
Enterprise Information Systems Configuration:
Emphasizing the Symbiotic Relationship between

Applications and the Underlying Network

 Mara Nikolaidou Dimosthenis Anagnostopoulos
 University of Athens Harokopion University of Athens
 Panepistimiopolis, 15784 70 El. Venizelou Str, 17671
 Athens, Greece Athens, Greece
 Email: mara@di.uoa.gr Email: dimosthe@hua.gr

Abstract
Enterprise information systems consist of interrelated

Intranet-based and Internet-based applications, thus the
Web platform serves well as the middleware for their
development. Even though, in many cases, discrete
applications operate efficiently, the overall system
performance is less than expected. A potential cause is
that, configuration issues although interrelated are solved
in isolation. The architecture and performance
characteristics of the underlying network affect
application configuration. Thus, the symbiotic
relationship between application and network
architecture must also be explored. We argue that, in
order to effectively configuring and evaluating enterprise
information systems, network infrastructure restrictions
must be incorporated within application configuration
process and vise versa. An effective four-stage
methodology is proposed for this purpose. It is important
to note the significance of a consistent model for the
representation of system entities throughout all stages.
UML-like notation is used for system representation.
Alternative views of the system emphasizing specific
configuration stages are offered through UML package
representation. Since the modeling scheme is extendable,
the adaptation of UML constructs simplifies the process
of extending or customizing the model. A case study
where the proposed methodology is used for the
configuration a large-scale medical information system
and the experience obtained are also presented.

1. Introduction
Enterprise information systems (EISs) consist of a

combination of interrelated Intranet-based and Internet-
based applications, built on multi-tiered client-server
models [1]. Some of the main characteristics of EISs are:
a) their wide scale, as they operate upon a variety of

network platforms, b) their complexity, as they consist of
cooperating heterogeneous distributed applications (e.g
database applications, workflow systems, web services)
and c) their extendibility, as they expand gradually to
satisfy evolving user requirements. Security issues should
also be considered. End-users in an enterprise
environment have to interact with a multiple applications,
thus, it is important to provide a common “look and feel”
to application interfaces. The Web platform serves well as
a common access environment for all the applications
operating within enterprise Intranet boundaries, while, at
the time, acts as the middleware integrating Intranet-
based and Internet-based applications.

Significant vendors, such as Oracle and IBM, provide
web-based software development platforms, such as
Oracle Application Server [2] and IBM WebSphere [3],
which facilitate application integration and enable users
to access them through a common interface using a web
client. In such cases, the first and second application tiers
are implemented using the WWW platform [1]. The first
tier, e.g. the web client, is only responsible for user
interaction, while the second tier, e.g. the web server, is
responsible for invoking the proper application service,
obtain results and forward them to the user as
HTML/XML pages or fields. Other tiers, providing
specific application functionality, are implemented as sets
of cooperating services distributed on different servers
and are based on a variety of architectures discussed in
[4].

Even though vendors actively promote information
system development using the aforementioned software
platforms, the proposed solutions, although expensive,
often do not provide the desired performance [5]. A
potential cause is that, as most enterprise information
systems expand gradually, system extensions are
performed without ensuring the overall system
performance. Furthermore, distributed applications,

although accessed by a common web interface, are
characterized by their internal complexity, the impact of
which cannot be determined using trivial mathematics. To
ensure their performance, their configuration
dependencies must by identified and explored before
employing specific application or data replication and
synchronization policies. The architecture and
performance characteristics of the underlying Intranet
platform and Internet connections also affect application
configuration. Thus, the symbiotic relationship between
application and network architecture must also be
explored. We, thus, argue that, in order to effectively
configuring and evaluating enterprise information
systems, network infrastructure restrictions must be
incorporated within application configuration process and
vise versa.

A systematic approach for the configuration of any
complex information system offers considerable
capabilities providing decision making support to the
system designer to ensure system efficiency when
building a new system or extending an existing one [6, 7,
8]. In the following, we identify the discrete stages of
enterprise information system configuration procedure
and their dependencies and discuss alternative methods
and techniques to automate each of them. Each stage
addresses a specific issue, such as application
functionality description, resource allocation and
replication, network topology design and performance
evaluation. Each of these issues is usually handled in
isolation, resulting in poor performance. To integrate
handling of all configuration problems, it is of extreme
significance to use a consistent model for the
representation of system entities throughout all stages.
We propose such a model, which enables the
identification of unclear application specific dependencies
between discrete stages, since it is used as the reference
framework to estimate application requirements, apply
resource allocation and replication policies and construct
network topology. This model must enable the
description of any kind of application, thus be extendable,
while it should also be easy to realize in various software
tools used to automate discrete configuration stages. It
should also be easy to use by the designer providing
system functionality specifications.

