
An Application-Oriented Approach for Distributed System
Modeling and Simulation

 M. Nikolaidou D. Anagnostopoulos
 Department of Informatics Department of Geography
 University of Athens Harokopion University of Athens
 Panepistimiopolis, 15784 70 El. Venizelou Str, 17671
 Athens, Greece Athens, Greece
 Tel.: (+) 301 – 7275614 Tel.: (+) 301 – 9549171
 Fax: (+) 301 – 7275214 Fax: (+) 301 – 7275214
 Email: mara@di.uoa.gr Email: dimosthe@hua.gr

Abstract
Complexity of applications operating in a network

environment has been considerably increased, since
numerous architectural models, such as the client/server
model and its extensions, have lately emerged. When
dealing with distributed applications, network modeling
is not so demanding and modeling solutions for widely
used network components are already adopted by
commercial tools.

 In this paper, we introduce a modeling approach for
distributed systems, putting the emphasis on distributed
applications. This approach enables the analytical
description of applications on the basis of predetermined,
high-level operations (or actions) which can be
customized to conform to specific architectural models.
Operations are ultimately expressed in terms of primitive
actions. Through this multi-layer decomposition scheme,
in-depth analysis of application mechanisms is promoted.

The modeling approach is oriented towards
performance evaluation through simulation and a
simulation tool has been constructed for this purpose.
Modeling examples and a case study for a distributed
database banking system are also presented.

1. Introduction

The outburst in network technology gave rise to
different types of applications operating in a network
environment. Most are based on the client-server model
and its extensions, such as the two-tier and three-tier
models discussed in [1], and are generally called

distributed applications. Distributed applications and the
network infrastructure form a distributed system ([2]).
Most commercial information systems, such as banking
and flight control systems, e-mail and WWW
applications, distant learning environments and workflow
management systems fall in this category. Development
of standards, such as CORBA, allowing the interaction
between heterogeneous, autonomous applications, and of
programming languages, such as Java, providing native
distributed programming support, establish a well-defined
platform for distributed application development ([3]).

In current research, a number of cases with different
orientation can be referenced. Simulation modeling of
customized applications is usually performed in an
analytical way, using mathematical models (i.e. the
corresponding functions - distributions) to represent
network load generation ([4], [5], [6]). Approaches
exploiting whether the overall system supports the
requirements imposed by specific, customized
applications do not emphasize the way applications
operate. Application performance exploitation is thus
unavoidably depended on the network infrastructure,
often overlooking the complexity of application operation
mechanisms. Both standardization and complexity
increase issues intensify the significance of operation
mechanisms. Even though distributed applications depend
on the supporting network, application mechanism
modeling must be strongly emphasized to carry out an in-
depth performance analysis.

In [7], [8], [9] and [10], object-oriented modeling is
adopted for network entities and applications. Emphasis
is given to networking issues and application modeling is
performed at the primitive action layer, using a series of
discrete requests for processing, network transfer, etc., in

terms of predefined primitive actions. This, however,
cannot be effective, since application decomposition is
not supported through a well-defined mechanism. The
modeling schemes introduced are not oriented towards
specific architectural models and application description
is performed rather abstractly. Determination of the
effects caused by application operation can not be
accomplished without emphasizing the operation
mechanisms, making rather improbable to accurate
estimate application load. Extendibility and wide
applicability, to support variations of the architectural
models as well as customized implementations, are also
not supported.

Establishing a generic modeling scheme is required
due to the heterogeneity encountered in the description of
application mechanisms. This scheme must be general to
facilitate the representation of different types of
applications, i.e. primitive (e.g. FTP) and complex (e.g.
distributed databases), according to common modeling
principles, and the interaction between applications and
the underlying network.

In this paper, we propose a modeling framework for
distributed system entities that contributes to the in-depth
description of application operation mechanisms.
Emphasis is given on the integration of individual
guidelines into a generalized modeling framework for
distributed systems and not on network modeling, since
traditional approaches have already provided effective
solutions.

