
A UML Profile utilizing Enterprise Information System Configuration

M. Nikolaidou12, A. Tsadimas12, N. Alexopoulou12, A. Dais2, D. Anagnostopoulos1

{mara@di.uoa.gr, nancy@hua.gr, tsadimas@hua.gr, a.dais@di.uoa.gr, dimosthe@hua.gr}
1 Harokopio University of Athens,

El. Venizelou Str, 17671Athens, Greece
2 Department of Informatics and Telecommunications,

University of Athens, Panepistimiopolis, 15771, Athens, Greece

Abstract
Enterprise information system configuration is a complex
process dealing with interrelated issues. A four-stage
methodology has been proposed in order to effectively explore
configuration issues. The main advantage of the proposed
methodology is the adoption of a common meta-model for the
representation of systems throughout all configuration stages,
ensuring interoperability and model consistency. In practice,
configuration stages are supported by automated or semi-
automated tools, each of which adopts its own meta-model for
system representation. In order to apply the methodology using
existing autonomous tools, model exchangeability (thus meta-
model transformation) and tool co-ordination must be facilitated
by standard, open methods. Thus, the common meta-model is
implemented in a standard, exchangeable format, as XML. To
provide a standard method to visualize the common meta-model,
facilitate the designer to interact with it and co-ordinate specific
tool invocation, a UML 2.0 profile was defined. Different UML
2.0 diagrams are integrated to support different views of the
system. The representation of relationships and restrictions
among discrete meta-model entities must be facilitated to
identify and explore the dependencies between configuration
stages. Constraints are extensively used for this purpose. A case
study where the proposed profile utilized the configuration of a
large-scale banking system is also presented.

1. Introduction 1

Modern enterprise information systems are based on
distributed architectures, consisting of a combination of
Intranet and Internet web-based applications. They are
built on multi-tiered client-server models [1], as the J2EE
architecture. Such platforms distinguish application logic
from the user-interface and contribute to system
configurability and extendibility. Although, vendors
actively promote information system development using
aforementioned architectures, the proposed solutions,
although expensive, often fail to provide the desired

This research was supported by Pythagoras program (MIS 89198) co-funded by
the Greek Government (25%) and the European Union (75%).

performance [2]. This is due to the fact configuration
issues, although interrelated, are solved in isolation, while
application internal complexity is neglected when
estimating the quality of service (QoS) imposed to the
network supporting them.

A four-staged methodology for configuring web-based
enterprise information systems was proposed in [3],
aiming at a) exploring unclear dependencies between
application configuration and the underlying network and
b) depicting application logic in detail. The main
advantage of the proposed methodology is the adoption of
a common meta-model for the representation of systems
throughout all configuration stages, ensuring
interoperability and model consistency. Representation of
different kinds of applications is facilitated, while custom
architectures can also be described. Configuration stages
are supported by software tools especially built for this
purpose. All of them adopt the common meta-model
proposed, thus model exchangeability is not an issue. A
custom UML-like graphical interface was also especially
built to facilitate the interaction with the system designer.

The methodology proposed in [3] may be applied in
enterprise information system configuration in general. In
practice, configuration stages are supported by existing
autonomous automated or semi-automated tools [4, 5, 6],
each of which adopts its own meta-model for system
representation. In order to apply the methodology using
existing, heterogeneous tools, the following issues should
be addressed:
• Model exchangeability (thus meta-model

transformation)
• Tool invocation and co-ordination
• Provision of an integrated, east-to-use interface.
In order to facilitate model exchangeability, the common
meta-model is realized in XML. The partial
transformation of the common meta-model into tool-
specific meta-model must be facilitated prior using an
existing tool for a specific configuration stage.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

In order to provide a standard method to visualize the
meta-model and facilitate the designer to interact with it,
it was decided to create a UML 2.0 profile [7]. Specific
tool invocation and co-ordination must also be facilitated
either by the profile or the meta-model itself or by both. A
UML 2.0 profile should be integrated in existing well-
known UML software platforms (for example Rational
Modeler), thus there is no need to built custom
environments as the one presented in [3]. Since it is a
common modeling standard, it provides the means to
typically map UML meta-model entities (used for system
graphical representation) to the proposed meta-model
entities (used for system description).