Since system designers are usually familiar with UML
[9], as a process and data modeling language, it was
decided to use UML-like notation to model all aspects of
enterprise information configuration process in a multi-
layer fashion by integrating different diagram types [10].
In [11, 12], UML sequence diagrams facilitate the
description of client-server architectures emphasizing the
triggering of processes and the information exchange
between them. However, the description of internal

process functionality is not facilitated. Furthermore, user
behavior should also be incorporated in the model.
Finally, the dependencies between applications and
network infrastructure must be modeled. Thus, different
system views must be provided facilitating their
identification.

The rest of the paper is organized as follows: In
section 2, we briefly discuss information system
configuration process and our approach to automate it.
Configuration stages are described and basic properties of
the common model used to represent system entities are
identified. In section 3, the UML-like modeling approach
is introduced and the benefits obtained during system
configuration and performance evaluation are presented.
In section 4, we introduce the site concept used to
indicate system access points and group application tiers.
Sites are composite entities that may be constantly
refined. Sites facilitate incorporating network
infrastructure restrictions in application configuration,
and visa versa. In section 5, a case study where the
proposed model is used during the configuration of a
large-scale medical information system is presented,
while conclusions reside in section 6.

2. EIS Configuration Process
System configuration stages and their interaction are

depicted in figure 1. Functional configuration (stage 1)
corresponds to the description of system specifications.
Logical and physical configuration (stages 2 and 3) deal
with process/data allocation and replication policies and
network topology design respectively. Resource
allocation and network configuration problems cannot be
independently solved. Thus, stages (2) and (3) are
invoked iteratively until an acceptable solution is reached.
In order to automate or semi-automate configuration
stages, it is important to provide a consistent model for
the representation of EIS entities throughout all
configuration stages. The EIS model consists of a.
functional specifications (e.g. application logic and user
behavior), b. physical specifications (the underlying
network) and c. their dependencies. The EIS model is
progressively constructed as follows:

1. Functional specification and parts of the physical
specification (i.e. referring to the existing pieces of
computer/network infrastructure) are defined during
functional configuration stage.

2. Logical configuration defines the dependencies
between functional and physical specifications, as
resource allocation and replication policies result in
the allocation of processes and data instances to
hardware components.

3. Physical configuration results in the creation of
physical specifications.

We decided to adapt UML-like notation for EIS
model, since UML a) is a widely accepted standard and
most system designers are familiar with it, b) allows the
graphical representation of specifications and c) facilitates
the automated implementation of model extensions.
Functional configuration is strongly related with model
definition. Logical and physical configurations can be
semi-automated using heuristics by appropriate decision-
support software, for example IDIS [13] that facilitates
the representation and exploration of resource allocation
and network topology design algorithms combining
mathematics and rules of thumb. System configuration
stage must facilitate the performance evaluation (stage 4)
of the proposed solution prior to implementation. If
system performance specifications are not satisfied,
logical and physical configuration stages must be
repeatedly performed. To evaluate distributed system
performance, the discrete event simulation tool described
in [14] can be used. The Information System
Configuration Guide is a prototype environment written
in Java, which facilitates the management of the EIS
model, the co-ordination of discrete configuration stages
and the automation of functional configuration. It also
contains a set of wrappers for properly initializing
external software modules and facilitating data exchange
using object-oriented representation.

Each EIS is modeled as an aggregation of interacting
components, either primitive or composite, usually
customized to depict the functionality of specific system
components, based on the following assumptions:

• Distributed applications are built based on client-
server models and consist of multiple tiers. The first
and second tiers (e.g. web client and server) are
implemented using Web technology. This reflects on
process allocation policies, since a substantial part of
application tiers must be close to the user. To achieve
the required application performance, the principle of
locality (i.e. keeping servers and data as close as
possible to user) is widely applied. Replication
techniques are employed to increase performance and
availability, especially over the Internet. Replica
synchronization is usually performed using
asynchronous policies.

