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Abstract 
Enterprise Information Systems can be described 
according to the Open Distributed Processing 
Reference Model (RM-ODP), where five different 
viewpoints are specified analyzing various aspects of 
the system. Configuration issues are explored in the 
Engineering Viewpoint of RM-ODP. In practice, 
configuration issues are explored in discrete stages, 
supported by autonomous software tools, each of which 
adopts its own metamodel for system representation. We 
propose a platform independent framework, which 
focuses on the Engineering Viewpoint of Enterprise 
Information Systems managing application 
configuration and network design issues independently 
of application development progress. In order to apply 
this framework using existing tools, model 
exchangeability and tool coordination must be 
supported by standard, open methods. Thus, a common 
metamodel is proposed to generate enterprise 
information system models, which are stored in XML. A 
UML 2.0 profile is defined to visualize these models, 
facilitate the designer to interact with them and 
coordinate specific tool invocation.  

1. Introduction 
The Open Distributed Processing Reference Model 
(RM-ODP) offers a conceptual framework integrating 
aspects related to the distribution, interoperation and 
portability of software systems in such a way that 
hardware infrastructure is transparent to the user. RM-
ODP manages system internal complexity through the 
“separation of concerns”, addressing specific problems 
dealt with during system development from different 
viewpoints [1]. Five generic and complementary 
viewpoints are provided: Enterprise, Information, 
Computational, Engineering and Technology. The 
Enterprise Distributed Object Computing (EDOC) UML 
profile by OMG proposes system models to designers 
using UML concepts for the five viewpoints of RM-
ODP framework. The Engineering Viewpoint focuses 

on system configuration issues, such as the type of 
system architecture (e.g. client-server), the definition of 
the system access points, the description of the 
underlying network architecture and the association of 
software components to network nodes (resource 
allocation). Although these issues are interrelated, they 
are often modeled using discrete views and studied in 
isolation, applying the concept of “separation of 
concerns” within the limits of the Engineering 
Viewpoint as well [2, 3]. This results in designing 
systems with poor system performance. In practice, 
discrete issues, as network architecture description or 
resource allocation are supported by autonomous 
automated or semi-automated tools [4, 5, 6], each of 
which adopts its own metamodel for system 
representation. Thus, no interaction between them is 
supported. In order to effectively explore the 
Engineering Viewpoint of Enterprise Information 
Systems, heterogeneous tools and system models should 
be integrated. Thus, tool coordination and internal 
metamodel transformation should be supported. The 
main advantage of the methodology proposed in [7] for 
web-based system configuration is the adoption of a 
common metamodel for the representation of systems 
throughout all configuration stages, ensuring 
interoperability and model consistency. Although, this is 
not feasible in the case of integrating autonomous 
software tools, an overall common metamodel can be 
adopted acting as a “reference point”, while partial 
transformations of the common metamodel into tool-
specific metamodels may be also supported. In order to 
provide a consistent framework for enterprise system 
engineering the following issues should be addressed: 
• Definition of a common metamodel.  
• Integration of autonomous tools. 
• Model exchangeability and transformation. 
• Provision of an integrated, easy-to-use interface for 

the system designer. 
The proposed framework, which strictly focuses on 

the Engineering Viewpoint, deals with all these issues, 
ensuring strong control over the whole system 
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configuration process. The framework is presented in 
section 2. In section 3, we focus on the formal definition 
of a UML 2.0 Profile, facilitating the system 
engineering process. Conclusions reside in section 4. 

2. EIS Engineering Framework 
The proposed EIS engineering framework facilitates 1) 
system requirements description, 2) resource 
(process/data) allocation and replication policy 
definition 3) network architecture design and 4) 
performance evaluation of the proposed solution (prior 
to implementation). As resource allocation and network 
design problems cannot be independently solved, stages 
(2) and (3) are repeatedly invoked until an acceptable 
solution is reached. The tools supporting them may be 
repeatedly invoked for different model abstraction 
levels [5], [6]. Since each of these tools supports its own 
representation metamodel (e.g. queuing networks, Petri-
nets, objects), there is a need to properly create and 
instantiate the “internal” system model before invoking 
the tool. Input/output parameters must be represented in 
the common metamodel. Their values are either entered 
by the system designer or automatically computed. 
System requirements specification stage is performed 
through a UML 2.0 profile [8] for EIS engineering.  