Although, UML is mainly used for software
engineering (e.g. when designing and implementing
application components). UML concepts may also be
applied in system engineering as proposed by OMG in the
Enterprise Distributed Object Computing (EDOC) profile
[8]. EDOC profile aims at proposing system models to
designers using UML concepts for the five viewpoints of
RM-ODP framework [9]. According to RM-ODP, in the
Engineering Viewpoint, the type of system architecture
(e.g. client-server) is defined, the network architecture is
described and system components are associated to
network nodes (resource allocation). As indicated in [10],
EDOC profile supports Engineering Viewpoint mainly
using component diagrams for both the application
configuration and the network infrastructure. The
proposed configuration methodology focuses strictly on
Engineering Viewpoint, dealing with application
configuration and network design issues without taking
into account application development progress. Thus, a
model is provided to describe application logic in terms of
the service requirements imposed to the network
infrastructure. In contrast to EDOC, different UML
diagrams are adopted for representing system entities
already defined in the meta-model, thus enabling system
designer to explore discrete configuration issues.

In this paper, we focus on the formal definition of the
Enterprise Information System Configuration Profile,
facilitating the configuration of enterprise information
system (EIS) architectures. The profile enables the
description of EIS entities needed to autonomous explore
the Configuration Viewpoint of the system. Since each
configuration stage may be related to a different aspect of
the system, discrete views of the system model are
accommodated. Different UML 2.0 diagrams are
integrated [11] to support different views of the system.
The representation of relationships and restrictions among
discrete system entities must also be facilitated to identify
and explore the dependencies between configuration
stages. Constraints are extensively used for this purpose.

The rest of the paper is organized as follows: In
section 2, the system configuration methodology and the

proposed implementation framework are presented. In
section 3, the formal definition of the UML Profile is
presented. UML 2.0 extensions and constraints needed to
efficiently model system architecture and the provided
functionality with respect to configuration methodology
are also discussed. Implementation issues are addressed in
section 4. Our effort to implement the profile in an
existing UML modeling tool is briefly discussed. A case
study using the proposed profile and methodology to
configure a distributed banking system is presented in
section 5. Conclusions reside in section 6.

2. EIS Configuration Methodology
The system configuration framework (Nikolaidou et.

al, 2005) is depicted in figure 1. Functional configuration
(stage 1) corresponds to the description of system
specifications. Logical and physical configuration (stages
2 and 3) deal with application configuration (process/data
allocation and replication policies) and network design
respectively. As resource allocation and network
configuration problems cannot be independently solved,
stages (2) and (3) are repeatedly invoked until an
acceptable solution is reached. System configuration
phase must facilitate the performance evaluation (stage 4)
of the proposed solution prior to implementation. If
system requirements are not satisfied, logical and physical
configuration are re-initiated. In order to support
configuration stages, the common meta-model includes 3
alternative views: Application View is used to describe
functional specifications (e.g. application logic and user
behavior). Application logic is described in terms of
service requirements imposed to the network
infrastructure, e.g. amount of data processed, transferred
or stored. Topology View facilitates the definition of
system access points and the resource allocation and
replication. The term site is used to characterize any
location (i.e. a building, an office, etc.). As such, a site is
a composite entity which can be further analyzed into
subsites, forming thus a hierarchical structure. Resources
(e.g. processes and data) and the way they interact are
already described through application view and are
located into sites. Physical View refers to the aggregate
network. Network nodes are either workstations allocated
to users or server stations running server processes.
Topology and physical view correspond to application
and network architecture respectively, thus they are
interrelated. Both are decomposed to hierarchical levels of
detail. At the lowest level, network nodes are related to
processes/data replicas.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Functional Configuration

Physical Configuration

Performance Evaluation

System
Designer

Topology View

Application View

Physical View

Operates on / support by
relationship

Application description
relationship

Logical Configuration

Performance
accepted

yes

no

EIS Model
Configuration Methodology

Figure 1. System Configuration Methodology
Logical and physical configuration stages are usually
supported by automated or semi-automated tools using
mathematics, heuristics or a combination of both. These
tools may be repeatedly invoked for different model
abstraction levels [5, 6]. To evaluate system performance,
a simulation tool as the one described in [12] can be used.
The simulator uses as input the overall distributed system
model and produces performance results. Since each of
these tools supports its own representation meta-model
(for example queuing networks, Petri-nets, objects), there
a need to properly create and instantiate the “internal”
system model prior invoking the tool.