An integrated environment, the Distributed System
Simulator (DSS) aiming at the performance evaluation of
distributed systems was constructed and is also presented.
DSS enables the exploitation of various types of
distributed applications, including user-defined ones, as
well as the exploitation of the network infrastructure,
through its graphical components. Object-oriented
modeling is employed for distributed system entities and
component preconstruction is supported. Network and
application models reside in model libraries. Performance
issues are also addressed, since it is critical to guarantee a
minimum time delay when simulating an entire
distributed system architecture.

Key features of the application modeling scheme
introduced are the provision of a multi-layered
decomposition mechanism for distributed applications in
terms of predefined, primitive actions. Application
operation is analyzed on the basis of well-established
architectural models, and this process is supported
through pre-defining high level operations (action).

The rest of the paper is organized as followed: In
section 2, modeling issues are addressed, emphasizing the
generalized modeling scheme used to describe distributed
applications. DSS architecture is briefly presented in
section 3, where extendibility and validation issues are

also discussed. A case study, where DSS is used for
performance evaluation of a distributed banking system is
presented in section 4, while conclusions reside in section
5.

2. Distributed System Modeling

Within the DSS framework, distributed applications
are modeled on the basis of the client-server model,
consisting of two kinds of interacting processes: clients,
which are invoked by users requesting service, and
servers, which provide services and are invoked by other
processes. Distributed architecture modeling is based on
the workstation-server and the processor-pool model,
both of which are widely acceptable ([2]). Client
processes are executed on workstations, while server
processes are executed on dedicated servers or processor
pools.

Since distributed systems are multi-entity systems, a
modular approach must be employed for the in-depth
description of application operation mechanisms. In
simulation modeling, modularity often results in a
hierarchical structure, according to which components are
coupled together to form larger models ([11]). This
structure corresponds to the composition scheme depicted
in figure 1. Object-oriented modeling provides an almost
natural representation of distributed system components.

When extending to elementary (e.g. process) and
composite entities (e.g. network node), hierarchical
layering enables the construction of complex models
through extending the behavior of existing objects and
ensures that models of a single entity, organized in a
single class hierarchy, are accessed through a common
interface, using polymorphism ([12]). Since
preconstructed models must correspond to all potential
components of a distributed system, composite models,
built on elementary ones, must be provided.
Implementation of this scheme proves to be notably time-
consuming when not supported by automated generation
and manipulation capabilities, as the ones provided by
DSS. However, it promotes model availability and
reduces the time required when composing customized
models.

Distributed systems are modeled as a combination of
two types of entities: distributed application and network
infrastructure entities. Both are described in terms of their
elementary components. The network infrastructure
consists of nodes, either processing (depicting
workstations and processor pools) or relay (active
communication devices – e.g. routers), storage devices
and communication channels. Distributed applications are
described in terms of processes (clients and servers), files
and user profiles. Processes and files are elementary
components. Files are accessed only through servers of a

specific type (File Servers). User behavior is modeled
through User Profiles.

The modeling scheme introduced for the
representation of distributed architectures is depicted in
figure 1, as a decomposition diagram.

Distributed
System

Distributed
Applications

Network
Infrastructure

NetworkInternetwork

Process

User Profile

File

Processing
NodeRelay Node

Communication
Channel

Relay Node

Communication
Channel

consist of

produce input
for

Figure 1. Distributed system decomposition scheme

2.1 Distributed Application Modeling

In most contemporary systems, distributed application
operation is based on the client-server model. When
designing distributed applications, as indicated in [1],
there are many architectural solutions that may be
employed regarding the functionality provided by clients
and servers and the replication scheme.

