starts the
model, and starts model monitoring (messages to ME). In periodic, predefined time instances Audit (or
state audit) is invoked. The model is then paused and the values of monitoring variables are retrieved
from both the SE and ME (with GetSystemMonitoringInformation and GetModelMonitoring
Information). Depending on the result of auditing the model is resumed (valid audit) or remodeling is
performed and the old model is deleted (invalid audit).

Raw model data provision

Model Environment

System data provision

System Environment

Experiment specifications
provision

User

RemodelingModel management Auditing

FRTS Management

start/stop FRTS

UsesUses Uses

FRTS System

Figure 2. FRTS detailed use case diagram

 : User
 : FRTS Abstract

System : Model Environment : System Environment

Depending on the
audit result, either
the model is
resumed, or
remodelling is
performed and
the current model
is deleted.

SetExperimentSpecifications

Start

Audit

Remodel

InitializeModel

StartModel

StartModelMonitoring

PauseModel

ResumeModel

DeleteModel

StartSystemMonitoring

GetSystemMonitoringInformation

GetModelMonitoringInformation

SystemMonitoringVars

ModelMonitoringVars

Figure 3. Main sequence diagram

4 FRTS System Specification

The FRTS system design is based on a set of classes (Context, Control, Timer, StateAuditor, Auditor,
Remodeler, and UserInterface) and interfaces (IAuditor, Monitor, and SystemMonitor,
ModelExecutionEnvironment), depicted in the class diagram of Figure 4. The Context is used for storing
the experiment specifications, references to the system monitor and the model environment, and
monitoring variable values used for state auditing. The Control initiates the FRTS process and the Timer
is responsible for producing StateAudit and Audit events. StateAuditor, Auditor, and Remodeller are
responsible for performing the homonymous operations. Both StateAuditor and Auditor classes
implement the IAuditor interface. Monitor models the abstract concept of a variable values monitor,
which is extended by interfaces SystemMonitor and ModelExecutionEnvironment. No classes are
specified for the system monitor and the model environment, since they are not part of the FRTS system.
FRTS components require only communication interfaces with the system monitor and the model
environment. Class UserInterface is simply the means for introducing user requests and data.

Auditor

audit()
buildAuditTree ()

<<CRConcurrent>>

Remodeller

remodel()

<<CRConcurrent>>

Control

start()

<<CRConcurrent>>

Monitor

startMonitoring ()
getVals() : MonitoringVars ModelExecutionE

nvironment

initializeModel ()
startModel()
pauseModel()
resumeModel()
deleteModel()

Timer

duration : Time
mult : Integer

<<RTnewTimer>> Timer()
start()

<<RTtimer, CRconcurrent>>

UserInterface

StateAuditor

audit()

<<CRConcurrent>>

<<CRconcurrent>>
{CRmain="start()"}
<<RTtimer>>
{RTduration=d,
RTperiodic=true}

<<CRconcurrent>>
{CRmain="audit()"}

<<CRconcurrent>>
{CRmain="stateAudit()"

<<CRconcurrent>>
{CRmain="remodel()"}

Context

expSpecs : ExperimentSpecs
systemMonitor : Monitor

modelMonitor : ModelExecutionEnvironment
lastStateMonVarsVals : MonitoringVars

setExperimentSpecs ()
setModelInitializationParams ()

getSpecsFor()
getStateVarVal()
setStateVarVal()

IAuditor

audit()

<<CRconcurrent>>
{CRmain="start()"}

SystemMon
itor

getStateVarsVals ()

Figure 4. The main FRTS system classes

 Classes Control, Timer, StateAuditor, Auditor, and Remodeler are intended to run on separate threads
and therefore have the CRconcurrent stereotype. Objects of each of these classes operate independently
and occasionally simultaneously. The CRmain tag of CRconcurrent stereotypes indicates the method
that is executed when objects of each class are activated. Class Timer is a periodic producer of events, as
indicated by the RTtimer stereotype.
 The activity diagram of Figure 5 specifies the functionality of the start() method of Control. Each of
the activities is annotated with the appropriate RTaction stereotype note. These are used to specify the
duration of the activities. The lower part of each activity defines the actions executed (do/) or messages
sent (do/^). Overall duration of method start() may be calculated as an amount of 6*b+c ms, where b is
the time needed for a basic operation to be performed (arithmetic operation, method invocation, etc.)
and c is a parameter that depends on the specific FRTS application and the experiment specification.
Overall duration of start() refers to the duration from the time instance when the user sends a start()
event until everything has been initialized and the Timer has been started.