• The underlying network consists of heterogeneous
Intranets and Internet connections integrated through
TCP/IP protocol stack. Users have their own
workstation (diskless or not). Server processes are
executed on dedicated server nodes. Application
performance is greatly influenced by individual
server machine performance. The communication

between user-related tiers (web tiers) is based on
HTTP protocol.

Functional Configuration

Physical Configuration

Logical Configuration

Performance Evaluation

Common
EIS Model

EIS
Designer

UML-like
Notation

EIS Configuration
Guide

Figure 1: EIS Configuration Process

3. UML-like EIS Model
EIS architecture is modeled using three alternative

views, the application and the site view, emphasizing
functional specifications, and the physical view,
emphasizing physical specifications. Different UML
diagrams are used to represent each view. Adopting
UML-like notation, each EIS entity is depicted by
extending the properties of corresponding UML diagram
entities using the stereotype mechanism. The overall
UML class diagram corresponding to EIS model is
presented in figure 2. It identifies a basic set of object
types to describe functional and physical specifications
and their relations. Gray rectangles represent first-level
entities, corresponding to alternative system views.
Further object types may be added by the designer to
describe additional functionality by extending or
restricting existing object behavior. Model extension is
essential to enrich the model capability to describe
custom applications and is performed through Model
Extension View.

3.1. Physical View

It refers to the aggregate network. As indicated in
figure 2, it consists of a Network entity represented as
UML package. Network is a composite entity, which is
repeatedly refined to represent network topology. Each
network either consists of multiple networks and
internetworks (1:N), or represents a simple Intranet LAN.
Each internetwork represents an Intranet LAN, Intranet
WAN or Internet connection. Network nodes are either
workstations allocated to users or server stations, running
server processes. Networks and inte The architecture and

performance characteristics of the underlying Intranet
platform and Internet connections also affect application
configuration. Thus, the symbiotic relationship between
application and network architecture must also be
explored. We, thus, argue that, in order to effectively
configuring and evaluating enterprise information
systems, network infrastructure restrictions must be
incorporated within application configuration process and
vise versa. rnetworks also include multiple relay nodes
(1:N) depicting routing/switching functionality and one
channel element, representing the communication link.
Processing and relay nodes consist of individual elements
corresponding to the three elementary operations
supported in a network environment: processing, storing
and transferring data. Specifically, processing nodes
consist of one processing, one storage and one

communication element, while relay nodes consist of a
processing and multiple communication elements (1:N),
one for each network they relay.

UML deployment diagrams are commonly used to
represent network architectures [12]. In EIS model,
networks and internetworks are represented through UML
packages containing the corresponding deployment
diagram. UML arcs represent channels.
Network/internetwork nodes entities are represented as
stereotypes of the UML Node entity by extending its
semantics, e.g. the number of identical processing/relay
nodes is included in the node entity of deployment
diagrams. Network nodes are composite objects. Node
elements are also represented as stereotypes of UML
Node entity (figure 2).

«Physical View»
Package

consist of

«Network»
Deploym ent

Package

«Internetwork»
Deploym ent

Package

«Processing Node»
Node

«Relay Node»
Node

«Channel»
Link

W orkstation

Storage Elem ent

Relay Element
Processing

Element

+Initia lize()
+Create_Replica()

-ID
-Description
-Type{data/program}
-Sharable
-Updatable
-Replicable
-Repl.Policy
-Synch.Policy

-NoReplicas
-Repl_List
-Site_List

-Node_List

File

W eb Server DB ServerFile Server

Server

Process

W eb C lient

Deam on Profile

Interface

«Im plementation»
Activity Package

activates

is
analyzed

+analyze()
+..........()

operation

+.........()

elementary operation

«Operation D ictionary»
Use Case Package

«Model Extention»
Package

«Operation»
Use Case

«Operation»
Dependency

«Application Object»
Object

«Process Instance»
Component

«User Instance»
Component

+Initiate()
+Top_Conf()
+Split()
+Merge()