To ensure the consistency of the system model 
throughout all stages, the common metamodel is used as 
a “reference point”. It includes 3 alternative views. 
Functional View is used to describe functional 
specifications (e.g. system architecture, user behavior 
and application requirements). Application requirements 
are described in terms of quality of service (QoS) 
requirements imposed to the network infrastructure, e.g. 
amount of data processed, transferred or stored. 
Topology View facilitates the definition of system access 
points and the resource allocation and replication. 
Physical View refers to the aggregate network. 
Topology and Physical views are interrelated. Both are 
decomposed to the same hierarchical levels of detail. At 
the lowest level, network nodes are related to 
processes/data replicas. The metamodel itself contains 
relationships and restrictions inflicted between system 
entities belonging to the same or different views, which 
may lead to a specific stage invocation (e.g. if the 
network hierarchy in the physical view is modified, this 
modification must be depicted in the Topology View as 
well). The metamodel entities are presented in the next 
section through the profile description. Detailed 
description of the main entities can be found in [7].  

Embedding restrictions within the metamodel 
enhances control over the EIS engineering process, 
taking into account the overall system model and not the 
specific system viewpoint corresponding to a discrete 
stage. As such, the framework facilitates both 
“separation” (through the definition of different views) 

as well as “integration (through the definition of 
constraints representing interrelations between views) of 
concerns”. As a result, the overall process becomes 
more efficient, since it is divided into separate stages 
and thus is simplified, but at the same time the system 
configuration discrete stage (and corresponding tool) 
dependencies are depicted within the model as view 
dependencies and consequently they are easily 
identified. Furthermore, it becomes more efficient to 
integrate autonomous software tools in different levels 
of detail, as each of them is independently invoked 
without knowing the existence of others. All these result 
in the achievement of strong control over the whole 
system engineering process. 

 
Figure 1. Metamodel Transformation Framework 

To integrate an autonomous configuration tool in the 
EIS engineering framework, the following steps should 
be accomplished: 
 Definition of a MOF-based representation of tool 
internal metamodel. 

 Transformation definition of common metamodel into 
tool internal metamodel and vise versa. 

 Automated creation/update of internal models, as 
XMI documents. 

 Import/export of internal XMI models into/out of the 
tool. 
These, as illustrated in figure 3, are performed 

making use of Model Driven Architecture (MDA) 
concepts [9]. The common metamodel is defined based 
on Meta Object Facility (MOF). What is additionally 
required is the definition of a formal metamodel 
transformation to map UML metamodel entities (used 
for system graphical representation) to the common 
metamodel entities (used for system description) and 
vice versa. Likewise, a formal definition must be 
specified to map the common metamodel entities to 
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those defined by the internal metamodel of each tool 
and vice versa. The proposed common metamodel is 
platform independent (PIM), while tool metamodels are 
platform specific (PSM). The transformation definitions 
are implied by the gray block arrows at the metamodel 
layer. The actual transformations are performed at the 
model layer. As shown at the implementation layer, the 
models are stored as XMI documents. The XMI 
document produced by any UML 2.0 tool, as Rational 
Modeler [10], using the EIS engineering profile, can be 
automatically translated into an XMI EIS model using 
an XSLT/Xquery processor and vise-versa.  MDA 
suggests that transformations should be performed at 
model layer using formal definitions specified at the 
metamodel layer. In our current implementation though, 
we perform transformations using simple XSLT/Xquery 
rules for simplicity reasons. However, we indent to 
transfer the transformation process at the model layer in 
our future work. 

