
A SysML Profile for Classical DEVS Simulators

Mara Nikolaidou Vassilis Dalakas Loreta Mitsi George-Dimitrios Kapos
Dimosthenis Anagnostopoulos

Department of Informatics & Telematics
Harokopio University of Athens

70 El. Venizelou Str, 17671 Athens, GREECE.
{mara, vdalakas, mitsi, gdkapos, dimosthe}@hua.gr.

Abstract

Discrete event simulation specification (DEVS) is a for-
malism facilitating hierarchical and modular descriptionof
the models executed using DEVS simulators. Lack of stan-
dardized, easy-to-use interface enabling simulation prac-
titioners to define their models is an important drawback,
since in most cases DEVS models are defined as C++ or
Java programs based on existing simulator-specific DEVS
libraries. Standard MDA concepts can be applied for the
construction of DEVS models executed in different pro-
gramming environments. DEVS models can be defined us-
ing DEVSML, a platform-independent, XML-based format.
SysML is proposed as a standardized, graphical represen-
tation language of DEVS models stored in DEVSML, conse-
quently transformed into executable code for existing DEVS
Simulators, as DEVSJava and DEVSim++. The first step
toward this endeavor, is the formal definition of the DEVS
SysML profile proposed in this paper.

1 Introduction

The DEVS (Discrete Event System Specification) for-
malism [9] provides a conceptual framework for specifying
discrete event simulation models. Using DEVS, discrete
event models can be described in a modular and hierarchi-
cal form. Nowadays, a variety of software tools and simula-
tors is available [10, 3], such asDEVJavaor Parallel DEVS,
that execute DEVS models, improving the security of the
simulations, reducing the testing time and increasing pro-
ductivity, hence, offering at the simulation community the
ability to control and validate the overall simulation pro-
cess and simulation results. Though, simulationists must
represent DEVS model as programming code using prede-
fined libraries offered by each simulator. In [5], DEVSML,

a platform-independent, XML-based format, for describing
DEVS executable code is proposed independently of the un-
derlying simulator. DEVSML is consequently transformed
into executable code for existing DEVS Simulators, as DE-
VSJava and DEVSim++, using translators as the ones pro-
posed in [5] for DEVSJava simulators.

There is an ongoing effort to combine UML with DEVS
to build simulation models. A mapping between DEVS
models and UML state charts has been introduced in [8].
A mathematical proof, mapping DEVS to UML, has been
presented in [11]. In [2], the representation of atomic DEVS
models using UML sequence diagrams is proposed. How-
ever, these papers focus on exploring the circumstances un-
der which models defined using DEVS and UML can be
equivalent. In [1], an attempt has been undertaken to de-
velop DCharts as a graphics language for DEVS models.
DCharts is a UML-like language that does not follow any
UML standard.

The Systems Modeling Language (SysML) is a general-
purpose graphical modeling language that customizes
UML, for systems engineering applications. It supports the
specification, analysis, design, verification and validation of
a broad range of systems and systems-of-systems. These
systems may include hardware, software, information, pro-
cesses, personnel, and facilities. SysML v.1.0 was adopted
by the OMG as a standard in July 2006 [7].

We argue that SysML is more suitable than UML
for the graphical representation of DEVS models, since
SysML language and especially block diagrams provide for
the natural representation of DEVS model decomposition.
SysML could serve as a standardized, easy-to-use, graphi-
cal method to define DEVSML models, that can be conse-
quently executed in existing DEVS Simulators, as the pop-
ular DEVSJava.

Among the advantages of such an endeavor are: SysML
is based on UML that is widely known and easy-use.

1



Figure 1. DEVS model paradigm

SysML offers both conceptual modeling and visual repre-
sentation. SysML models may lead to automated code gen-
eration. There is a wide range of software tools supporting
UML and SysML.

The formal method, proposed by OMG to extent or to re-
strict UML/SysML models, is the definition of a profile [6],
emphasizing the use of UML/SysML to describe a specific
“world”, as the DEVS formalism. Since SysML profiles are
based on formal UML extension mechanisms, they can be
implemented in any standard UML modelling tool, such as
MagicDraw [4], providing automated code generation for
DEVS simulators, in DEVSML format.

