
Extending UML 2.0 to Augment Control over
Enterprise Information System Engineering Process

M. Nikolaidou1, N. Alexopoulou12, A. Tsadimas1, A. Dais1, D. Anagnostopoulos1

{mara@di.uoa.gr, nancy@hua.gr, tsadimas@hua.gr, adais@hua.gr, dimosthe@hua.gr}
 1 Harokopio University of Athens, 2 Department of Informatics and Telecommunications,
 El. Venizelou Str, 17671Athens, Greece University of Athens, Panepistimiopolis, 15771, Athens, Greece

Abstract
Enterprise Information Systems can be described
according to the Open Distributed Processing
Reference Model (RM-ODP), where five different
viewpoints are specified analyzing various aspects of
the system. Configuration issues are explored in the
Engineering Viewpoint of RM-ODP. In practice,
configuration issues are explored in discrete stages,
supported by autonomous software tools, each of which
adopts its own metamodel for system representation. We
propose a platform independent framework, which
focuses on the Engineering Viewpoint of Enterprise
Information Systems managing application
configuration and network design issues independently
of application development progress. In order to apply
this framework using existing tools, model
exchangeability and tool coordination must be
supported by standard, open methods. Thus, a common
metamodel is proposed to generate enterprise
information system models, which are stored in XML. A
UML 2.0 profile is defined to visualize these models,
facilitate the designer to interact with them and
coordinate specific tool invocation.

1. Introduction
The Open Distributed Processing Reference Model
(RM-ODP) offers a conceptual framework integrating
aspects related to the distribution, interoperation and
portability of software systems in such a way that
hardware infrastructure is transparent to the user. RM-
ODP manages system internal complexity through the
“separation of concerns”, addressing specific problems
dealt with during system development from different
viewpoints [1]. Five generic and complementary
viewpoints are provided: Enterprise, Information,
Computational, Engineering and Technology. The
Enterprise Distributed Object Computing (EDOC) UML
profile by OMG proposes system models to designers
using UML concepts for the five viewpoints of RM-
ODP framework. The Engineering Viewpoint focuses

on system configuration issues, such as the type of
system architecture (e.g. client-server), the definition of
the system access points, the description of the
underlying network architecture and the association of
software components to network nodes (resource
allocation). Although these issues are interrelated, they
are often modeled using discrete views and studied in
isolation, applying the concept of “separation of
concerns” within the limits of the Engineering
Viewpoint as well [2, 3]. This results in designing
systems with poor system performance. In practice,
discrete issues, as network architecture description or
resource allocation are supported by autonomous
automated or semi-automated tools [4, 5, 6], each of
which adopts its own metamodel for system
representation. Thus, no interaction between them is
supported. In order to effectively explore the
Engineering Viewpoint of Enterprise Information
Systems, heterogeneous tools and system models should
be integrated. Thus, tool coordination and internal
metamodel transformation should be supported. The
main advantage of the methodology proposed in [7] for
web-based system configuration is the adoption of a
common metamodel for the representation of systems
throughout all configuration stages, ensuring
interoperability and model consistency. Although, this is
not feasible in the case of integrating autonomous
software tools, an overall common metamodel can be
adopted acting as a “reference point”, while partial
transformations of the common metamodel into tool-
specific metamodels may be also supported. In order to
provide a consistent framework for enterprise system
engineering the following issues should be addressed:
• Definition of a common metamodel.
• Integration of autonomous tools.
• Model exchangeability and transformation.
• Provision of an integrated, easy-to-use interface for

the system designer.
The proposed framework, which strictly focuses on

the Engineering Viewpoint, deals with all these issues,
ensuring strong control over the whole system

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

configuration process. The framework is presented in
section 2. In section 3, we focus on the formal definition
of a UML 2.0 Profile, facilitating the system
engineering process. Conclusions reside in section 4.