-ID
-Description
-Range
-Parent
-Connect_List

-corr.NetID

«site» Component Package

«Interface»
Component

Interface

«Application Operation»
Activity

«Com ponent»
Object Activation

«Application»
Sequence Package

«Application View»
Package

User Profile

User Request

«Request»
Component

Interface

«User»
Actor File

«File»
Component

«Application Operation»
Message

«User Request»
Message

«User»
Actor

«User Request»
Message

«Site View»
Package

Physical Specifications

Functional Specifications

is_supported supports

operates_on

supports Server Node

supportsoperates_on

operates_on

supports

operates_on

supports

is_stored

is_accessed

accesses

Figure 2: EIS model class diagram

3.2 Application View

Application View consists of the supported
applications represented through UML packages
containing the corresponding sequence diagram (figure
2). Applications are conceived as sets of interacting
processes and the data repositories (i.e. files) accessed by
them. The services composing the aggregate functionality
of an application can be described using the process and

component concepts. As a process may be activated in
different ways (based on its input arguments), a
component represents the specific set of tasks (or
operations) executed when a process is activated in a
certain way. In the proposed model, a process is thus
composed by the components corresponding to all
alternative activation ways. Processes are represented as
stereotypes of UML objects and components as object
activations. An example of the application view is

depicted in figure 3, where a simple database search is
initiated by a web user through the proper CGI in the
Web Server. Components are composed of two distinct
parts:

an interface, depicting the process activation
mechanism

�

� an implementation part, comprising the tasks that
occur upon process activation.

Component implementation is described using
operations from a predefined operation set, that is, the
operation dictionary. Component implementation is
described using a UML activity diagram supporting both
sequential and concurrent operation execution, where
operations are represented as stereotypes of UML activity
entities. In figure 3, the UML activity diagram for the
Simple Search component of Web Client process is
depicted. When double-clicking in the Web Client
implementation in Application View (represented as a
object activation in the corresponding sequence diagram),
the system designer opens a new pop-up window
containing the activity diagram corresponding to Web
Client implementation part. The system designer may add
a new operation in the diagram and define its properties,
e.g. operation type and operation parameters, using a
scroll menu. UML message entities are automatically
added in the sequence diagram, representing Application
View, between object activations to represent process
interaction. Messages are labeled using the name of the
operation initiating process activation.

Application View

��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Web Client
External Application

ServerWeb ServerStudent Profile

user request

processing

get page

post

processing

diskI/O

invoke program

processing
diskI/O

Simple Search

Perform Search

Search Library
DB System

Implementation Interface

��

���
���
���
���
���
���
���
���
���
���

Processing

diskIO

get page

post
Operation
Param eters

1840Am ou nt

Param eter Value

Figure 3: Activity Diagram

User behavior is described through user profiles
activating web clients. Each profile includes user
requests, which invoke specific components of a web
client operating on the user workstation. Each user
request acquires an activation probability attribute,
indicating how often the user activates the specific
application (as applications are composed of specific
tasks, modeled as process components). The user profile
concept may adequately represent user behavior when it
can be predetermined. The behavior of Intranet users
usually acquires such characteristics. On the other hand,
Internet user behavior is ambiguous. In this case, user
profiles may adequately represent the behavior of user
groups requiring specific services, such as clients paying
their credit card using a web banking system. Daemon
profile models represent the automated activation of
processes, and operate on the same processing node as the
process they activate. Profile models are similar with
process models.

3.3. Site View

Defining the access points of the system is supported
through the site concept. User profiles are associated with
sites during the functional configuration stage within site
view. Sites are composite entities that can be constantly
refined. During the logical configuration stage, process
and files replicas are placed within sites. Site refinement
is related to network topology, as discussed in section 4.
Sites are represented through UML packages containing
the corresponding component diagram (figure 2). Within
site view, user profiles, daemon profiles and processes are
viewed as UML components. Only user and process
interaction are depicted within the site view. Thus, only
user requests and process component interfaces
respectively are represented within site view. Both are
modeled as UML component interfaces. Process
activations are viewed as UML dependencies.

Process entity participates in multiple UML diagrams;
thus, process class (figure 2) combines properties of
different UML entities by multiple inheritance. Other EIS
model entities, especially the ones participate in
application description, have multiple representations as
well.

3.4. Operation dictionary

Operations depict “simple” tasks occurring in the
system, such as “get page from a Web Server”, “insert
data in a database” and “store data in the storage device”.
We propose an appropriate operation dictionary for
application description. The dictionary overall includes:

a. operations indicating basic tasks. These are:
processing, indicating data processing, request,
indicating invocation of a server process, transfer,
indicating data transfer between processes and
synchronize, indicating replica synchronization.

b. file related operations, involving File Server
activation. These are write and read, indicating data
storage/retrieval. While processing is an elementary
operation, write can be expressed through simpler
ones, i.e. a process and a request sent to a File Server.

c. database operations depicting database functionality.
There are: insert, delete, update, select and
activate_store_procedure. They provide transparency
when defining application functionality.

d. web-related operations used to describe web server
and web client functionality, such as: get/put page:
indicating retrieving/storing an HTML/XML page, get
applet: indicating applet download and invoke
program: indicating active program invocation.