In the following, we propose a SysML profile support-
ing the description of DEVS simulation models. Our aim
is a) to offer a graphical, standardised environment for the
definition of DEVS models using the proposed profile and
b) if the profile is embedded in a UML modelling tool, to
be able to generate code for DEVS simulators. The gener-
ated code should correspond to DEVSML model definitions
forwarded to DEVS simulators.

The paper is structured as follows: A brief description of
DEVS formalism and simulation tools is provided in section
2. The scope of DEVS SysML profile and the overall pro-
posed framework is presented in section 3. In section 4, the
definition of DEVS profile is analytically described, along
with a simple example to demonstrated provided function-
ality. Conclusions and future work reside in section 5.

2 Classical DEVS Review

Two types of models are defined in DEVS:atomic mod-
els (behavioral representation), from which larger ones
are built and describe basic model functionality, andcou-
pled models(structural representation) expressing how ba-
sic models are connected in a hierarchical form. The formal
definition of DEVS formalism can be found in [9].1,1

Coupled models consists of other DEVS models (cou-
pled or atomic). Models communicate through input and
output ports properly interconnected. Fig. 1 depicts a sim-
ple example of a DEVS coupled model. SERVICE model
is defined as the coupling of two atomic models: QUEUE
and TELLER. Coupling is described by the definition of the
correspondence among input and output ports of the compo-
nents and the coupled model. Atomic models are described

Figure 2. Proposed Simulation Environment

by corresponding model states and the transitions between
them. Four functions are used to describe their behavior.
Internal transition function specifies the next state to which
the system will transit. External transition function spec-
ifies the next system state when an input is received (the
next state is computed on the basis of the present state, the
elapsed time, and the content of the external input event).
Output function generates an external output just before an
internal transition occurs. Time advance function controls
the timing of internal transitions. In Fig. 1, TELLER atomic
model waits for a customer in “idle” state. Upon receiving a
customer in the input port “customer in”, TELLER changes
its status in “busy” state and increases the variable “cus-
tomer”. Service time is an exponentially distributed random
variable. When the service is finished, it sends customer to
the output port “customer out” and “ready” message to the
QUEUE informing its state.

DEVS simulators facilitate system modellers to generate
simulation code in one-to-one correspondence with DEVS
formalism. The code imported in DEVS simulators consists
of DEVS entity declarations (structural and behavioural).
All DEVS model entities are defined as ancestors of prede-
fined class hierarchy provided in DEVS libraries. Messages
manage transmissions of events between models, defining
the method for sending output events and receiving the in-
coming events. Coupled models support methods for defin-
ing ports and the coupling between them. Atomic mod-
els, besides methods for handling structural information,for
example ports or state variables, also include methods for
the description of system behavior. The implementation of
methods for handling structural information is provided in
DEVS libraries. The modeler has to specify the implemen-
tation of methods corresponding to internal transition, ex-
ternal transition, output and time advance functions, namely
InTransFn, ExtTransFn, OutputFn and Ta, which are model-
related and thus can not be predefined. In most cases, sys-
tem modeler has to write himself object-oriented code in
C++ or Java using DEVS libraries.



Figure 3. Basic DEVS meta-model

3 Scope of DEVS SysML Profile

An important drawback of DEVS formalism is the lack
of a standardized, easy-to-use interface facilitating system
modelers to define simulation models for object-oriented
DEVS simulators, independently of their internal character-
istics and implementation language. SysML may provide a
standardized, easy-to-use, graphical environment for defin-
ing DEVS models, that can be consequently executed in ex-
isting DEVS Simulators. In such a case, the modeler will
complete the following steps according to MDA concepts:

• The DEVS simulation model is easily defined in
SYSML using a popular UML modeling tool and the
corresponding profile.

• A platform independent model (PIM according to
MDA) of DEVS simulation code is generated in DE-
VSML [5].