3. UML 2.0 Profile Definition 
Notational aspects of the EIS metamodel are 
accommodated through a UML 2.0 profile. EDOC 
profile supports Engineering Viewpoint mainly using 
component diagrams for both the application 
configuration and the network infrastructure [2]. EIS 
entities are depicted as UML elements, properly 
extended to include additional properties and 
constraints. Thus, UML 2.0 stereotypes have been 
defined for each view, facilitating new attributes, 
constraints, and a new graphical representation. 
Essentially, the concepts of the common metamodel are 
reflected onto the stereotype attributes and constraints. 
Attributes convey the information required to describe 
EIS metamodel entities. Constraints, which are 
extensively used within the profile, represent 
relationships and restrictions between metamodel 
entities maintaining model consistency. Following, each 
view is described in detail. The proposed stereotypes are 
indicated in italics within parentheses next to the 
corresponding model element which is written in bold. 

Functional View 
For each application operating in the EIS, a discrete 
Functional View is defined. Functional Views are 
represented as UML Component diagrams, as the latter 
are eligible for depicting system functionality at a 
logical level. Applications are conceived as sets of 
interacting modules. A module, which can be either 
server (ServerModuleComponent) or client 
(ClientModule Component) offers specific services 
(ServiceComponent). A Functional View usually 
includes a File Server module which is used for file 
storage. A server module service may be invoked 
(Invoke stereotype) by another one belonging to a 
different module. User behavior is described through 

user profiles (UserProfileComponent) activating client 
modules. Each profile includes user requests (Initiate), 
which invoke specific services. The interaction between 
user profiles and services plays a determinative role in 
system engineering, since user profiles include 
performance requirements imposed by users. This is 
indicated by attributes of the UserProfileComponent 
and Initiate stereotypes. ActivationProbability attribute, 
for example, denotes how often a service is initiated 
while the user profile is active. Percentage attribute of 
Initiate stereotype indicates how often a specific service 
is activated by the profile. Functional View stereotypes 
are listed in Table 1 along with their attributes and 
constraints and their corresponding icons. Each 
stereotype has been named so that the first part of the 
name indicates the corresponding EIS metamodel entity, 
while the second part denotes the UML class it derives 
from. This doesn’t hold however for Initiate and Invoke 
stereotypes. These stereotypes are defined as a 
specialization of UML Dependency.  

Concerning service implementation 
(ServiceActivity), it is represented through an activity 
diagram, as it involves flow of operations. Each 
ServiceActivity maps to a ServiceComponent, thus these 
two stereotypes have the same attributes. Service 
implementation consists of simple tasks occurring upon 
module activation, called operations 
(OperationAction). These are selected from a predefined 
operation set, that is, the Operation Dictionary. 
Operation Dictionary facilitates the decomposition of 
operations into elementary ones, i.e. processing, storing 
and transferring, so that QoS required from the 
underlying network can be estimated. The system 
designer may further extend the Operation Dictionary 
by adding new operations, in order to describe the 
functionality of specific applications. UML 
Communication diagrams were selected for the 
representation of Operation Dictionary, as 
communication diagrams are used to show interactions 
among elements. Due to space limitations, Operation 
Dictionary is not further discussed. 

Figure 2 presents a simple application as an 
example. A user (student) initiates a simple search in a 
library OPAC, thus performs a database search through 
the appropriate CGI in the Web server. The example 
involves three modules: Web Client, Web Server and 
External Database Server, consisting of services. Web 
Server module, for example, includes two services, Get 
Page and Perform Search. Figure 2 illustrates also the 
implementation of the Simple Search service as well as 
a fraction of the Operation Dictionary. The dotted lines 
indicate the correspondences among the external part of 
the Functional View, the implementation of Simple 
Search and the Operation Dictionary fraction. 
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Table 1.  Stereotypes for Functional View 

 
Figure 2. Functional View example 

Physical View 
Physical View comprises the network infrastructure. 
UML deployment diagrams are commonly used to 
represent network architectures [11]. The overall 
network (NetworkPackage) is decomposed to 
subnetworks, producing thus a hierarchical structure. 
LANs typically form the lowest level of the 
decomposition. Devices, such as servers (ServerDevice) 
and workstations (WorkstationDevice) are associated 
with LANs of the lowest level. Devices may include a 
processing unit (ProcessUnitDevice), and a storage unit 
(StorageUnitDevice). An example of Physical View 
depicting part of the University of Athens Library 
network is illustrated in figure 3. Additional attributes 
and constraints defined for the Physical View stereotypes 
are included in Table 2. Constraints mainly represent 
relationships and restrictions between Physical and 
Topology Views of the EIS metamodel and relate the 
aforementioned stereotypes to the corresponding 
Topology View stereotypes.  