To ensure the consistency of the system model
throughout all configuration stages, the common meta-
model is used as a “reference point”. Thus the system
model is stored in XML, while prior using an existing tool
for a specific configuration stage, the partial
transformation of the common meta-model into its
internal meta-model must be facilitated. Using this
transformation, the invocation and initialization of any
tool can be automatically performed. Input/output
parameters must be represented in the common meta-
model. Their values are either entered by the system
designer or automatically computed. The meta-model
itself contains relationships and restriction imposed
between system entities belonging in the same or different
views, which may lead to a specific configuration stage
invocation (for example if the network hierarchy in the
physical view is modified, this modification must be
depicted in the logical view as well).

Embedding restrictions within the meta-model
facilitates the management of the configuration process
taking into account the overall system model and not the
specific system viewpoint corresponding to a discrete
configuration stage. Thus, the configuration process
becomes more effective, since all dependencies between

configuration stages are depicted within the model as
view dependencies and consequently explored.
Furthermore, it becomes more efficient to combine
autonomous software tools for logical and physical
configuration stages in different levels of detail, as each
of them is independently invoked without knowing the
existence of others. The meta-model described in [3] is
adjusted for this purpose, as depicted in figure 3.

In order to provide a standard method to visualize the
meta-model and facilitate the designer to interact with it, a
UML 2.0 profile [7] was defined facilitating the
following:

1. Representation of EIS meta-model different views.
More than one UML 2.0 diagrams may be used for
each view. Thus a specific system entity may
participate in more than one diagram represented
through a different UML entity.

2. Linkage between different model views, as
represented in the meta-model.

3. Representation of all relationships and restriction
included in the meta-model. This must be applied
between entities participating in the same or different
UML diagrams to ensure model consistency.

4. Definition of system entities, attributes and
relationships

5. Invocation/synchronization of software tools
supporting discrete configuration stages.
Configuration tools are invoked add-hoc by the
system designer or automatically by meta-model
restrictions (for example through the linkage between
different model views).

The overall implementation framework is depicted in
figure 2.

Figure 2. Implementation Framework

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Figure 3. Proposed EIS Meta-Model

3. UML 2.0 Profile Definition
UML 2.0 diagrams are used to represent different aspects
of meta-model views. EIS entities are depicted as UML
model elements included in the corresponding diagram.
They may be created the system designer through the
UML modeling tool or automatically by configuration
software tools. UML 2.0 stereotypes are used for their
representation. Stereotypes can add new or extra
semantics to any UML element by defining additional
values (based on attribute definition), additional
constraints, and optionally a new graphical representation
[13]. Constraints are extensively used to represent
relationships and restriction between meta-model entities,
thus maintain model consistency. Constraints facilitate:

• Automatic computation of specific attribute values
• Copying specific attribute values to interrelated

entities
• Imposing constraints in attribute value range
• Relating specific element attribute values to other

entity attribute values belong in the same or other

UML diagrams (thus implementing the linkage
between different views)

• Automatic creation/deletion of elements in UML
diagrams (thus implementing the restrictions imposed
between EIS meta-model entities)

• Model validation in both single view level and overall
model level (thus maintaining the relationships
between EIS meta-model entities)

• Automatically invoke external programs, thus
facilitating EIS model transformation and
configuration tool invocation (mainly logical/physical
configuration stages)

The stereotypes included in Profile are discussed in the
following. Each stereotype corresponds to an EIS meta-
model entity depicted in figure 2. The corresponding EIS
entity is indicate by the first part of the stereotype name,
while the second part indicates the UML class it derives
from.

Stereotypes are an important extension mechanism in
UML. An alternative in UML2.0 is directly extending
UML’s meta-model (MoF) [14]. In this case, new meta-
model constructs are directly added to the original meta-
model. Although UML2.0 indicates that the meta-model

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

and stereotype extension mechanism have some overlap
in the aspects of extension capability, it does not explain
in which circumstances each one of them is best suited
[15]. In the case of EIS modeling, it was decided to link
UML stereotypes to EIS meta-model, rather than defining
a new MoF, since our main goal was to use existing
software tools to implement the proposed configuration
methodology. Thus, our aim was to extend existing UML
modeling platforms (for example Rational Modeler).

In the following, EIS configuration profile is briefly
presented.

Application View
For each application operating in the EIS, a discrete
Application View is defined. Applications are conceived
as sets of interacting modules (either server or client),
such as Application Servers, Database Server, etc. Each
module offers specific services. File Server modules are
used for file storage. User behavior is also described in
the Application View, through user profiles activating
client modules. Each profile includes user requests, which
invoke specific services. Service implementation consists
of simple tasks occurring upon module activation, called
operations. These are selected from a predefined
operation set, that is, the operation dictionary. Thus, an
Application View comprises an external part showing the
interactions among services and hence among application
modules, and several internal parts, one for every service
appearing in the external part (see figure 2).