• DEVSML code is automatically translated into corre-
sponding code in C++ or Java (platform specific model
– PSM) and executed in the corresponding DEVS sim-
ulator.

The overall process is depicted in Fig. 2.
Within the profile, all discrete DEVS entities should

be described in an object-oriented fashion, while common
DEVS simulator class hierarchy should also be taken into
account. A meta-model for classical DEVS description is
presented in Fig. 3. DEVS SysML profile must provide
for the description of all the entities included in the meta-
model.

4 DEVS SysML Profile

In the following, we discuss the SysML profile defined
for classical DEVS formalism. The main purpose of DEVS
SysML profile is to facilitates simulationists to easily de-
scribed both structural and behavioral properties of DEVS
models by combining alternative SysML diagrams depict-
ing in detail different aspects of atomic and coupled models.
Special attention has been paid to the description of behav-
ioral properties, e.g. atomic model functions, to minimize
corresponding programming effort.

DEVS model entities are defined as stereotypes of
SysML entities, while constraints are used to restrict
SysML semantics to DEVS formalism.

4.1 DEVS Coupled Model

In the context of DEVS coupled models (DEVS CM),
emphasis is given on constituting models (atomic or cou-
pled), their interconnections through connection points,
called ports, and compositional capability. SysML blocks
are naturally selected for representing DEVS models, since
both share the same basic properties, as ports.

SysML Block Definition Diagrams (BDDs) provide the
means to define system composition, thus overall DEVS
simulation model is described by a corresponding BDD.
Blocks, apart from value properties and constraints, may
contain (part property) or use (reference property) other
blocks, while they have ports used as the endpoints of inter-
block connections. Ports facilitate sending or receiving
events (standard ports) or data items (flow ports). Although
Block Definition Diagrams (BDD) may represent which are



Figure 4. 2-Teller Queue Overall DEVS model

Figure 5. 2-Teller Queue DEVS Coupled Inter-
nal model

the components of each block, they do not depict how com-
ponents are interconnected. This is thoroughly defined in
Internal Block Diagrams (IBDs). Thus, one IBD must be
defined for each DEVS CM, to describe coupling between
constituting DEVS models.

Fig. 4 depicts the SysML representation of the coupled
DEVS model described in Fig. 1. The specific model is
rather simple, consisting of four atomic models. Fig. 5
depicts the corresponding IBD for coupled2-Teller Queue
model. Both atomic and coupled DEVS models are repre-
sented as stereotypes of the SysML Block element, namely
DEVS AM and DEVS CM. Constraints are defined to de-
pict the relationships between DEVS entities (as depicted in
Fig. 3) and restrict SysML BDD and IBD functionality to
effectively correspond to DEVS formalism. DEVS CM is
only described by input and output ports. No other SysML
block properties are used. Stereotypes defined for coupled
DEVS models reside in Table 1.

Flow ports of blocks are used for DEVS ports representa-

tion, both input (depicted as inbound flow ports) and output
(depicted as outbound flow ports). No additional semantics
were required. DEVS ports are depicted in DEVS BDD.
They way they are related is defined within a DEVS Cou-
pled Internal Model corresponding to a SysML IBD dia-
gram, as indicated in the following (Fig. 5):

1. Input ports of the external DEVS coupled block (2-
Teller Queue) connect to input ports of the contained
DEVS blocks. Similarly, output ports of the external
DEVS coupled block connect to output ports of the
contained DEVS blocks.

2. All other connections (between internal DEVS mod-
els, either DEVS CM or DEVS AM) are made through
opposite-directed flow ports.

4.2 DEVS Atomic Model

Defining a DEVS atomic model consists of two stages:

• Model description, e.g. the definition of static charac-
teristics , such as states and input and output ports.

• Behavior definition in response to input messages or
time advancement.

DEVS Atomic models are defined as stereotypes of
blocks (DEVS AM entity of Table 1) in the DEVS Model
BDD. For each DEVS AM input and output ports are de-
fined. Atomic models behavior is defined as transitions be-
tween discrete model states [9]. In practice, states are de-
scribed by corresponding state variables. For each DEVS
AM, state variables are described as SysML block values,
while constraints may also be defined to restrict the value
range of a specific state variable.