In the first generation of distributed applications,
functionality was merely embedded in the clients, while
servers dealt with data manipulation and consistency
issues. This was the heavy client - light server model.
Most commercial distributed database applications fall in
this category. After the explosion of the Internet and the
WWW, this model was no more viable, since
functionality was included in Web Servers to minimize
communication delay (light client - heavy server model).
Furthermore, the aggregate functionality was dispatched
into more layers with the use of intermediate ones
(middleware) between clients and servers, thus offering
common services to clients. In this way, the functionality
was enhanced and lighter clients were developed, without
interfering with the server. This is the three-tier
application model, as opposed to the two-tier model
discussed above. Most distributed banking systems fall
into this category.

Within the DSS framework, a basic scheme was
introduced to facilitate the description of applications,
regardless of their complexity and architecture, provided

that applications are based on the client-server model. It
is thus possible to support any of the above architectures.
Two types of processes can be defined: clients, which are
invoked by users, and servers, which are invoked by other
processes. Access to files is performed through File
Servers (FS). The specific interfaces, acting as process
activation mechanisms must be defined for each process,
along with the operation scenario that corresponds to the
invocation of each interface. Each operation scenario
comprises the actions that occur upon process activation.

Actions are described through qualitative and
quantitative parameters, e.g. the processes being involved
and the amount of data sent and received. In most cases,
the operation scenario is executed sequentially (each
action is performed when the previous one has been
completed). However, there are cases where actions must
be performed concurrently. This is supported through
specifying groups of actions that have the same sequence
number.

The predefined actions are the following:
• Processing: indicating data processing
• Request: indicating invocation of a server process
• Write: indicating data storage
• Read: indicating data retrieval
• Transfer: indicating data transfer between processes
• Synchronize: indicating replica synchronization

Each process is executed on a processing node.
Processing action indicates invocation of the processing
unit of the corresponding node and is characterized by the
amount of data to be processed.

According to the client-server model, communication
between processes is performed through exchanging
messages using request/reply protocols. DSS currently
supports RPC, RMI and HTTP protocols. User Interface
is responsible for detecting loops in server invocation and
resolving them. Request action indicates invocation of a
server process and is characterized by the name of the
server process, the invoked interface and the amount of
data sent and received. It also implies activation of the
network, since the request and the reply must be
transferred from the invoking to the invoked process, and
vice versa. Since group communication is not supported
by the existing request/reply protocols, this functionality
can be modeled as a parallel execution of multiple
requests.

Storing data is performed through File Servers. There
are two actions available for data storing, read and write,
which are characterized by the amount of data stored and
retrieved, respectively, and the file server invoked.
Temporary data can also be stored in the local disk,
resulting in the invocation of the corresponding node
storage element. File Server process supports two
interfaces, namely read and write, corresponding to the
aforementioned actions.

Transfer action is used to indicate data exchange
between processes.

Replication of processes and data is a common
practice in distributed applications in order to enhance
performance. While process replication is easy to
implement, replication of data is accomplished through
defining process replicas for handling data and a
synchronization policy. Defining such a policy requires
solving issues, such as determining the process
responsible for the synchronization (the invoking process
or a process replica), when synchronization is performed
(i.e. each time a change is made or periodically, at pre-
specified time points) and the synchronization algorithm.

DSS facilitates the definition of process replicas
operating on different nodes and data replicas stored at
different file serves. Defining a process or data replica
also requires the specification of the synchronization
algorithm between process replicas. DSS does not support
specific synchronization policies. It allows the description
of the logical connection between replicated processes
and data during process definition and provides the
synchronize action to facilitate the specification of
synchronization policy. This action corresponds to the
invocation of the synchronize interface, which must be
supported by all process replicas. The corresponding
operation scenario has to be defined by the user.
Synchronize action parameters include the process
replicas that must be synchronized and the amount of data
transferred.

User behavior is modeled through User Profiles. Each
profile includes user requests to the client interfaces that
may be invoked by the user. For each profile, execution
parameters, such as the execution probability, are also
specified. A detailed example of application description
using the aforementioned entities is included in section 4.