The external Application View is represented as a
UML use case diagram. Use cases in UML are means for
specifying system functionality. As such, they are suitable
for the representation of services. Services represent a
coherent unit of functionality provided by a system, thus
they are modeled as use cases (service use case
stereotype), and the owning modules as packages (module
package stereotype). A FileServer Module Package is
used to manage files, thus a fileList must be filled. For
each file the name, size and specific characteristics
(whether it is executable or data, shareable, updatable and
replicable) must be defined, the fileList contains records
of this specific structure. The relation among services can
be pertinently modeled using the Include relationship
defined between use cases. User profiles are represented
by UserProfileActor, which is defined as a stereotype of
the Actor classifier. An Actor in UML use case diagrams
may initiate a function represented by a use case.
Likewise, a user profile may initiate the execution of a
specific service. Therefore, the relationship between a
user profile and a component is represented by the
stereotype Initiates which is defined as a specialization of
Association classifier connecting an actor to a use case in
use case diagrams. An example of an external Application
View is depicted in figure 4 (Case Study section).

The behavior of a use case can be described through
interaction, activity or state machine diagrams. We used
this feature by adopting activity diagrams to illustrate the
implementation of a service (internal application view).
Since a service implementation involves flow of
operations, the eligibility of activity diagrams for its
representation is obvious (Service Activity stereotype). An
example of an internal Application View is depicted in
figure 5 (Case Study section). Obviously, ServiceActivity
maps to ServiceUseCase, as they both represent the same
EIS meta-model entity (service). Thus, they have the
same attributes, namely moduleName and
inputParameterList, corresponding to the attributes of
service entity (figure 2). ModuleName indicates the
module the service belongs to, while inputParameterList
includes the input parameters of the service. Constraints
are defined to ensure model consistency. Some of them,
representing all constraint type, are discussed in the
following.
• A constraint indicating that only one activity diagram

can be defined per service (ensuring service entity
restrictions and implement linkage between the
external and internal part of the Application View)

• A constraint indicating that each ServiceUseCase
must be related to an existing ModulePackage
(representing the relationship between service and
module entities)

• A constraint for copying moduleName and
inputParameterList attribute values between
ServiceActivity and ServiceUseCase entities
(ensuring model consistency)

• A constraint for checking that all input parameters
included in inputParameterList are passed as values
to actions used in the activity diagram (model
validation)

ServiceActivity is composed of OperationActions
represented as stereotypes of UML Action. Each action
corresponds to the activation of a specific operation
already defined in the Operation Dictionary.
• This is implemented using operation attribute and the

corresponding constraint relating its values to the
names of entities in Operation Dictionary UML
diagram.

• ValueList attribute of Action entity must comprise the
values of the parameters that correspond to the
operation attribute. This is also checked by a
constraint.

• TargetModule and targetService values, usually
included in ValueList, indicate an existing module or
service defined in the external part of the
ApplicationView. When these values are defined, a
constraint automatically inserts the corresponding
Invokes entity between the services owning the

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

specific action and the target service in the external
part of the Application View (thus implementing the
constraints imposed between invocation and
operation action EIS meta-model entity values).

Operation Dictionary
Use case diagrams are chosen for the representation of
operation dictionary, since each operation represents a
functionality unit in the same way that a use case
represents a functionality unit in UML. Operations used
in activity diagrams for describing process component are
characterized as application operations (application use
case stereotype). Operations must be ultimately
decomposed into elementary ones (i.e. processing, storing
and transferring) to estimate the QoS required from the
underlying network (elementary use case stereotype).
Intermediate operations are needed to simplify operation
decomposition (intermediate use case stereotype) (see
figure 2).

It is important for the system designer to further extend
the operation dictionary to describe the functionality of
specific applications. The designer may add operations (as
use cases) in the Operation Dictionary diagram except of
elementary ones. When defining a new operation, the
system designer must add it in the diagram, specify its
parameters and relate it to existing operations involved in
its description. All these actions are controlled by
constraints.