2. EIS Engineering Framework
The proposed EIS engineering framework facilitates 1)
system requirements description, 2) resource
(process/data) allocation and replication policy
definition 3) network architecture design and 4)
performance evaluation of the proposed solution (prior
to implementation). As resource allocation and network
design problems cannot be independently solved, stages
(2) and (3) are repeatedly invoked until an acceptable
solution is reached. The tools supporting them may be
repeatedly invoked for different model abstraction
levels [5], [6]. Since each of these tools supports its own
representation metamodel (e.g. queuing networks, Petri-
nets, objects), there is a need to properly create and
instantiate the “internal” system model before invoking
the tool. Input/output parameters must be represented in
the common metamodel. Their values are either entered
by the system designer or automatically computed.
System requirements specification stage is performed
through a UML 2.0 profile [8] for EIS engineering.

To ensure the consistency of the system model
throughout all stages, the common metamodel is used as
a “reference point”. It includes 3 alternative views.
Functional View is used to describe functional
specifications (e.g. system architecture, user behavior
and application requirements). Application requirements
are described in terms of quality of service (QoS)
requirements imposed to the network infrastructure, e.g.
amount of data processed, transferred or stored.
Topology View facilitates the definition of system access
points and the resource allocation and replication.
Physical View refers to the aggregate network.
Topology and Physical views are interrelated. Both are
decomposed to the same hierarchical levels of detail. At
the lowest level, network nodes are related to
processes/data replicas. The metamodel itself contains
relationships and restrictions inflicted between system
entities belonging to the same or different views, which
may lead to a specific stage invocation (e.g. if the
network hierarchy in the physical view is modified, this
modification must be depicted in the Topology View as
well). The metamodel entities are presented in the next
section through the profile description. Detailed
description of the main entities can be found in [7].

Embedding restrictions within the metamodel
enhances control over the EIS engineering process,
taking into account the overall system model and not the
specific system viewpoint corresponding to a discrete
stage. As such, the framework facilitates both
“separation” (through the definition of different views)

as well as “integration (through the definition of
constraints representing interrelations between views) of
concerns”. As a result, the overall process becomes
more efficient, since it is divided into separate stages
and thus is simplified, but at the same time the system
configuration discrete stage (and corresponding tool)
dependencies are depicted within the model as view
dependencies and consequently they are easily
identified. Furthermore, it becomes more efficient to
integrate autonomous software tools in different levels
of detail, as each of them is independently invoked
without knowing the existence of others. All these result
in the achievement of strong control over the whole
system engineering process.

Figure 1. Metamodel Transformation Framework

To integrate an autonomous configuration tool in the
EIS engineering framework, the following steps should
be accomplished:
 Definition of a MOF-based representation of tool
internal metamodel.

 Transformation definition of common metamodel into
tool internal metamodel and vise versa.

 Automated creation/update of internal models, as
XMI documents.

 Import/export of internal XMI models into/out of the
tool.
These, as illustrated in figure 3, are performed

making use of Model Driven Architecture (MDA)
concepts [9]. The common metamodel is defined based
on Meta Object Facility (MOF). What is additionally
required is the definition of a formal metamodel
transformation to map UML metamodel entities (used
for system graphical representation) to the common
metamodel entities (used for system description) and
vice versa. Likewise, a formal definition must be
specified to map the common metamodel entities to

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

those defined by the internal metamodel of each tool
and vice versa. The proposed common metamodel is
platform independent (PIM), while tool metamodels are
platform specific (PSM). The transformation definitions
are implied by the gray block arrows at the metamodel
layer. The actual transformations are performed at the
model layer. As shown at the implementation layer, the
models are stored as XMI documents. The XMI
document produced by any UML 2.0 tool, as Rational
Modeler [10], using the EIS engineering profile, can be
automatically translated into an XMI EIS model using
an XSLT/Xquery processor and vise-versa. MDA
suggests that transformations should be performed at
model layer using formal definitions specified at the
metamodel layer. In our current implementation though,
we perform transformations using simple XSLT/Xquery
rules for simplicity reasons. However, we indent to
transfer the transformation process at the model layer in
our future work.