Start System Monitoring

do/ ^context.systemMonitor .startMonitoring ()

Initialize Model

do/ ^control.modelMonitor .initializeModel (control.expSpecs.modelInitParams)

Start Model

do/ ^context.modelMonitor .startModel()

ModelInitialized

Start Model Monitoring

do/ ^context.modelMonitor .startMonitoring ()

ModelStarted

Create Timer

do/ m=context.expSpecs.auditingInterval /context.expSpecs.stateInterval
do/ ^Timer.new(context.expSpecs.stateInterval ,m)

Start Timer

do/ ^timer.start ()

TimerCreated

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(c,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'c'
depends on
modeling/remodeling
etc.

Figure 5. Activity diagram for method start of class Control

5 CONCLUSIONS

In FRTS model execution is concurrent with the evolution of the real system. Thus, FRTS
implementation becomes more demanding, due to the hard requirements real time systems have for
interacting with other agents. To achieve a consistent transition from the analysis of FRTS systems to
the implementation of the corresponding program modules, a detailed and multi-facet RT-UML is
provided in this paper. The descriptive capabilities of distinct types of diagrams are utilized to specify
different aspects of FRTS systems: distinct entities and their roles, overall down to detailed logic of
FRTS system, synchronized communication, and data specification. A detailed and integrated
specification for FRTS systems is given, leading to standardized implementations of such systems that
meet strict time requirements. Therefore, construction and execution of FRTS can be performed
assuring the validity of the results.

REFERENCES

[1] Anagnostopoulos, D., Nikolaidou, M., & Georgiadis, P. (1999). A Conceptual Methodology for Conducting

Faster Than Real Time Experiments. Transactions of the Society for Computer Simulation International, 16/2,
70–77.

[2] Bertolino, A., Marchetti, E., & Mirandola, R. (2002). Real-Time UML-based Performance Engineering to Aid
Manager’s Decision in Multi-project Planning, in: The Proceedings of the Third International Workshop on
Software and Performance (WOSP), (pp. 251–261), ACM Press, Rome.

[3] Cleveland, J. et al. (1997). Real Time Simulation User’s Guide. NASA, Langley Research Center: Central
Scientific Computing Complex.

[4] Fishwick, P., & Lee, K. (1999). OOPM/RT: A Multimodelling Methodology for Real-Time Simulation. ACM
Transactions on Modelling and Computer Simulation, 9/2, 141–170.

[5] OMG Unified Modeling Language Specification, v1.5, on-line at http://www.omg.org/docs/formal/03-03-01.pdf
[6] Rumbaugh, J., Jacobson, I., & Booch, G. (1998). The Unified Modeling Language Reference Manual, Addison

Wesley.
[7] UML Profile for Schedulability, Performance, and Time Specification, v1.0, on-line at

http://www.omg.org/docs/formal/03-09-01.pdf

	EuroSim04 Congress
	Menu
	Preface
	Committees
	Session Index
	Program
	Abstracts
	Proceedings
	Main Sessions
	Control Systems.
	Complex Systems.
	Component Models and Component Based Modeling.
	Distributed Systems.
	Decision Support Systems.
	Discrete Event Simulation.
	Fuzzy simulation and Soft Computing.
	Environmental and Social Modes.
	Multi-agent Based Systems.
	Network Simulation.
	Optimization by Simulation.
	Simulation Software and Methodology of Systems.
	Biomedical Engineering and Systems.
	Computational Physics.
	Robotics.
	Virtual Reality and Learning Tools.

	Special Sessions
	Modeling and Simulation of Distributed Systems and Networks.
	Modeling and Simulation - All Problems Solved!??
	Critical Infrastructures Protection - the Simulation Approach.
	Modeling and Simulation of Object Based Software Systems.
	Education in Simulation.
	Simulation and Optimisation.
	Alternative Methods in Modeling and Simulation.
	Simulation of Manufacturing Systems and Extended Enterprises.
	Sim-Serv Session.