Physical View
Physical view comprises the network infrastructure. UML
deployment diagrams are commonly used to represent
network architectures [16]. The overall network
(NetworkPackage) is decomposed to subnetworks
(NetworkPackage), producing thus a hierarchical
structure. LANs typically form the lowest level of the
decomposition. Devices, such as servers (ServerDevice)
and workstations (WorkstationDevice) are associated with
LANs of the lowest level. Devices may include a
processing unit (ProcessUnitDevice), and a storage unit
(StorageUnitDevice). Constraints mainly represented
relationships and restrictions between Physical and
Topology views of EIS meta-model and relate
aforementioned stereotypes to corresponding Topology
view stereotypes, thus they are discussed in the following
paragraph.

Topology View
Topology view comprises sites, processes (defined as
instances of application modules), file replicas (stored in
corresponding File Server processes) and users (defined
as instances of user profiles) (see figure 2). Two types of
sites are supported: composite, composed by others, and
atomic, not further decomposed, constituting therefore the

lowest level of site hierarchy. Users, processes and files
are associated to atomic sites. In essence, the hierarchy
indicates where (in which location) each process runs and
user is placed. The site hierarchy should correspond to the
network hierarch depicted in the physical view, while
processes, files and users are related to nodes (server or
workstation) included in the physical view.

The representation of Topology View is based on
UML component diagrams. Component diagrams
representing topology views and deployment diagrams
representing physical views are interrelated. This is
facilitated by the relationship between node and
component model entities already supported in core UML
meta-model. Sites are represented as Packages
(SitePackage stereotype) SitePackages relate to each
other through membership relation, as introduced in UML
2.0. SitePackages are related to ServerComponents,
ClientComponents and UserProfileActors by the
membership relation as well. Processes, files and users are
modeled as UML component (Serve/ FileServer/ Client
ProcessComponent stereotypes, FileComponent
stereotype UserComponent stereotype) and ClientReplica
Component). The defined stereotypes are analytically
described in the Topology View table of Appendix A.
Avg/Max network and processing req attributes indicate
the corresponding site/ process requirements. They are
automatically computed during logical configuration. Sine
this is performed progressively, they might be computed
more than once.

Both views can be either defined by the system
designer or automatically composed by logical and
physical configuration tools. The introduction of
progressive site refinement, as well as the mapping of site
range onto network range, enables the identification of
dependencies between application configuration and
network topology [3]. A topology view example and the
corresponding physical view are depicted in figures 7 and
9 (Case Study section). Some of the constraints
implementing the restrictions imposed between Topology
and Physical Views are discussed in the following:
• Network and site hierarchy must be identical, thus

corresponding network and site packages must have
corresponding parents. A corresponding constraint is
defined for both entities.

• A constraint is defined to add/delete network/site
packages in the corresponding diagram, in order to
make network and site hierarchies identical.

• A constraint is used to initiate the corresponding
logical or physical configuration tool, whenever the
site or network hierarch is changed.

• A constraint is used to relate processes, files and
users to existing application modules, file server
modules and user profiles in an application view.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Topology View may contain components related to
entities belonging in different Application Views.

• Constraints are used to ensure that server process
components are related to server devices, user
components are related to workstation devices, and
file are related to storage unit devices belonging to
server devices where a file server component is
allocated.

It is obvious, that constraint definition is a powerful
mechanism to represent the dependencies between
Topology and Physical View in a similar fashion for both
the user (system designer) and configuration software
tools.

4. Implementation Issues
The implementation of the proposed UML 2.0 profile in a
UML modeling tool is essential to provide the
implementation framework proposed in figure 3. The
selected UML tool must facilitate mechanisms to extend
provided functionality (e.g. by importing profiles) and
export models in XML based on existing UML classes
and profile specific stereotypes. Tool selection process
was not an easy task. Although there were a lot of tools
supporting UML 2.0, most of them are not easily
extended, while at the same time exporting capabilities
are limited. There are tools facilitating the definition of
stereotypes and they properties, but do not support the
API needed to implement constraints for automatic entity
creation, entity validation and external program
invocation. Most tools do not support XMI export for all
the UML objects based on the stereotypes of all the
diagrams used in EIS Configuration Profile.