The actions used to define operation scenarios are
either elementary or higher-level ones. In the latter case,
they can be decomposed into elementary actions. While
processing is an elementary action, write is expressed
through simpler ones, i.e. a process and a request sent to
File Server. All actions can be ultimately expressed
through the three elementary ones, processing, network
and diskIO, each indicating invocation of the
corresponding infrastructure component. Action
decomposition is not performed in a single step.
Intermediate stages are introduced to simplify the overall
process and to maintain relevant data. The action
decomposition scheme is presented in figure 2.

Figure 2. Action decomposition scheme

Dotted rectangles represent intermediate actions, while
gray rectangles represent elementary ones. Finally, black
rectangles represent the actions used when defining
operation scenarios. This diagram can be further extended
to include user-defined, domain-oriented actions, which
conform to specific architectural models. However
alteration or creation of elementary actions is not allowed.

The supported actions are categorized into 4 levels.
The lowest level includes only elementary actions, while
the highest one includes only actions built upon existing
ones. User-defined actions are also placed at this level.
Each action can be decomposed into other actions of the
same or the lower level. Actions support specific
parameters and are derived as ancestors of the action
class. During action decomposition, all parameters of the
invoked action must be defined. As an example,
decomposition rules for request action are presented in
figure 3.

Request

send
request

Level
3

Level
2

Level
1

Level
0

Write Read Synchonise

Activate
Operation
Scenario

ProcessingDiskIO

Transfer

Network

reply

 Figure 3. Request action decomposition

2.2. Network Modeling

Modeling solutions for communication network
architectures have been employed by commercial
simulation environments, as Comnet and OpNet ([10],
[13]). For our purposes, we considered the following
requirements: uniformity in model description and
manipulation, extendibility and improved performance.

In the proposed modeling scheme, network
infrastructure is considered as a collection of individual
networks and internetworks, exchanging messages
through relay nodes (note that networks are here
distinguished from internetworks and refer only to local
networks). Networks include processing and relay nodes
while internetworks include only relay nodes.

Communication element modeling is performed on the
basis of a layered scheme, close to the OSI/RM. Although
emerging technologies (e.g. ATM) do not fully conform
to this model, it serves as a well-established standard
providing guidelines for the uniform representation of
network entities. The layering scheme enables the
description of supported protocols and relations between
them through assigning them to one or many layers. In
this way, protocol suites (e.g. DARPA TCP/IP, pure
ATM) can be easily supported and the interaction
between them can be modeled with uniformity.

Key features of the modeling scheme are the
following: uniform manipulation of protocol models,
capability to either support or not support specific layers,
capability to model protocols corresponding to more than
one layer or more than one protocol corresponding to a
single layer (modeling of protocol suites).

Protocol suites are represented through the
communication element entity, which consists of two
parts, the peer communication element and the routing
communication element. The first corresponds to peer-to-

peer protocols (OSI layers 4-7) and the latter to routing
protocols (OSI layers 2 and 3). The protocols of the peer
communication element have to be common for all
processes of the same distributed application.

Processing node entity represents devices acquiring
processing capabilities (workstations, servers, etc). Relay
node entity represents active network devices, such as
routers and switches. Routing devices are modeled as a
set of relay nodes linked with each other, each being
member of one of the interconnected networks. The
addition of a new network to the network infrastructure
thus corresponds to the addition of two relay node
models.

3. Simulation Environment

Distributed System Simulator was initially developed
as part of a distributed architecture design environment,
called IDIS ([14]). IDIS is a knowledge-based system that
reaches an optimum solution through evaluating a set of
alternative architectures. Requirements for network and
application modeling, experimentation and model
management increased considerably in the late years and
DSS evolved into a standalone environment. DSS is
based on object-oriented and process-oriented simulation
and its current version is implemented using MODSIM
III ([15]) for model construction and Java for all other
modules.

DSS is modular and includes rule-based modules and a
model base, as presented in figure 4. Line connections
indicate module invocation and data access.