Evidently, the term “simple” is rather vague, as even
simple operations must be ultimately decomposed into
elementary ones (i.e. processing, storing and
transferring) to estimate the QoS required from the
underlying network. Node elements are responsible for
performing corresponding elementary operations (e.g.
processing and storing). As the aggregate functionality of
an application can be internally translated into these
elementary operations, we may determine individual
elementary operation characteristics and ultimately
estimate the QoS that must be provided from network
entities. UML use-case diagrams are used to model
operation decomposition. In this case, operations are
viewed as UML use cases. The Operation use case
diagram includes three types of use cases:

a. application invoked by actors, which represent
operation included in operation dictionary

b. intermediate, which represent intermediate operations
used to simplify operation decomposition and

c. elementary, which correspond to elementary
operations

Operation decomposition is depicted using the «uses»
relationship between use cases. The semantics of the uses
relationship were extended to include invocation order
and parameter value list properties. The parameter value
list contains values for all parameters of the invoked
operation. A fraction of the operation dictionary is
presented in figure 5. It is important for the system
designer to further extend the operation hierarchy to
describe the functionality of specific applications [14].
When defining a new operation, the system designer must

add it in the diagram, specify its parameters using a
popup window and connect it through an «uses»
relationship with the existing operations involved in its
description (figure 5). In this context, UML notation
facilitates the automated implementation of model
extensions.

4. The Site Concept
System access points definition and process/file replica

placement is supported through the site concept. Site
specification is performed at levels of increasing detail to
enable the progressive refinement of site structure. At the
first level of detail, sites are defined as Internet access
points. At the next levels, each site is further refined,
allowing the user to adjust the site description according
to the topology of the actual site described (e.g. Campus,
Building, Floor) and user distribution. As shown in figure
2, each site must be supported by a network, thus site
definition is restricted by the same rules as network
definition. Since site and network concepts are associated,
a site should be decomposed into sub-sites until site range
corresponds to the limits of a LAN (simple sites),
although the user may choose to define a different site
structure. The progressive definition of sites enables the
progressive solution of resource allocation and network
configuration problems, while sites may be split or
merged to ease network topology design.

Logical and physical configurations are performed
progressively for each site. Since network topology may
not be predefined during resource allocation, it should be
concurrently designed to ensure the efficient support of
the solutions adopted. Since sites are composed by “sub-
sites”, logical and physical configurations are recursively
invoked for sub-sites of the same-level of a given site, as
indicated in the following:

• Resource allocation algorithms are invoked to place
server and file replicas in sites of the same level.

• Networks support sites, while sites of the same level
are interconnected (if needed) using internetworks.
The parameters of Quality of Service (QoS) for data
exchange between sites are estimated. Internetwork
topology is defined based on the estimated QoS
parameters and existing network infrastructure.

• Merging and splitting sites may be performed to
improve performance and reduce implementation cost,
based on empirical rules. For example, if two sites are
hosting the same server and data file replicas, they are
candidates for merging. Sites can be also merged if
they can be supported by a single network to simplify
network architecture. Sites are split to provide better
QoS. If a site split occurs, the logical/physical

configuration of the specific level is repeated (e.g. the
aforementioned steps are re-activated).

• For each site, the aforementioned steps are performed
in the next level of detail.

• At the lowest level of detail (simple sites), process and
file replicas are allocated to processing nodes. The
architecture of the corresponding LAN is afterwards
defined. Simple sites can be merged if they can be
supported by a single LAN or split if better QoS is
needed. In such a case, process and file replicas and
the architecture of network nodes may also be
redefined.

Basically, sites are used when defining application
configuration. Introducing progressive site refinement
and linking site range to network range, enables the
identification of dependencies between application
configuration and network topology. Thus, the
performance of the proposed solutions may be more
accurately predicted.

4.1.Logical Configuration Policy

The allocation policy aims at: a. ensuring application
performance and b. minimizing complexity and
communication cost. Complexity denotes the number of
networks forming the communication infrastructure.
Communication cost refers to the QoS required from
internetwork connections The QoS provided by each
network should be within the limits supported by widely
used technology (e.g. Ethernet technology for LANs) to
ensure that the proposed solutions can be implemented
within affordable price limits. Load balancing is also
taken into account. Minimizing the communication cost
between sites in a network environment can be described
by the function of figure 4. As proved in [15], minimizing
this function is NP-complete. To reduce the solution
space, when dealing with client-server application the
assumptions presented in the same figure are valid.