We explored the possibility of implementing the
profile in the Rational Modeler environment [17]. The
extensibility features in the Rational Modeler are built on
the open-source Eclipse components. The following
extensions had to be implemented: stereotypes, their
attributes and constraints, and script-like programs, as
pluglets, to access and modify model information and
Eclipse plug-ins that use model information to further
enhance the workbench of the proposed alternative views.
Although the definition of stereotypes and their attributes
was trivial, we experienced a lot of difficulty using its
API due to poor documentation, performance and bugs.
Furthermore, we explored ULM 2.0 Object Constraint
Language (OCL) [18], to represent and manage
constraints within Rational Modeler. In order to write
unambiguous constraints, so-called formal languages have
been developed and OCL is one of them. Since Rational
Modeler supports OCL, we explored related features.
Although it was efficient of attribute related constraints,
we could not implement constraints related to API
programming.

We implemented most of the features of the proposed
profile in Rational Rose tool [19], in order to test the
overall concept. Rational Rose tool, although does not
support UML 2.0, is a stable programming environment
with a documented API, supporting the implementation of
stereotypes, facilitating the definition of profiles and
providing advanced export capabilities. Although UML
2.0 specific features, as membership notation used for the
connections between sites and process/user profile
instances in the Topology view were simplified, Rational
Rose provided a rapid prototype environment to test our
ideas in less than a month time. Though, the interaction
with EIS meta-model stored in XML, was not seamlessly
performed, since the transformation of XMI export for
UML entities into the proposed meta-model and vise-
versa was tricky since it was not UML 2.0 compliant.

Although a lot of work is done in UML 2.0 modeling
tools, there are still not mature enough to facilitate a
reliable API. Nevertheless, they are rapidly improving.
We are currently struggling with the latest version of
Modeler, hoping to solve remaining programming issues.

The profile is currently tested in terms of completeness
and expressiveness, using large-scale EIS architectures as
test cases.

5. Case Study
In the following, the configuration process of a typical
banking system using EIS Configuration Profile is
discussed. We focus on teller transaction to demonstrate
profile capabilities. The system supports 38 discrete teller
transactions. The amount of transactions/day varies
according to branch size, while the average amount of
teller transactions in large branches is over 10.000 per
day. The required response time is 15-18 sec for most
transactions.

The system architecture is based on server-based
computing. A central database is installed in headquarters,
while transaction logs are maintained in local databases
each branch. Transactions are coordinated by a
transaction monitoring system – TMS (Tuxido), also
installed in headquarters. Transactions are composed by
24 discrete atomic transactions initiated by TMS. Each
transaction consists of 3 to 7 atomic ones. All atomic
transactions are implemented by stored procedures
running in the central database. To enhance security and
facilitate a single authentication point, all user programs
run on a dedicated execution server (CITRIX), while in
user terminals only the corresponding client (CITRIX
client) is installed.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Application View
The following application modules were identified: File
Server, CentralDB, LocalDB, TMS and Citrix. Since
LocalDB represents logging, only a simple insert service
was implemented for recording the log. CentralDB
supports 33 stored procedures, represented as a different
service. TMS Module includes 24 services corresponding
to discrete atomic transactions. Citrix Module includes 38
services corresponding to discrete teller transactions.
They involve the invocation and processing of forms, the
activation of atomic transactions through TMS and log
recording. Tellers are modeled as User Profiles initiating
CITRIX Client modules corresponding to each teller
transaction.

Figure 4 represents a fraction of the Application View
emphasizing services needed for the representation of
transactions trx31600 - Cash deposit, and trx2000 -
Request business loan. As depicted in the figure services
are represented as use case stereotypes and modules as
package stereotypes.

Figure 4: Fraction of the Application view –
Transactions trx31600 and trx2000

The trx31600 service of the Citrix Module is initiated by
trx31600_invoke service of the CitrixClient Client
Module. In figure 4, the corresponding Service Usecase is
selected. Additional stereotype attributes are stored in
Documentation field supported within Rational Rose
platform (bottom left corner of figure 4). They are added
by system designer through custom menu created using
Rational Rose API. In this case, only the module attribute
is filled, since the service has no input parameters
(inputParameterList attribute is emply). The
corresponding activity diagram is considered as a
subdiagram of Application View UseCase diagram. It is
represented in figure 5. As shown in the figure, trx31600
is composed by the activation of the appropriate forms,
the activation of the central database through the TMS

and local database update. Each discrete step is
represented by an action instantiating a predefined
operation included in the Operation Dictionary.