User External
Invocation

Graphical User
Interface

Compatibility
Rule Base

Models
Library

Model
Generator

Model
Manager

Simulation
Program

DSS

Figure 4. Distributed system simulator architecture

User input involves model and experimentation
specifications. Model specifications define the system

request(Seq, Calling_Process, Called_Process, Interface, Int_Par_List, ReqSize, ReplySize)

send_request(Calling_Process, Called_Process, ReqSize)
activate_operation_scenario(Called_Process, Interface, Param_list)

reply(Called_Process, Calling_Process, ReplySize)

network(Calling_Process, Called_Process, ReqSize)
actions included in the corrresponding Operation Scenario

of Called Process Interface
network(Seq1+2, Called_Process, Calling_Process, ReplySize)

Step 1:
Request is decomposed into three
indermediate actions according to figure 4

Step 2:
Intermediate actions are further analysed into two network
actions corresponding to the request/reply protocol used
for communicating with the server process, while
activate_opretation_scenarion is analysed to the included
actions

under study; experimentation specifications determine
how evaluation is performed. DSS constructs the
simulation program, using component models that reside
in model libraries. Models, either atomic or composite,
are implemented as objects organized in object
hierarchies. Specification completeness and validity must
be pre-ensured, and this is accomplished through rule-
based mechanisms.

When experiments have been completed, results are
subjected to output analysis to:
1. Determine whether distributed applications operate

efficiently. Such measures are average response time
and process utilization.

2. Determine the ability of the network infrastructure
to support the requirements imposed by distributed
applications. Such measures are network
throughput, end-to-end delay and internal protocol
delay.

3.1. Model Extension and Validation

Extending the supported distributed system component
base is a strong requirement for the modeling scheme.
User profiles, actions and communication protocols are
the most common entity types, new instances of which
need to be provided. Model extension is performed
through Model Manager and Compatibility Rule Base. In
the case of components that provide additional features,
such as new actions, these can be constructed on the basis
of existing ones (either elementary or not). Construction
is accomplished by Model Manager, which establishes a
coupling relation between these components. The
extension process comprises the following steps:
1. Ensuring model validity and compatibility with the

existing models.
2. Inserting component models in the Model Base.
3. Updating Compatibility Rule Base and the Model

Manager.
Step 1 is performed using Compatibility Rule Base,

while Model Manager performs step 2 and 3.
At the implementation level, the model base is

extended using object inheritance. Models are created as
ancestors of existing, abstract entity type models. A new
action model, for example, would be constructed as a
direct descendant of the abstract action model. A concise
modeling framework for extending object structures has
been in depth described in ([16]).

Model extension and simulation program generation
capabilities can only be supported when input
specifications are thoroughly examined to ensure model
validity. Validation is not trivial, even though models are
preconstructed, since models are coupled to form larger
ones and are extended to conform to customized

implementations. Validation task is carried out through
rule-based mechanisms, when specification of networks
and internetworks, interfaces and operation scenarios for
each process, user profiles, etc., is completed.

The rule base is thus invoked during model
customization to ensure that modeling consistency is
maintained. Some of the rules included in the rule base
are these: at least one interface must be defined for each
process, creation or customization of a primitive action is
not allowed, etc.

To support the addition of customized models, a
graphical environment visualizes the existing model
hierarchies. Compatibility Rule Base also ensures that
when inserting new models, the existing ones will be in
position to reference them, so that the potential coupled
models can be formed.

4. Case Study

Distributed System Simulator was used for evaluating
the performance of a distributed banking system. Except
from headquarters, the bank maintains 64 branches. The
banking system supports 24 discrete transactions,
grouped in four categories, which are mostly initiated by
tellers. The average transaction number of a branch is
500, while the maximum transaction number in central
branches is over 1000. The required response time is 15-
20 sec for all transactions. Although network
infrastructure could be modeled and evaluated using
various commercial simulation tools, application
description was not possible using the modeling
constructs provided and imposed an analysis that
gradually extends to the primitive action layer. Except
from this, DSS enabled the estimation of the exact
amount of data processed and transferred within and
between branches.