3. UML 2.0 Profile Definition
Notational aspects of the EIS metamodel are
accommodated through a UML 2.0 profile. EDOC
profile supports Engineering Viewpoint mainly using
component diagrams for both the application
configuration and the network infrastructure [2]. EIS
entities are depicted as UML elements, properly
extended to include additional properties and
constraints. Thus, UML 2.0 stereotypes have been
defined for each view, facilitating new attributes,
constraints, and a new graphical representation.
Essentially, the concepts of the common metamodel are
reflected onto the stereotype attributes and constraints.
Attributes convey the information required to describe
EIS metamodel entities. Constraints, which are
extensively used within the profile, represent
relationships and restrictions between metamodel
entities maintaining model consistency. Following, each
view is described in detail. The proposed stereotypes are
indicated in italics within parentheses next to the
corresponding model element which is written in bold.

Functional View
For each application operating in the EIS, a discrete
Functional View is defined. Functional Views are
represented as UML Component diagrams, as the latter
are eligible for depicting system functionality at a
logical level. Applications are conceived as sets of
interacting modules. A module, which can be either
server (ServerModuleComponent) or client
(ClientModule Component) offers specific services
(ServiceComponent). A Functional View usually
includes a File Server module which is used for file
storage. A server module service may be invoked
(Invoke stereotype) by another one belonging to a
different module. User behavior is described through

user profiles (UserProfileComponent) activating client
modules. Each profile includes user requests (Initiate),
which invoke specific services. The interaction between
user profiles and services plays a determinative role in
system engineering, since user profiles include
performance requirements imposed by users. This is
indicated by attributes of the UserProfileComponent
and Initiate stereotypes. ActivationProbability attribute,
for example, denotes how often a service is initiated
while the user profile is active. Percentage attribute of
Initiate stereotype indicates how often a specific service
is activated by the profile. Functional View stereotypes
are listed in Table 1 along with their attributes and
constraints and their corresponding icons. Each
stereotype has been named so that the first part of the
name indicates the corresponding EIS metamodel entity,
while the second part denotes the UML class it derives
from. This doesn’t hold however for Initiate and Invoke
stereotypes. These stereotypes are defined as a
specialization of UML Dependency.

Concerning service implementation
(ServiceActivity), it is represented through an activity
diagram, as it involves flow of operations. Each
ServiceActivity maps to a ServiceComponent, thus these
two stereotypes have the same attributes. Service
implementation consists of simple tasks occurring upon
module activation, called operations
(OperationAction). These are selected from a predefined
operation set, that is, the Operation Dictionary.
Operation Dictionary facilitates the decomposition of
operations into elementary ones, i.e. processing, storing
and transferring, so that QoS required from the
underlying network can be estimated. The system
designer may further extend the Operation Dictionary
by adding new operations, in order to describe the
functionality of specific applications. UML
Communication diagrams were selected for the
representation of Operation Dictionary, as
communication diagrams are used to show interactions
among elements. Due to space limitations, Operation
Dictionary is not further discussed.

Figure 2 presents a simple application as an
example. A user (student) initiates a simple search in a
library OPAC, thus performs a database search through
the appropriate CGI in the Web server. The example
involves three modules: Web Client, Web Server and
External Database Server, consisting of services. Web
Server module, for example, includes two services, Get
Page and Perform Search. Figure 2 illustrates also the
implementation of the Simple Search service as well as
a fraction of the Operation Dictionary. The dotted lines
indicate the correspondences among the external part of
the Functional View, the implementation of Simple
Search and the Operation Dictionary fraction.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

Table 1. Stereotypes for Functional View

Figure 2. Functional View example

Physical View
Physical View comprises the network infrastructure.
UML deployment diagrams are commonly used to
represent network architectures [11]. The overall
network (NetworkPackage) is decomposed to
subnetworks, producing thus a hierarchical structure.
LANs typically form the lowest level of the
decomposition. Devices, such as servers (ServerDevice)
and workstations (WorkstationDevice) are associated
with LANs of the lowest level. Devices may include a
processing unit (ProcessUnitDevice), and a storage unit
(StorageUnitDevice). An example of Physical View
depicting part of the University of Athens Library
network is illustrated in figure 3. Additional attributes
and constraints defined for the Physical View stereotypes
are included in Table 2. Constraints mainly represent
relationships and restrictions between Physical and
Topology Views of the EIS metamodel and relate the
aforementioned stereotypes to the corresponding
Topology View stereotypes.

Figure 3. Physical View example

Stereotype Attributes Constraints Notation
Server
Module
Component

name 1. ServerModuleComponents
contain only ServiceComponents.

