
Handling non-functional requirements in
Information System Architecture Design

Anargyros Tsadimas, Mara Nikolaidou, Dimosthenis Anagnostopoulos
Department of Informatics & Telematics

Harokopio University of Athens
70 El. Venizelou Str, 176 71 Athens, Greece

{tsadimas, mara, dimosthe}@hua.gr

Abstract

Information system architecture design is a complex task
depending on both functional and non-functional require-
ments. Since system architecture definition is strongly related
to system performance, non-functional requirements play a
significant role during enterprise information system design.
To explore the effect of non-functional requirements on
system design process, a model-based approach emphasiz-
ing non-functional requirements is proposed. To facilitate
the designer to effectively define and handle requirements
during architecture design, a number of system views are
proposed, each of them focusing on discrete design issues
and satisfying different kind of requirements. A consis-
tent requirement model is defined representing how non-
functional requirements are related between them and to
system components forming the overall system architecture.
SysML has been adopted as the modeling language, since it
enables requirement definition and can be formally extended.
Moreover, requirement derivation process is discussed and
a case study where the proposed concepts are applied in
practice while redesigning the legacy system of a large-scale
organization is presented.

1. Introduction

According to INCOSE [1], determining the system archi-
tecture (i.e. the way autonomous system components should
be synthesized) is a complex process, which in essence
focuses on the integration of system components already
defined by other stakeholders than system architects. Thus,
system design should be explored taking into account related
requirements identified by the respective stakeholders.

A requirement denotes a capability or condition that must
(or should) be satisfied and may specify a function that a
system must perform or a condition a system must achieve
[2]. Requirements are divided into two main categories:
functional and non-functional [3] [4]. Non-functional re-
quirements (NFRs) is a broadly used term, while there are
significant efforts on how to handle them [5]; however,
there is no consensus about their nature, since various

classifications exist in the literature [3] [4]. NFRs play a
significant role during system design, since they depict the
conditions under which specific system components should
operate, leading to alternative design decisions [6]. We
suggest that the basic aspects of NFRs for system design
purposes can be depicted in three sub-categories, namely
performance, constraint and specific qualityin accordance
with other researchers [7]. During system design emphasis
is often laid upon performance requirements [8].

Model-based system engineering is about elevating mod-
els in the engineering process to a central and governing
role in the specification, design, integration, validation,
and operation of a system. In such a case, activities that
support the engineering process are to be accomplished by
developing models of increasing detail [9] [10]. Model-
based system engineering is supported by a number of
methodologies and modeling languages [11]. In such a case,
a central system model must be defined capturing all system
requirements and decisions that fulfill them at different levels
of abstraction, serving discrete activities and facilitating
information exchange between them.

Enterprise Architecture (EA) frameworks [12] are char-
acterized as an attempt to integrate strategies, processes,
methods, models and tools towards enterprise information
system engineering. Most of them have adopted the notion
of separating concerns by establishing different viewpoints,
each depicting the concerns of a specific stakeholder (e.g.
user, designer, implementer, etc.) In [13], the concept of
using Zachman EA framework as the basis for establish-
ing a central EIS model for model-based EIS engineering
was introduced. Zachman framework provides a holistic
model of enterprise information infrastructure, focusingon
6 different perspectives and 6 different aspects. A plethora
of methodologies and formalisms exist [14], [15], each
applicable to a subset of cells of the Zachman matrix, while
respective system models are defined. As such, the matrix
may integrate different concerns, issues and methods, while
specific methods may use parts of it as a reference point.

Based on the proposed concepts in [13], a model-based
approach for the design of EIS architecture emphasizing
NFRs is discussed in this paper. EIS architecture design is

the process of defining and optimizing the architecture of
the information system, both hardware and software, and
exploring performance requirements. While application de-
sign mainly focuses on functional requirements, architecture
design targets the effective EIS operation emphasizing on
NFRs.

A model-based design approach could be integrated
within Zachman EA matrix and allow for the progressive
refinement of EIS architecture based on a well-defined model
constituting of discreteEIS Architecture Viewsemphasizing
different EIS architecture aspects (e.g. software architecture,
hardware configuration, system topology). EIS Architecture
model should facilitate the description of both functionaland
NFRs and the design decisions related to them according
to different EIS Architecture perspectives often influenced
by different EIS stakeholders, other than system designer.
Each of the perspectives results to an independent EIS Ar-
chitecture view serving a discrete design activity. Adopting
a model-based approach for EIS Architecture design allows
for the progressive and independent execution of these
activities in parallel, while the impact of design decisions
adopted in each of them to the others is expressed in terms
of relations between corresponding EIS Architecture views.

Although there is a UML profile for Modeling Software
Quality of Service [16], it is not adequent for system
engineering. Thus, we chose SysML to support the model-
based approach to EIS Architecture design. SysML [11]
supports the concepts of requirement definition and man-
agement and resource allocation, which are vital to depict
EIS Architecture design activities. A SysML profile can be
defined to provide an integrated EIS Architecture model
consisting of alternative system views addressing functional
and NFRs . The profile was implemented as a plugin to
MagicDraw modeling tool [17].

The rest of the paper is organized as follows: Section 2
explains the main concepts of model-based EIS architecture
design identifying basic design activities and corresponding
EIS views. Section 3 emphasizes on NFR management. In
section 4, the corresponsing SysML profile is described.
In section 5, a case study is presented, discussing the
application of the proposed concepts in the renovation of
a public organization legacy system. Conclusions and future
work are discussed in section 6.