Figure 5: Trx31600 activity diagram
When defining an action, all input parameters values of
the corresponding operation must filled. They must be
either constant or already defined as trx31600 service
input parameters. As show in figure 5, all operation input
parameters must be constant, since trx31600 service has
no inputParameterList. The corresponding validation
constraint is implemented as a custom script initiated by
Validate menu (upper right corner of figure 5). Some of
the actions, as request (selected in figure 5), result in the
invocation of other services. A constraint automatically
adds the corresponding invoke entity between service use
cases in the Application View (figure 3). The invoke
entity has the same name as the action.

Operation Dictionary
Figure 6 represents a fragment of the operation dictionary.
All operations are decomposed into elementary ones
(processing, diskIO, network). The system designer may
add new operations in the dictionary. In the figure 6, the
addition form_access operation is presented. Three steps
should be accomplished: parameter definition, definition
of dependencies to existing operations and validation
performance. Related constraint checks if all the
parameters defined for an operation are passed as values
to called operations used for its execution. Parameter and
dependency definition is performed through pop-up
forms. Form_access operation parameters are FileServer,
form_name and processing. Form_access operation
“uses” two other operations in order to be executed:
processing and write. First, calls processing (which is
elementary operation) and then write and then again
processing. Parameters values of the called operation
must be defined. The pop-up window entitled “Fill
Outgoing Dependencies” depicts write operation
parameter definition.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Figure 6: Operation Dictionary Fragment

Topology and Physical Views
Three different types of branches are supported: large,

medium and small. Large branches have more than 30
tellers stationed at two different floors. The upper floor is
dedicated to business transactions (10 tellers), while all
others are served in the main hall. The corresponding
fraction of Topology View is depicted in figure 7. Each
hall is presented as a sub-site of a branch site (both
represented as Site Packages). Headquarters is presented
as a site also.

Figure 7: Fraction of Topology View
Tellers, modeled as users, are placed in “Main Hall” and
“Upper Floor” sites, along with corresponding citrix client
processes. Since the system is based on server-based
computing, most of server processes are placed only in
headquarters, while no replication is employed
simplifying the overall architecture. Since there was a
request to maintain log data in local branch databases, a
local database server replica is placed in each branch. The
only issue to be explored was the placement of CITRIX
Server. Although the system designer placed a CITRIX
Server process to each branch, logical configuration tool

removed the processes from medium and small branches
and placed one in Headquarters to minimize
communication cost. This is depicted in EIS model stored
in XML. A segment of the XML file, emphasizing
Topology View is shown in figure 8. This fact is
automatically shown in the Topology View.
<TopologyView>

<Sites>
<Site xmlns:EIS="href://netlab.hua.gr/EIS">
<xmi.id>S.307.1307.21.2</xmi.id>
<Name>HEADQUARTERS</Name>
<SiteRange/>

</Site>
<Site xmlns:EIS="href://netlab.hua.gr/EIS">

<xmi.id>S.307.1307.21.3</xmi.id>
<Name>KALLITHEA BRANCH </Name>
<SiteRange/>

</Site>
</Sites>
<Processes>

<Process xmlns:EIS="href://netlab.hua.gr/EIS">
<Name>Central DB</Name>
<xmi.id>S.307.1307.21.15</xmi.id>
<Type>ServerProcessComponent</Type>
<Instances/>

 <Site>HeadQuarters</Site>
</ Process >
<Process xmlns:EIS="href://netlab.hua.gr/EIS">
<Name>Main Hall Teller </Name>
<xmi.id>S.307.1307.21.16</xmi.id>
<Type>UserComponent</Type>
<Instances> 10.</Instances>

 <Site>Main Hall</Site>
</ Process >

</Processes>
<Relations>

<Relation xmlns:EIS="href://netlab.hua.gr/EIS ">
<xmi.id>G.1</xmi.id>
<Source>Main Hall Teller</Source>
<Target>Citrix Client 1</Target>

</Relation>

Figure 8. Fraction of corresponding EIS model
Processes and users appearing in Topology View must
correspond to application modules and user profiles
represented in Application View. As shown in figure 8,
when defining process replicas, a shortcut menu
containing two drop-down lists appears. The first one
corresponds to the application (described by a discrete
Application View) and the other one to the module
(defined within the Application View). Furthermore,
corresponding relationships between processes and
modules must be defined in both diagrams. Related
constraint is activated by a corresponding “Validate”
menu.