To describe atomic model behavior, four sub-diagrams
must be related to each DEVS AM included in DEVS
Model BDD:

• DEVS States Definition Diagram: A SysML constraint
BDD defining constraints, each denoting a possible
system state.

• DEVS States Association Diagram: A Parametric Di-
agram (PD) facilitating state definition based on the
constraints of the previous BDD. The states (con-
straints) are formed from their association with the
states variables (value properties).

• A DEVS Atomic Internal Diagram: A state machine
diagram (SMD) facilitating the definition of internal
transition function, output function and time advance
function.

• A DEVS Atomic External Diagram: An activity dia-
gram (AD) facilitating the definition of external transi-
tion function.

All four are discussed in the following.



Table 1. DEVS Model Structural Stereotypes
DEVS Stereotype SysML Entity Constraints

DEVS Model Block Definition There is one BDD containing the overall model.
Diagram Only DEVS CM and DEVS AM entities participate in this diagram.

DEVS Coupled Internal Block Diagram A DEVS Coupled Internal Diagram must be associated to any DEVS CM.
Internal Diagram The diagram may only contain the DEVS models directly used by the corresponding DEVS CM.

All flow ports must be connected in an appropriate manner (output to input flowport).
DEVS CM Block A DEVS CM may only have property parts and unidirectional (in or out) flow ports.

Every DEVS CM is associated to a DEVS Coupled Internal Diagram.
DEVS AM Block A DEVS AM may only have unidirectional (in or out) flow ports, value properties and constraints on the value properties.

Four sub-diagrams must be associated to each DEVS AM to describe its behavior: DEVS States Definition, DEVS States
Association, DEVS Atomic Internal and DEVS Atomic External.

Figure 6. Teller DEVS States Definition model

Figure 7. Teller DEVS States Association
model

4.2.1 States Definition

DEVS atomic model set of states are defined as independent
constraints based on corresponding state variables. Thus,
SysML constraint BDD and corresponding SysML PDs are
utilized for the definition of DEVS atomic model states.

As shown in Fig. 6, state variables are represented as
constraint blocks in DEVS States Defitinion diagram. Each

Figure 8. Teller DEVS Atomic Internal model

Figure 9. Teller DEVS Atomic External model

state variable is associated with one or more DEVS AM val-
ues. In the corresponding SysML PD, named DEVS State
Association diagram. Corresponding stereotypes reside in
Table 2.

Fig. 7 illustrates the DEVS State Association diagram of
Teller atomic model. Using this diagram, discrete model
states can be defined by combining discrete values of the
state variables defined in associated DEVS AM. Conse-
quently, discrete model states can be automatically inserted
in DEVS Atomic Internal Diagram, corresponding to Inter-
nal Transition, Output and Time Advancement functions,
discussed in the following paragraph.



Table 2. DEVS States Definition Stereotypes
DEVS Stereotype SysML Entity Constraints

DEVS States Definition Diagram Block Definition Diagram It must be associated to a DEVS Atomic Block. The diagram may only contain DEVS State Constraints.

DEVS States Association Diagram Parametric Diagram
It must be associated to a DEVS Atomic Block. The diagram contains the block’s value properties, the
DEVS State Constraints (defined in DEVS States Definition Diagram) and their interconnection. Each
constraint parameter must be connected to a value property.

DEVS State Constraints Constraint
It may have as many parameters as the number of state variables. The type of each parameter must be
compatible to a subset of the state variable’s type. The value of each parameter must be constrained.

4.2.2 DEVS Atomic Internal Diagram

State diagrams are used for the definition of the internal
transition function. DEVS states are computed based on
State Definition diagram and automatically inserted in the
diagram. The modeler specifies internal transitions by in-
serting simple transitions between states. According to
DEVS formalism, time is advanced every time a state tran-
sition occurs. The Time Advancement function is repre-
sent by a corresponding note associated to each DEVS state
transition. It was decided to include Output Function within
the diagram rather than define a discrete one for each out-
put port, since output generation is strictly related to inter-
nal state transition. The corresponding diagram for Teller
atomic model is depicted in Fig. 8.