 
Figure 3. Physical View example 

Stereotype Attributes Constraints Notation 
Server 
Module 
Component 

name 1. ServerModuleComponents 
contain only ServiceComponents.  

 

FileServer 
Module 
Component 

name, 
fileList 

2. FileServerModuleComponents 
contain only ServiceComponents.  
3. fileList contains records of type 
file. For each file the name, size 
and specific characteristics 
(whether it is executable or data, 
shareable, updatable and 
replicable) are defined. 

 

Client 
Module 
Component 

name, 4. ClientModuleComponents 
contain only ServiceComponents.  

Service 
Component 

moduleName, 
inputParameterList 

5. Each ServiceComponents 
cannot be related to more than one 
activity diagram. 
6. The moduleName corresponds 
to the name of the 
ServerModuleComponent or the 
ClientModuleComponent the 
service belongs to. 

 

Invoke name 

7. A service cannot invoke itself. 
8. Invokes relationship cannot 
connect UserProfileComponents 
to ServiceComponents belonging 
to ServerModuleComponents. 
9. The value of the name attribute 
of Invokes objects is identical to 
the value of the name attribute of 
the corresponding 
OperationAction that generated 
the invocation. 

 

UserProfile 
Component 

name, startTime 
endTime, 
activationFrequency, 
activationProbability 

10. The total of the percentage of 
all initiations starting from a 
specific UserProfileComponent is 
100. 
11. The value of 
activationFrequency is either 
“daily”, “monthly” or “weekly”. 

 

Initiate 
name, percentag,e 
responseTime, 
valueList 

12. The valueList attribute 
contains the values that 
correspond to the 
inputParameterList of the invoked 
client ServiceComponent. 
13. Initiates relationship may 
connect only 
UserProfileComponents to 
ServiceComponents belonging to a 
ClientModuleComponent. 

 

Service 
Activity 

name, 
moduleName, 
inputParameterList 

14. The values of both attributes 
are identical to the corresponding 
values of moduleName and 
inputParameterList of the owning 
ServiceComponent. 
15. All parameters included in 
InputParameterList are passed as 
values in the included 
OperationAction valueLists and vs 

 

Operation 
Action 

name, 
actionSequence, 
operation, 
valueList 
 

16. The operation attribute 
represents to application operation 
included in the operation 
dictionary. 
17. The value of actionSequence is 
an “internal” action id. 
18. The value of name is 
generated by the concatenation of 
actionSequence and operation. 
19. valueList comprises the values 
of the parameters that correspond 
to the operation attribute (as 
defined in the operation 
dictionary). These values must be 
either constant or included in the 
inputParameterList attribute of 
the corresponding 
ServiceComponent.  
20. valueList includes also 
targetModule and targetService 
values that indicate an existing 
module or service respectively 
defined in the external part of the 
Functional View. 

   Simple Search Decomposition         A fraction of Operation Dictionary          
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Table 2. Stereotypes for the Physical View 

Topology View 
Topology View is based on UML Component diagrams. 
Topology view comprises sites (SitePackage), 
processes defined as instances of server or client 
modules (ServerProcessComponent, ClientProcess 
Component), files managed by File Server processes 
(FileComponent) and user profile instances 
(UseProfilerComponent). Interactions among processes 
(Invoke), as well as between user profile instances and 
client processes (Initiate), are also depicted in Topology 
View. Topology View entity attributes indicate system 
requirements imposed to network infrastructure, while 
Physical View entity attributes indicate corresponding 
network infrastructure characteristics. 