FileServer
Module
Component

name,
fileList

2. FileServerModuleComponents
contain only ServiceComponents.
3. fileList contains records of type
file. For each file the name, size
and specific characteristics
(whether it is executable or data,
shareable, updatable and
replicable) are defined.

Client
Module
Component

name, 4. ClientModuleComponents
contain only ServiceComponents.

Service
Component

moduleName,
inputParameterList

5. Each ServiceComponents
cannot be related to more than one
activity diagram.
6. The moduleName corresponds
to the name of the
ServerModuleComponent or the
ClientModuleComponent the
service belongs to.

Invoke name

7. A service cannot invoke itself.
8. Invokes relationship cannot
connect UserProfileComponents
to ServiceComponents belonging
to ServerModuleComponents.
9. The value of the name attribute
of Invokes objects is identical to
the value of the name attribute of
the corresponding
OperationAction that generated
the invocation.

UserProfile
Component

name, startTime
endTime,
activationFrequency,
activationProbability

10. The total of the percentage of
all initiations starting from a
specific UserProfileComponent is
100.
11. The value of
activationFrequency is either
“daily”, “monthly” or “weekly”.

Initiate
name, percentag,e
responseTime,
valueList

12. The valueList attribute
contains the values that
correspond to the
inputParameterList of the invoked
client ServiceComponent.
13. Initiates relationship may
connect only
UserProfileComponents to
ServiceComponents belonging to a
ClientModuleComponent.

Service
Activity

name,
moduleName,
inputParameterList

14. The values of both attributes
are identical to the corresponding
values of moduleName and
inputParameterList of the owning
ServiceComponent.
15. All parameters included in
InputParameterList are passed as
values in the included
OperationAction valueLists and vs

Operation
Action

name,
actionSequence,
operation,
valueList

16. The operation attribute
represents to application operation
included in the operation
dictionary.
17. The value of actionSequence is
an “internal” action id.
18. The value of name is
generated by the concatenation of
actionSequence and operation.
19. valueList comprises the values
of the parameters that correspond
to the operation attribute (as
defined in the operation
dictionary). These values must be
either constant or included in the
inputParameterList attribute of
the corresponding
ServiceComponent.
20. valueList includes also
targetModule and targetService
values that indicate an existing
module or service respectively
defined in the external part of the
Functional View.

 Simple Search Decomposition A fraction of Operation Dictionary

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

Table 2. Stereotypes for the Physical View

Topology View
Topology View is based on UML Component diagrams.
Topology view comprises sites (SitePackage),
processes defined as instances of server or client
modules (ServerProcessComponent, ClientProcess
Component), files managed by File Server processes
(FileComponent) and user profile instances
(UseProfilerComponent). Interactions among processes
(Invoke), as well as between user profile instances and
client processes (Initiate), are also depicted in Topology
View. Topology View entity attributes indicate system
requirements imposed to network infrastructure, while
Physical View entity attributes indicate corresponding
network infrastructure characteristics.

The term site is used to characterize any location
(i.e. a building, an office, etc.) according to the system
designer perspective. Two types of sites are identified:
composite, further decomposed to subsites, and atomic,
constituting the lowest level of site hierarchy. In
essence, the hierarchy indicates where (in which
location) each process runs and each user profile is
placed. Each site is characterized of Quality of Service
(QoS) requirements as average and maximum network
rate requirements regarding process communication a)
within site limits (avgWithin and maxWithin attributes
of SitePackage stereotype), b) exiting the site (avgOut
and maxOut) and c) entering the site (avgIn and maxIn).
These requirements must be satisfied by throughput

attribute of the corresponding network (see attributes of
NetworkPackage stereotype in Table 2). QoS attributes
may be defined by the system designer or computed by
resource allocation tools.

The site hierarchy should correspond to the network
hierarchy depicted in the Physical View (constraint 3 of
Table 3). Composite sites correspond to composite
networks, while atomic sites correspond to atomic
networks representing simple LANS. Instances of
processes, files and user profiles located in atomic sites
are allocated to nodes (servers or workstations) included
in the corresponding LAN of Physical View. This is
indicated by constraints 9, 15, 20 and 23 of Table 3.
Since Topology and Physical Views are represented by
component and deployment diagrams respectively, the
relationship between node and component entities
already supported in the core UML metamodel can be
used to depict process, file and user allocation to nodes.
Allocation may be performed by the system designer
using the UML 2.0 profile or by resource allocation
tools. In the second case, the profile must facilitate
graphical representation of allocation results.