, 1 , 1 , 1
min

N N N
c c s s f f
ij ij ij ij ij ij

c Pc i j s Ps i j f F i j
i j i j i j

u c p c f c
∈ = ∈ = ∈ =

≠ ≠ ≠

+ +∑ ∑ ∑ ∑ ∑ ∑ (1), where

• N is the overall number of sites
• represents the communication cost when accessing a replica of process or file x residing

in site j from site I

x
ijc

•
0
, depending on whether a replica of process c or s and file f residing in site j is

accessed by site I

c s f 1
ij ij iju , p , f =

Assumptions

1. A workstation is allocated to each user running a web client program, thus
, 1

0
N

c c
ij ij

c Pc i j
i j

u c
∈ =

≠

=∑ ∑

2. Web server replicas are allocated in all sites. Server replicas are allocated in the same site
as the files they directly access. File server replicas are located in all sites where files
are allocated. Independent files (e.g. non-sharable and non-updatable) and the servers directly
accessing them are allocated in all sites they are accessed from, thus equation (1) results in

, 1 , 1
min()

N N
s s f f
ij ij ij ij

s Psf i j f Fs i j
i j i j

p c f c
∈ = ∈ =

≠ ≠

+∑ ∑ ∑ ∑ (2), where is the set of servers accessing dependable files (e.g.

sharable and updatable) and is the set of these files. There is always dependency between the
two terms of the equation.

sfP

sF

3. Provided that no optimal solution is needed, one can assume that there is a sequence of files

for which (2) can be represented as (3), where Rf is the set file f replicas

and Pr is the set of processes accessing each replica. It is assumed that for each process s in
Pr, a replica is allocated in the same site as r. represents the communication cost when

process s access replica r and is invoked by others to access it.

Pr , 1

min()
N

sr sr
ij ij

f Fs r Rf s i j
i j

p c
∈ ∈ ∈ =

≠

∑ ∑ ∑ ∑

sr
ijc

Figure 4: Resource Allocation Problem Representation

Different replication policies, for example master/slave
configuration, can be explored [16]. Both synchronous

and asynchronous replica synchronization may be
supported. The replication policy supported for each file

is defined during functional configuration. When
adopting asynchronous replica synchronization having
relatively small communication cost, files are widely
replicated. Before analytically calculating communication
cost and exhaustively solving (3), empirical algorithms
consisting of rules are applied to partially solve the
problem, even if the optimal solution is not reached. For
example, it is assumed that files are allocated before
processes. The order in which files are allocated affects
the proposed solutions. The files are ordered according to
the number of sites and processes accessing them (less
accessed are allocated first). If the proposed solution is
not efficient, the file allocation order is modified.

5. Case Study
The proposed methodology was applied for the

configuration of the integrated information system of the
Greek National Diabetes Network (GNDN), formed by
the National Diabetes Institute and 168 Medical Centers
hosted in public hospitals. The information system
supports the following services: a) medical record
maintenance regarding diabetic patients, b) provision of
statistical information concerning the diabetes disease, c)
everyday life patient support and d) educating the public
regarding the Diabetes disease. Application design and
implementation was performed using the Oracle product
suite. The size of medical centers differs according to the
size of the hospital hosting it. In the following, we
comment on our experience using the EIS model through
configuration stages.

5.1. Application Description

Most applications were developed based on the
“typical” Oracle web-based architecture, where
application interface is implemented using Java servlets
executed in the Oracle Application Server. Database-
related application logic is implemented using stored
procedures. The Application Server is mainly responsible
for the invocation of forms, the management of fields and
the completion of transactions consisting of stored
procedures. Since a Web Server is incorporated within
Oracle Application Server, it is able to accept and process
HTTP requests produced by the Web clients. To indicate
the advantages of the modeling scheme, we discuss
Medical Record application as an example.

Since medical records are private, two different
database servers were modeled (each one belonging to a
different application): the Medical DB, maintaining
medical records, and the Informational DB, maintaining
specific record fields subjected to statistical processing. It
is evident that the two databases had to be synchronized.