The banking system has a central database in
headquarters, where all transactions are executed, while
transaction logs are maintained in local databases at the
branches. The central database has 33 stored procedures
corresponding to the different execution steps of the 24
transactions. Digital RDB database management system
and ACMS are used.

The system architecture is based on the three-tier
model and consists of light client applications running on
user workstations. The overall network is based on the
TCP/IP stack.

Client data are stored locally in the branch file server.
When a transaction is executed, the corresponding forms
are invoked, each having an average size of 3K. ACMS is
invoked up to four times for the execution of the
corresponding stored procedure. Before finishing each
transaction, a log is stored in the local database.

Server processes that were modeled using DSS are:
File Server at headquarters and local branches,
CentralDB, LocalDB and ACMS. Since LocalDB
represents logging, only a simple insert interface had to
be implemented for recording the log. CentralDB is
accessed through the 33 stored procedures, which are
implemented and stored in the database. For each stored
procedure, a single interface had to be implemented.
Since system performance was mainly determined by the
interaction of the different system modules and not by the
internal database mechanisms, we decided to establish a
common representation for all stored procedures, after
carefully reviewing the functionality provided by them. A
new action called call_stored_procedure_step was
created and inserted for this purpose in the action
hierarchy. Parameters of this action are preprocessing,
data_accessed and postprocessing. Data_accessed
parameter indicates the amount of data accessed at each
step, while preprocessing and postprocessing parameters
indicate the amount of data to be processed before and
after access, as a fraction of the accessed data. Using this
action, the description of stored procedures was
significantly simplified. Each stored procedure consists of
one to five steps. The call_stored_procedure_step action
is implemented as an interface of the CentralDB process
in a way similar to read/write and includes the activation
of processing, read and write actions. ACMS is modelled
as a server process providing the interface call_ACMS
(stored_procedure, inputdata, outputdata, processing),
which initiates the activation of the corresponding stored
procedure.

Client applications involve the invocation and
processing of forms, the activation of stored procedures
through ACMS and log recording. Log recording is
depicted through properly invoking the insert interface of
LocalDB, while stored procedure activation is
accomplished through the invocation of the call_ACMS
interface of ACMS. Form_access (FS, form_name,
processing) was added in the action hierarchy to depict
accessing, activating and processing of a form. Using
combinations of these three actions, it was possible to
describe all applications in a simplified, common way.

Applications were categorized into four groups, each
controlled by a different type of user. Applications of
same group are not executed simultaneously by the same
user. This led us to depict each group as a client process
supporting one interface for each specific application.
Users are depicted as profiles initiating the corresponding
client application.

An example of the application modeling scheme is
presented in figure 5.

CIS Client

GLGFE Client

FDREX Client

File
Server

DEPFE Client

trx32600

form_access(........)

......................

.....................

trx31600

ACMS

..............

..............

.............

call_acms

request(Seq, CentralDB,
[sp,input,output,processing],input,
output)

(in sp, input, output,
processing)

check_balance

Central DB

add_balance

call_stored_procedure_step(....)
call_stored_procedure_step(....)

Profile
Teller

Local DB

insert

Figure 5. Application modeling example

Modeling advantages offered are summarized as
follows: decomposition of application functionality,
simplification of the description of client applications,
flexibility during process description and detailed
modeling.

The capability to extend the action hierarchy was
crucial in order to ensure the efficient and detailed
application description. If only predefined actions could
be used, the same description would have to be repeatedly
given for all transactions, e.g. form activation.
Furthermore, it facilitated the description of applications
at the level of abstraction required by different groups of
users.