Concerning the relation between Topology and
Functional views, it is ensured through the constraints 6,
7, 12, 13, 17 and 18 of Table 3, which indicate that
processes existing in a Topology View are instances of
specific modules defined in a Functional View and that
user profiles are instances of the corresponding user
profiles defined in a Functional View.

Figure 4. Topology View example

The Topology View corresponding to the Physical View
of figure 3 is presented in figure 4. All the introduced
view examples (figures 2, 3 and 4) have been generated
as snapshots using Rational Software Modeler (RSM)
environment [10]. We have chosen to implement the
profile in RSM mainly due to its extension capabilities.
The extensibility features in RSM are built on the open
source Eclipse components. Topology View stereotypes
are listed in Table 3. Initiate and Invoke are the
stereotypes introduced in Functional View with
different constraints though, defined within the context
of Topology View. SitePackages relate to each other
through the membership relationship introduced in
UML 2.0.

Stereotype Attributes Constraints Notation

Network
Package

id, name,
type,
parent,
site,
protocolStack,
throughput

1. The value of attribute type is
either “atomic” or “composite”.
2. Composite NetworkPackages
contain only other
NetworkPackages while simple
NetworkPackages correspond to
simple LANs and contain only
ServerDevices or
WorkstationDevices.
3. Each NetworkPackage
corresponds to a single SitePackage
in the Topology View.
4. Corresponding Network and Site
Packages are of the same type.
5. Corresponding Network and
SitePackages have corresponding
parents.

Server
Device

id, name
serverComponentList

6. Each ServerDevice relates to a set
of ServerProcessComponents
defined in the Topology View.

Workstation
Device

id, name
clientComponentList,
userComponentList,
items

7. Each WorkstationDevice relates
to one userProfileComponent
defined in the Topology View.
8. Each WorkstationDevice relates
to all ClientProcessComponents
defined in the Topology View that
are invoked by the
userProfileComponent assigned to
it.
9. The items value is the same as the
instances value of the corresponding
userProfileComponent in the
Topology View.

ProcessUnit
Device

processingPower,
name, parentDevice

10. Each ProcessUnitDevice relates
to an existing ServerDevice or
WorkstationDevice.

StorageUnit
Device

name, size,
files,
storageSpeed,
parentDevice

11. Each StorageUnitDevice relates
to an existing ServerDevice or
WorkstationDevice.
12. Each StorageUnitDevice hosts
replicas of files defined in the
Topology View.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

Table 3. Stereotypes for Topology View

5. Conclusions
A framework for the Engineering Viewpoint of
Enterprise Information Systems was proposed, focusing

on the integration of existing autonomous engineering
tools and EIS model exchangeability through the ijf f gj
definition of a common metamodel. For the graphical
representation of the metamodel, a corresponding UML
2.0 profile was defined. The profile facilitates the
representation of EIS metamodel different views and all
the included relationships and restrictions. To
accomplish this, constraints are extensively used.
Embedding restrictions within the metamodel and
enforcing corresponding constraints in the UML 2.0
profile enhances the control of EIS engineering process
taking into account the overall system model and not
partial views of it.

6. References
1. ISO/IEC & ITU-T: Information technology – Open

Distributed Processing – Part 1 – Overview – ISO/IEC
10746-1 | ITU-T Recommendation X.901

2. Interoperability Technology Association for Information
Processing, Japan (INTAP), “A Guide for using RM-ODP
and UML profile for EDOC”, white paper, 2005.

3. Hatsimoto D., Miyazaki H., Tanaka A., “UML 2 Models
for ODP Engineering/Technology Viewpoints”, in
Proceedings of IEEE EDOC Workshop on ODP for
Enterprise Computing, 2005.

4. Gomaa H., Menasce D., Kerschberg L., “A Software
Architectural Design Method for Large-scale Distributed
Information Systems”, Distributed System Engineering
Journal, Vol. 3, No 3, IOP, 1996.