OracleApplSrv was modeled using Web Server entity
(figure 2). Two new operations integrating web-based
functionality were added in the operation hierarchy to
ease OracleApplSrv description. The form access
operation was added in the dictionary to depict accessing,
activating and processing of a form (figure 5). This
operation is further decomposed into get page, post and
processing operations to depict the invocation of Oracle
forms as HTML pages and the filling of specific fields.
As indicated in figure 5, form access operation is added
as a new UML use case, “using” (e.g. is decomposed to)
five (5) existing operations. For every new operation
added in the dictionary, its type (application or
intermediate), parameters and decomposition scheme are
defined. The type and parameters are defined through a
popup window. Operation decomposition is depicted
using the «uses» relationship between use cases. The
invocation order is defined for each relationship.
Parameter values passed through the parameter value list
may be either constant values or variables defined as form
access parameters (see get page operation invocation).

The activate_transaction operation was added to
depict the activation of stored procedures corresponding
to each transaction. Stored procedures are modeled as
Database Server components. Activate_transaction is
further decomposed into invoke program, processing and
post operations.

The addition of custom operations in the Operation
Dictionary was essential to group existing operations used
to describe repeated functionality within application
components. It simplifies component description and, at
the same time, ensures detailed application functionality
description. Within Medical Record application,
OracleApplSrv process consists of six (6) different
components. Each one of them is described by two to
seven operations, while it can be decomposed to a large
number of elementary operations (varying form 97 to
245).

The Application and Site View for Medical Record
Application are depicted in figure 6. As indicated in the
application view, physicians invoke a web client to
process/search medical records. Custom operations
form_access and activate_transaction are used in
WebClient and OracleApplServ process component
descriptions respectively.

Since the Informational DB is updated only through
database replication, synchronize operation had to be
implemented according to Oracle replication mechanisms.
This operation corresponds to the invocation of
synchronize component of a database server.

A daemon profile is used to model synchronization
invocation parameters. During functional configuration,

only user profiles are placed within sites in Site View.

Operation Dictionary

���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

form access

get page

post

processing

2
«uses»

«uses»

«uses» «uses»«uses»

4

http request

http reply

http send request

«uses»

«uses»

«uses»

«uses»

«uses»

2

1

3 network

«uses»

«uses»

activate
component

1 3

5

(1000) (512)

(processing*3)

(“OracleApplServer”,form_name,
[no_fields, avg_fsize],

no_fields*avgfsize*2,256)

(“OracleApplServer”,
[avg_fsize],avgfsize+256,256)

Type
Parameters

form_name

no_fields

avg_fsize

processing

Parameter

Figure 5: Definition of form access operation

Application View

���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Web Client Oracle Appl Server Medical DB Informational DS

activate_transactionMedical
Record
Module

synchonizesychronize SP

form access
(form_name, no_fields, avg_fsize, processing)

request
(Oracle Appl Server, interface, param_list,

request_size, reply_size)
Stored

Procedure

(MedicalDB, sp_no, sp_param_list, processing)

Physical

Search
Medical
Record

user request

Synchronization
Deamon

user request

Site View

���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

Physician
7

web client
7

Oracle ApplSrv
1

MedicalDS
1

FS
1

NDI site

3rd Regional Attica Hospital North General Hospital2nd Regional Attica Hospital 1st Regional Attica Hospital

Pr Stats

MedAppl

Figure 6: Application and Site View - Medical Record Application Model

5.2. System Configuration

NDI and medical centers are interconnected through
the National Health Network, a private TCP/IP based
network. Thus, physical specifications are partially
predefined. During functional configuration, site
description was conducted using two levels and the entire
medical centers where placed in the second one. During
logical configuration site decomposition hierarchy was
modified to depict the structure of the WAN network
interconnecting hospitals, thus it was feasible to consider
the network topology when placing process replicas. A

replica of Oracle Application Server and related files
were placed in all medical centers to ensure performance.
The implementation of an Oracle Database in small-sized
Medical Centers is costly. Alternative Medical DB
allocation scenarios were studied in order to ensure the
requested response time and reduce cost. After evaluating
different alternatives, it was decided to keep Medical DB
replicas in all Medical Centers except for the small ones
directly connected with another one with a network
connection faster than 512Kbps. The process replicas
placed in 3rd Regional Attica Medical Center are depicted
in figure 6 (site view). The number in the down right side

of each component represents the number of profile or
process instances operating in the specific site.