While the banking system was under deployment, DSS
contributed to determining potential weak points and
ensuring the response time of client transactions. Since
the main activity of all transactions relates to the
invocation of the central database through ACMS, special
attention was given to the system performance at
headquarters. Two drawbacks indicated by DSS were
rather critical: First, the processing power of the Central
Database Unit was not adequate to execute client
transactions within the predefined response time. This
proved to be accurate, forcing the bank to upgrade the
hardware platform. Second, for the interconnection of
branches with headquarters, in-depth load estimation
based on the analytical application description suggested
that the throughput of specific leased lines should be
increased. Ethernet (10BaseT) proved to be efficient for
branches since the required throughput was low (less than
0.05 Mbps).

5. Conclusions

Exploring the behavior of distributed systems while
emphasizing the description of distributed applications
was the objective of DSS construction. Application
modeling extends to the operation and interaction
mechanisms and conforms to the various forms of the
client/server model. Since distributed system architectures
are configurable, considerable effort was put into
constructing and organizing the appropriate component
models to ensure their efficient manipulation.

The modeling approach provides guidelines for
modeling the essential, both primitive and composite,
distributed system components. The capability to reuse
models when implementing customized component
models was crucial for the description of different
applications, despite the complicated nature of this
process.

References

[1] J. Shedletsky, and J. Rofrano, “Application Reference
Designs for Distributed Systems”, IBM System Journal,
Vol. 32, No 4, 1993.

[2] Coulouris, G.F., J. Dollimore, and T. Kindberg, Distributed
Systems - Concepts and Design, Third Edition, Addison
Wesley Publishing Company, 2000.

[3] Farley, J., Java Distributed Computing, O’ Reilly
Publishing Company, 1998.

[4] V. Vemuri, "Simulation of a Distributed Processing
System: A Case Study", Simulation Magazine, May 1991.

[5] R. L. Bagrodia, and C. Shen, “MIDAS: Integrated Design
and Simulation of Distributed Systems”, IEEE
Transactions on Software Engineering, Vol. 17, No. 10,
October 1991.

[6] V. D. Khoroshevsky, “Modelling of Large-scale
Distributed Computer Systems”, Proceedings of IMACS
World Congress 1999, Conf. 15, Vol. 6, 1999.

[7] E. Ginters, Y. Merkuryev, and A. Spungis, “Simulation of
Client-Server Distributed Data Processing Systems”,
Proceedings of ESM’99, Budapest, Hungary, June 2-6,
1996.

[8] S., R. Ramesh, “An Object-Oriented Modeling Framework
for an Enterprise-Wide Distributed Computer System”,
Proceeding of the Americas Conference on Information
Systems, Association for Information Systems, August
1998.

[9] M. Matsushita, M. Ashita, et. al., “Distributed Process
Management System based on Object-Centred Process
Modeling”, Lecture Notes on Computer Science 0302-
9743, No 1368, Springer Verlag, 1998.

[10] CACI Products, COMNET III Reference Manual, San
Diego, 1997

[11] B.P. Zeigler, “Object-Oriented Simulation With
Hierarchical, Modular Models”, copyright by Author, 1995
(originally published by Academic Press, 1990)

[12] D. Anagnostopoulos, M. Nikolaidou, “A Conceptual
Methodology for Conducting Faster-than-Real-Time
Experiments”, SCS Transactions on Computer Simulation,
Vol. 16, No 2, 1999.

[13] Mil3 Inc, Opnet Modeler Modeling Manual, Washington,
1997

[14] M. Nikolaidou, D. Lelis, et. al., “A Discipline Approach
towards the Design of Distributed Systems”, IEE
Distributed System Engineering Journal, Vol. 2, No 2,
1995.

[15] CACI Products Company, MODSIM III The Language of
Object-Oriented Programming - Reference Manual, San
Diego, 1999

[16] D. Anagnostopoulos, and M. Nikolaidou, “An Object-
Oriented Modelling Methodology for Dynamic Computer
Network Simulation”, accepted for publication in the
International Journal of Modelling and Simulation.