5. Graupner S., Kotov V., Trinks H., “A Framework for
Analyzing and Organizing Complex Systems”, in
Proceedings of the 7th International Conference on
Engineering Complex Computer Systems, IEEE Computer,
2001.

6. Nezlek G.S., Hemant K.J., Nazareth D.L., “An Integrated
Approach to Enterprise Computing Architectures”,
Communications of the ACM, Vol 42, No 11, ACM Press,
1999.

7. Nikolaidou M., D. Anagnostopoulos, “A Systematic
Approach for Configuring Web-Based Information
Systems”, Distributed and Parallel Database Journal, Vol
17, pp 267-290, Springer Science, 2005.

8. OMG Inc, UML Superstructure Specification, Version 2.0,
8/10/2004.

9. Ambrogio A., “A Model Transformation Framework for
the Automated Building of Performance Models from
UML Models”, in Proceedings of WOSP’05, ACM
Computer Press, 2005.

10. IBM Co. Introducing Rational Software Modeler, 2005.
http://www-128.ibm.com/developerworks/rational/
library/05/329_kunal/

11. Kaehkipuro P., “UML-Based Performance Modelling
Framework for Component-Based Distributed Systems”,
Lecture Notes in Computer Science 2047, Performance
Engineering, Springer-Verlag, 2001.

Stereotype Attributes Constraints Notation

SitePackage

name,
range,
type,
parent,
avgIn,
maxIn,
avgOut,
maxOut,
avgWithin,
maxWithin

1. The value of attribute type must be
either “atomic” or “composite”.
2. Composite SitePackages contain only
other SitePackages while simple
SitePackages contain only
ServerProcessComponents,
ClientProcessComponents, and
UserProfileComponents.
3. Each SitePackage corresponds to a
single NetworkPackage in the Physical
View.
4. Corresponding Network and Site
Packages have corresponding parents.
5. max and avg attributes are
automatically computed based on traffic
flow within, in and out of the site.

Server
Process
Component

name,
processId,
application,
module,
avgNetReq,
maxNetReq
avgProcReq ,
maxProcReq

6. application corresponds to one
Functional View.
7. The module attribute indicates an
existing ServerModulePackage in the
selected Functional View.
8. The value of the name attribute is
produced as a concatenation of processId
and module attributes.
9. Each ServerProcessComponent relates
to a ServerDevice in the Physical View.
10. NetReq attributes are automatically
computed based on traffic flow to the
ServerProcessComponent.
11. ProcReq attributes are automatically
computed based on the processing
requirements of the process.

Client
Process
Component

name,
processId,
application,
module
instances,
avgProcReq,
maxProcReq

12. application corresponds to one
Functional View.
13. The module attribute indicates an
existing ClientModulePackage in the
selected Functional View.
14. The value of the name attribute is
produced as a concatenation of processId
and module attributes.
15. Each ClientProcessComponent relates
to a WorkstationDevice in the Physical
View.
16. ProcReq attributes are automatically
computed based on the processing
requirements of the process.

UserProfile
Component

name,
userId,
application,
userProfile,
 instances

17. application corresponds to one
Functional View.
18. The userProfile attribute indicates an
existing UserProfileComponent in the
selected Functional View.
19. The value of the name attribute is
produced as a concatenation of userId and
userProfile attributes.
20. Each UserProfileComponent relates
to one WorkstationDevice in the Physical
View.
21. UserProfileComponents are
connected only to
ClientProcessComponents.

File
Component

id, name,
size,
executable,
shareable,
updatable,
replicable

22. The names and other attribute values
are extrapolated by the fileList attribute of
the corresponding
FileServerModuleComponent of the
relative Functional View.
23. FileComponent is related to an
existing StorageUnitDevice of Physical
View.

Initiate

24. Initiate connects only
UserProfileComponents to
ClientProcessComponents.
25. Every Initiate relationship is included
in the corresponding Functional View.

Invoke

26. Invoke connects only
ClientProcessComponents or
ServerProcessComponents to
ServerProcessComponents.
27. Every Invoke relationship is included
in the corresponding Functional View.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