GNDN network and database architecture could be
modeled and studied using various commercial simulation
tools. Due to the increased complexity of application
functionality, e.g. Oracle Application Server, the direct
mapping of application description into low-level
primitives was not feasible. However, the proposed EIS
configuration methodology and model proved to be
efficient especially in accurately estimating QoS
parameters and studying alternative process and data
replication scenarios considering existing network
topology.

6. Conclusions

We proposed an UML-like EIS model emphasizing the
symbiotic relationship between application configuration
and underlying network topology. Site refinement process
(using merge and split) illustrates the ability of the
proposed model to depict the impact of technological
boundaries (physical specifications) to application
functionality (functional specifications). The proposed
model enables the exploration of dependencies between
configuration stages even if they aren’t obvious, since
functional specifications are corrected or filled, as
physical specifications are progressively defined. The
extendable operation dictionary was proven to be an
essential feature in order to describe complex application
functionality, such as the one supported by Oracle
Application Server, since it enables accurate application
functionality description and the direct mapping of this
description into QoS parameters that the underlying
network must satisfy. This proved the main advantage of
the proposed model. UML-like representation of model
entities helped through model extension/customization,
since a) system designers are familiar with UML
constructs and b) automated code generation can be
achieved.

7. References
[1] Serain D., Middleware, Springer-Verlag London, Great

Britain, 1999.

[2] Oracle Co, Oracle9i Applications Server Documentation
Library Release 2, December 2002.

[3] IBM Co, Technical paper: Guide to the WebSphere Portal,
February 2003.

[4] Shedletsky J. and Rofrano J., “Application Reference
Designs for Distributed Systems”, IBM System Journal,
Vol. 32, No 4, 1993.

[5] Savino-Vázquez N.N. et al., “Predicting the behaviour of
three-tiered applications: dealing with distributed-object
technology and databases”, Performance Evaluation Vol.
39, no 1-4, Elsevier Press, 2000.

[6] Gomaa H., Menasce D., Kerschberg L., “A Software
Architectural Design Method for Large-scale Distributed
Information Systems”, Distributed System Engineering
Journal, Vol. 3, No 3, IOP, 1996.

[7] Nezlek G.S., Hemant K.J., Nazareth D.L., “An Integrated
Approach to Enterprise Computing Architectures”,
Communications of the ACM, Vol 42, No 11, ACM
Press,1999.

[8] Graupner S., Kotov V., Trinks H., “A Framework for
Analyzing and Organizing Complex Systems”, in
Proceedings of the 7th International Conference on
Engineering Complex Computer Systems, IEEE Computer
Press, 2001.

[9] OMG Inc, OMG Unified Modeling Language Specification,
Version 1.5, March 2001.

[10] Gomaa H. and Shin M., “Multiple View Meta-Modeling of
software Product Lines”, in Proceedings of the 8th
International Conference on Engineering Complex
Computer Systems, IEEE Computer Press, 2002.

[11] Mirandola R, Cortellessa V., “UML Based Performance
Modeling in Distributed Systems”, Lecture Notes in
Computer Science 1939, UML2000, Springer-Verlag, 2000.

[12] Kaehkipuro P., “UML-Based Performance Modeling
Framework for Component-Based Distributed Systems”,
Lecture Notes in Computer Science 2047, Performance
Engineering, Springer-Verlag, 2001.

[13] Nikolaidou M., Lelis D., et. al, “A Discipline Approach
towards the Design of Distributed Systems”, Distributed
System Engineering Journal, Vol. 2, No 2, IOP, 1995.

[14] Nikolaidou M. and Anagnostopoulos D., “An Application-
Oriented Approach for Distributed System Modeling”, in
Proceedings of the 21st International Conference on
Distributed Computing Systems, IEEE Computer Press,
2001.

[15] Morgan H.L., Levin K.D., “Optimal Program and Data
Locations in Computer Networks”, Communications of
ACM, Vol. 20, No 5, ACM Press, 1977.

[16] Marreitti M, Replication, London, England, Academic
Press, 1999.

	Abstract
	1. Introduction
	2. EIS Configuration Process
	3. UML-like EIS Model
	3.1. Physical View
	3.2 Application View
	3.3. Site View
	3.4. Operation dictionary

	4.The Site Concept
	4.1.Logical Configuration Policy
	
	
	
	
	
	
	Assumptions

	5. Case Study
	5.1. Application Description
	5.2. System Configuration
	6. Conclusions

	7.References