The term site is used to characterize any location 
(i.e. a building, an office, etc.) according to the system 
designer perspective. Two types of sites are identified: 
composite, further decomposed to subsites, and atomic, 
constituting the lowest level of site hierarchy. In 
essence, the hierarchy indicates where (in which 
location) each process runs and each user profile is 
placed. Each site is characterized of Quality of Service 
(QoS) requirements as average and maximum network 
rate requirements regarding process communication a) 
within site limits (avgWithin and maxWithin attributes 
of SitePackage stereotype), b) exiting the site (avgOut 
and maxOut) and c) entering the site (avgIn and maxIn). 
These requirements must be satisfied by throughput 

attribute of the corresponding network (see attributes of 
NetworkPackage stereotype in Table 2). QoS attributes 
may be defined by the system designer or computed by 
resource allocation tools. 

The site hierarchy should correspond to the network 
hierarchy depicted in the Physical View (constraint 3 of 
Table 3). Composite sites correspond to composite 
networks, while atomic sites correspond to atomic 
networks representing simple LANS. Instances of 
processes, files and user profiles located in atomic sites 
are allocated to nodes (servers or workstations) included 
in the corresponding LAN of Physical View. This is 
indicated by constraints 9, 15, 20 and 23 of Table 3. 
Since Topology and Physical Views are represented by 
component and deployment diagrams respectively, the 
relationship between node and component entities 
already supported in the core UML metamodel can be 
used to depict process, file and user allocation to nodes. 
Allocation may be performed by the system designer 
using the UML 2.0 profile or by resource allocation 
tools. In the second case, the profile must facilitate 
graphical representation of allocation results.  

Concerning the relation between Topology and 
Functional views, it is ensured through the constraints 6, 
7, 12, 13, 17 and 18 of Table 3, which indicate that 
processes existing in a Topology View are instances of 
specific modules defined in a Functional View and that 
user profiles are instances of the corresponding user 
profiles defined in a Functional View.  

 
Figure 4. Topology View example 

The Topology View corresponding to the Physical View 
of figure 3 is presented in figure 4. All the introduced 
view examples (figures 2, 3 and 4) have been generated 
as snapshots using Rational Software Modeler (RSM) 
environment [10]. We have chosen to implement the 
profile in RSM mainly due to its extension capabilities. 
The extensibility features in RSM are built on the open 
source Eclipse components. Topology View stereotypes 
are listed in Table 3. Initiate and Invoke are the 
stereotypes introduced in Functional View with 
different constraints though, defined within the context 
of Topology View. SitePackages relate to each other 
through the membership relationship introduced in 
UML 2.0.  

Stereotype Attributes Constraints Notation 

Network 
Package 

id, name, 
type, 
parent, 
site,  
protocolStack, 
throughput 

1. The value of attribute type is 
either “atomic” or “composite”. 
2. Composite NetworkPackages 
contain only other 
NetworkPackages while simple 
NetworkPackages  correspond to 
simple LANs and contain only 
ServerDevices or 
WorkstationDevices. 
3. Each NetworkPackage 
corresponds to a single SitePackage 
in the Topology View. 
4. Corresponding Network and Site 
Packages are of the same type.  
5. Corresponding Network and 
SitePackages have corresponding 
parents. 

 

Server  
Device 

id, name 
serverComponentList 

6. Each ServerDevice relates to a set 
of ServerProcessComponents 
defined in the Topology View.  

Workstation 
Device 

id, name 
clientComponentList, 
userComponentList, 
items 

7. Each WorkstationDevice relates 
to one userProfileComponent 
defined in the Topology View. 
8. Each WorkstationDevice relates 
to all ClientProcessComponents 
defined in the Topology View that 
are invoked by the 
userProfileComponent assigned to 
it. 
9. The items value is the same as the 
instances value of the corresponding 
userProfileComponent in the 
Topology View.  