4.2.3 DEVS Atomic External Diagram

DEVS Atomic External Diagrams are used to define DEVS
external transition function. This function is executed
whenever an input event arrives at the atomic DEVS model.
Therefore, there is a parameter (of stereotype DEVS In
Port) for every input flow port of the atomic DEVS model.
The effect of this function (state modification) is also deter-
mined by the state of the atomic DEVS model at the arrival
time of the input event. Thus, initially there is a decision
node checking current state variable values and creating dif-
ferent control flows.

There are many inputs and state conditions that need to
be combined in order to define the distinct (input-state) con-
ditions that determine the effect of the external transition
function, thus a DEVS State Fork is used for every state
condition that needs to be combined with many inputs to
form different effects.

Combination of a state condition and one or more inputs
is made with a DEVS State Input Join. Finally, each join is
followed by a series of DEVS State Modification Actions,
that perform value assignments to the state variables of the
atomic DEVS model. In Fig. 9, Teller atomic model has
only one input, so there is no need for a DEVS State Fork.

DEVS SYSML profile has been implemented using
Magic Draw [4] modeling tool, which fully supports SysML
and provides a rather friendly API. Proposed stereotypes
are defined using standard interface, while constraints are
implemented using the provided API or OCL. Code gener-
ation in DEVSML is currently under development.

5 Conclusions – Future Work

An important drawback of DEVS simulators is the lack
of a standardized, easy-to-use interface facilitating system
modelers to define simulation models independently of the
specific DEVS programming environment. To this end, we
proposed to adopt MDA concepts in DEVS model develop-
ment. Code generation in DEVSML, an XML based format
which may serve a platform independent DEVS specifica-
tion language is currently under development. The first step
towards this endeavor, is the formal definition of the DEVS
SYSML profile presented in this paper.

References

[1] H. Feng. Dcharts, a formalism for modeling and simulation
based design of reactive software systems.Master Thesis,
McGill University, February 2004.

[2] S.-Y. Hong and T. G. Kim. Embedding UML subset into
object-oriented DEVS modeling process. InProceedings of
SCSC 2004, pages 161–166, San Jose, CA, July 2004.

[3] T. G. Kim. DEVSim++ c© User’s Manual. C++ Based Sim-
ulation with Hierarchical Modular DEVS Models, 1998.

[4] MG. SysML Plugin for Magic Draw, 2007.
[5] S. Mittal, J. L. Risco-Mart́ın, and B. P. Zeigler. Devsml: Au-

tomating devs execution over soa towards transparent simu-
lators. InDEVS Symposium, Spring Simulation Multiconfer-
ence, pages 287–295. ACIMS Publications, March 2007.

[6] OMG. OMG Unified Modeling Language: Su-
perstructure, version 2. Available online via
http://www.omg.org/docs/formal/05-07-04.pdf [accessed
June 1, 2006], August 2004.

[7] OMG. OMG System Modeling Language.Available on-
line via http://www.omg.org/docs/formal/07-09-01.pdf [ac-
cessed June 1, 2008], 2008.

[8] S. Schulz, T. C. Ewing, and J. W. Rozenblit. Discrete
event system specification (DEVS) and statemate statecharts
equivalence for embedded systems modeling. InProceed-
ings of 7th IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, pages 308–
316, April 2000.

[9] B. P. Zeigler, H. Praehofer, and T. Kim.Theory of Modeling
and Simulation. Academic Press, 2nd edition, 2000.

[10] B. P. Zeigler and H. S. Sarjoughian.Introduction to DEVS
Modeling and Simulation with JAVA. DEVSJAVA Manual,
2003.

[11] D. Zinoviev. Mapping DEVS models onto UML models.
In Proceedings of the 2005 DEVS Integrative M&S Sympo-
sium, SpringSim05, pages 101–106, San Diego, CA, April
2005.