The Physical View is rather trivial. A fraction of it is
presented in figure 9. The overall network is TCP/IP
based. Branches are connected to headquarters using
leased lines, forming a private WAN. The connection
speed is indicated as the name of membership relation
between node devices and site packages. As indicated in
the figure, branches are internally supported by switched
100BaseT Ethernet. The structure of the Physical View in
the banking system (network architecture) was
predefined. Network hierarchy must correspond to site
hierarchy and visa-versa. Thus, when validating the

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

model presenting in figure 9, an additional site
(corresponding to the Bank Private WAN) should be
automatically added it the Topology View of figure 7.

Figure 9: Fraction of Physical View

6. Conclusions
A platform independent framework for implementing the
EIS configuration methodology described in [3] was
proposed. To accomplish that, a UML 2.0 profile was
defined, facilitating a holistic approach for EIS
configuration. The profile facilitates the representation of
EIS meta-model different views and all relationships and
restriction included in the meta-model. To accomplish
this, constraints are extensively used. Configuration tools
are invoked add-hoc by the system designer or
automatically by constraints (through the linkage between
corresponding model views). Constraints facilitated
model consistency, necessary to co-ordinate configuration
stages.

Although a lot of work is done in UML 2.0 modeling
tools, there are still not mature enough to facilitate a
reliable API, although they are rapidly improving. The
profile was implemented in Rational Rose environment.
Although Rose is outdated, it provides a stable API,
which facilitated as with a rapid prototype environment to
test out ideas. We are currently working with Rational
Modeler.

7. References
[1] Serain D., Middleware, Springer-Verlag London, Great

Britain, 1999.
[2] Savino-Vázquez N.N. et al., “Predicting the behaviour of

three-tiered applications: dealing with distributed-object
technology and databases”, Performance Evaluation, Vol.
39, no 1-4, Elsevier Press, 2000.

[3] Nikolaidou M., Anagnostopoulos D., “A Systematic
Approach for Configuring Web-Based Information
Systems”, Distributed and Parallel Database Journal, Vol
17, pp 267-290, Springer Science, 2005.

[4] Gomaa H., Menasce D., Kerschberg L., “A Software
Architectural Design Method for Large-scale Distributed
Information Systems”, Distributed System Engineering
Journal, Vol. 3, No 3, IOP, 1996.

[5] Graupner S., Kotov V., Trinks H., “A Framework for
Analyzing and Organizing Complex Systems”, in
Proceedings of the 7th International Conference on
Engineering Complex Computer Systems, IEEE Computer
Press, 2001.

[6] Nezlek G.S., Hemant K.J., Nazareth D.L., “An Integrated
Approach to Enterprise Computing Architectures”,
Communications of the ACM, Vol 42, No 11, ACM Press,
1999.

[7] OMG Inc, UML Superstructure Specification, Version 2.0,
8/10/2004.

[8] OMG Inc, UML Profile for Enterprise Distributed Object
Computing, 1/2/2004.

[9] ISO/IEC & ITU-T, Information technology – Open
Distributed Processing – Part 1 – Overview – ISO/IEC
10746-1 | ITU-T Recommendation X.901.

[10] Interoperability Technology Association for Information
Processing, Japan (INTAP), “A Guide for using RM-ODP
and UML profile for EDOC”, white paper, 2005.

[11] Gomaa H. and Shin M., “Multiple View Meta-Modeling of
software Product Lines”, in Proceedings of the 8th

International Conference on Engineering Complex
Computer Systems, IEEE Computer Press, 2002.

[12] Nikolaidou M. Anagnostopoulos D., "A Distributed System
Simulation Modeling Approach", Simulation Practice and
Theory Journal, Vol. 11, No 4, Elsevier Press, 2003.

[13] Eriksson, H., Penker M., Lyons S., Fado D., UML 2
Toolkit, Wiley Publishing, Inc., USA, 2004.

[14] OMG Inc, UML 2.0 Infrastructure Specification,
30/4/2004.

[15] Jiang Y, et. al,. “On the Classification of UML’s Meta
Model Extension Mechanism”, UML 2004, LNCS 3273,
pp. 54-68, Springer Verlag, 2004

[16] Kaehkipuro P., “UML-Based Performance Modelling
Framework for Component-Based Distributed Systems”,
Lecture Notes in Computer Science 2047, Performance
Engineering, Springer-Verlag, 2001

[17] IBM Co, Introducing Rational Software Modeler,
http://www-128.ibm.com/developerworks/rational/
library/05/329_kunal/

[18] OMG Inc, UML 2.0 OCL Specification 14/10/2003.
[19] Rational Software Corp, Using the Rose Extensibility

Interface, White Paper, 2001.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