 

ProcessUnit 
Device 

processingPower, 
name, parentDevice 

10. Each ProcessUnitDevice relates 
to an existing ServerDevice or 
WorkstationDevice.  

StorageUnit 
Device 

name, size, 
files, 
storageSpeed, 
parentDevice 

11. Each StorageUnitDevice relates 
to an existing ServerDevice or 
WorkstationDevice. 
12. Each StorageUnitDevice hosts 
replicas of files defined in the 
Topology View. 
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Table 3. Stereotypes for Topology View 

5. Conclusions  
A framework for the Engineering Viewpoint of 
Enterprise Information Systems was proposed, focusing 

on the integration of existing autonomous engineering 
tools and EIS model exchangeability through the ijf  f gj  
definition of a common metamodel. For the graphical 
representation of the metamodel, a corresponding UML 
2.0 profile was defined. The profile facilitates the 
representation of EIS metamodel different views and all 
the included relationships and restrictions. To 
accomplish this, constraints are extensively used. 
Embedding restrictions within the metamodel and 
enforcing corresponding constraints in the UML 2.0 
profile enhances the control of EIS engineering process 
taking into account the overall system model and not 
partial views of it. 
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Stereotype Attributes Constraints Notation 

SitePackage 

name, 
range, 
type, 
parent, 
avgIn,  
maxIn,  
avgOut, 
maxOut,  
avgWithin, 
maxWithin  

1. The value of attribute type must be 
either “atomic” or “composite”. 
2. Composite SitePackages contain only 
other SitePackages while simple 
SitePackages contain only 
ServerProcessComponents, 
ClientProcessComponents, and 
UserProfileComponents. 
3. Each SitePackage corresponds to a 
single NetworkPackage in the Physical 
View. 
4. Corresponding Network and Site 
Packages have corresponding parents. 
5. max and avg attributes are 
automatically computed based on traffic 
flow within, in and out of the site. 

 

Server 
Process 
Component 

name, 
processId, 
application, 
module, 
avgNetReq, 
maxNetReq 
avgProcReq , 
maxProcReq 

6. application corresponds to one 
Functional View. 
7. The module attribute indicates an 
existing ServerModulePackage in the 
selected Functional View.  
8. The value of the name attribute is 
produced as a concatenation of processId 
and module attributes. 
9. Each ServerProcessComponent relates 
to a ServerDevice in the Physical View. 
10. NetReq attributes are automatically 
computed based on traffic flow to the 
ServerProcessComponent. 
11. ProcReq attributes are automatically 
computed based on the processing 
requirements of the process. 

 

Client 
Process 
Component 

name, 
processId, 
application, 
module 
instances, 
avgProcReq, 
maxProcReq 

12. application corresponds to one 
Functional View. 
13. The module attribute indicates an 
existing ClientModulePackage in the 
selected Functional View. 
14. The value of the name attribute is 
produced as a concatenation of processId 
and module attributes. 
15. Each ClientProcessComponent relates 
to a WorkstationDevice in the Physical 
View. 
16. ProcReq attributes are automatically 
computed based on the processing 
requirements of the process. 

 

UserProfile 
Component  

name, 
userId, 
application, 
userProfile, 
 instances 

17. application corresponds to one 
Functional View. 
18. The userProfile attribute indicates an 
existing UserProfileComponent in the 
selected Functional View. 
19. The value of the name attribute is 
produced as a concatenation of userId and 
userProfile attributes. 
20. Each UserProfileComponent relates 
to one WorkstationDevice in the Physical 
View. 
21. UserProfileComponents are 
connected only to 
ClientProcessComponents.  

 

File 
Component 

id, name, 
size, 
executable, 
shareable, 
updatable, 
replicable 

22. The names and other attribute values 
are extrapolated by the fileList attribute of 
the corresponding 
FileServerModuleComponent of the 
relative Functional View.  
23. FileComponent is related to an 
existing StorageUnitDevice of Physical 
View. 

 

Initiate  

24. Initiate connects only 
UserProfileComponents to 
ClientProcessComponents. 
25. Every Initiate relationship is included 
in the corresponding Functional View. 

 

Invoke  

26. Invoke connects only 
ClientProcessComponents or 
ServerProcessComponents to 
ServerProcessComponents. 
27. Every Invoke relationship is included 
in the corresponding Functional View. 
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