2. Model-Based Design of Enterprise Informa-
tion System Architecture

EIS Architecture design is the process of defining EIS
structure to effectively support EIS provided functionality.
This activity should be performed taking into account re-
lated requirements identified by the respective stakeholders
(application designers, managers, system engineers) having
different views of EIS. In practice, EIS Architecture design

consists of the definition and optimization of a system ar-
chitecture comprised of software and hardware components,
ensuring that all software components are identified and
properly allocated and that hardware components are prop-
erly combined to support the efficient operation of software
components. It is evident that the identification of functional
requirements, e.g. EIS components and their capabilities [2],
is not enough to ensure EIS efficient operation. NFRs, e.g
the conditions under which EIS components should operate
[2], should also be taken into account.

A model-based approach for EIS Architecture design is
based on a common system model facilitating the definition
of both functional and non-functional EIS requirements and
the synthesis of a system architecture combining them [10].
Functional requirements and corresponding design decisions
are described using complementary EIS Architecture views
focusing on different aspects of system design.Functional
view depicts functional requirements related to software
components and relevant data, system users and design
decisions related to software architecture.Topology view
facilitates the description of system access points in terms
of hierarchically related locations, calledsites and deals
with software allocation decisions.Network Infrastructure
view refers to the aggregate network, described through a
hierarchical structure comprising of simple and composite
networks and defines hardware components and config-
urations. Related functional requirements are depicted in
corresponding hardware component models, while network
and hardware design decisions are explored. Non-functional
requirements are represented using an independent EIS view,
integrated in EIS Architecture model, calledNFR View
focused on performance requirements. NFRs defined within
NFR view must be satisfied by specific entities included
in Functional, Topology and Network Infrastructure views
depicting specific EIS functionality and EIS Architecture
design decisions. In this manner, the system architect is
enabled to realize the affect of specific design decisions (for
example the allocation of software to hardware resource) to
NFRs imposed on them (for example performance) and vise-
versa. All NFRs are aggregated in NFR view, while each
of them is also included in the corresponding diagram that
satisfies it. Using NFR view, the system designer is enabled
to explore NFR relationships, while, using other views, the
relationship between NFRs and design decisions is explored.
Thus, it is important to provide a well-defined meta-model
describing requirements and the relations between them and
other EIS Architecture components [18].

Functional view (figure 1) encompasses functional spec-
ifications (e.g. application architecture, user behavior and
data structures). Applications are considered to be based
on multi-tiered, client-server models. Each application tier,
called module, containsservices. The behavior of different
user groups is modeled throughroles. Data entities are
defined to indicate portions of data used by applications.

Functional View

 Topology View

 Network Infrastructure View

Service Description

Composite Network

Atomic Network

Composite Site

Workstation

Atomic Site

Application

Data Entity

Service

Role

Network

Initiate

Module

Invoke

Node

Site

Server

Allocation

Allocation

Allocation

Allocation

Allocation

Allocation

Allocation

-source
-outgoing

-target-incoming
-target1 -incoming

1

1

-source

-outgoing

Figure 1. Functional, Topology and Network Infrastruc-
ture View Meta-model

For each service, a service description sub-view is defined
indicating network infrastructure resources needed for its
execution. The load imposed to network infrastructure re-
sources each time the service is executed is expressed using
requirements and is further described in NFR view.

Topology view (figure 1) facilitates allocation of software,
data and people resources. It comprises ofsites, organized in
a hierarchical structure. Those belonging to the lowest level
are characterized as atomic while others are characterized
as composite. The allocation of modules, roles and data
entities to sites corresponds to software architecture design.
All of them are finally allocated to atomic sites. The load
imposed to sites by the allocated resources is expressed using
requirements and is further described in NFR view.

Network Infrastructure view represents the overall net-
work decomposed to sub-networks. Servers, workstations
and other network devices are associated with LANs at
the lowest level of the hierarchy. Networks and network
nodes are characterized by capacity properties, which should
be specified by the system architect in order to satisfy all
related requirements. Sites are allocated to networks. When
an atomic site is allocated to an atomic network, functional
view entities allocated in it must be specifically allocatedto
network nodes belonging in it.

3. Non-functional requirements classification

NFR view comprises non-functional requirements relevant
to EIS architecture design. They are progressively defined
during model-based EIS Architecture design tasks. Three
main categories are supported:performance, physical and
specific quality[7]. Performance requirements are empha-
sized, since they are essential in EIS architecture design.

Figure 2. NFR View Meta-model

Performance requirements are further decomposed tobe-
havior, load and utilization. Utilization requirements are
associated with Network Infrastructure view and regard the
proportion of network infrastructure resources used by appli-
cations during normal operation or extreme conditions. Be-
havior requirements deal with service behavior and are time-
related (e.g. response times). They affect Functional view.
Two of them are defined, namelyresponseTime, indicating
the time interval within which a service should complete its
execution, androleBehavior, indicating activation patterns
for roles defined within Functional view. Load requirements
concern the load imposed to other EIS resources by EIS
components allocated to them. Load requirements are de-
fined in all views. Most of them are derived requirements,
which are calculated using properties of other load require-
ments. Four different load requirements are defined, namely
serviceQoS, moduleQoS, traffic and load.

Regarding physical requirements, indicating constraints
imposed on design decisions by existing hardware resources,
we focus on those concerningcapacity. Capacity, indicating
limitations of the hardware and their impact to the system,
is related to Network Infrastructure view. Regarding specific
quality requirements, we consider onlyavailability require-
ments. They are associated with Network Infrastructure
view, where availability deals with hardware aspects. Avail-
ability requirements may also be defined for applications
within Functional View.

NFRs and the way they are interrelated to each other as
well as to other entities belonging in Functional, Topology
and Network Infrastructure views are depicted in figure 2.
In the following, NFRs are analytically presented grouped
by EIS Architecture view they are satisfied by.

Functional View Requirements: RoleBehaviorrequire-
ment describes different user behavior, e.g. when, with what
probability and how frequent a user initiates services. A
role initiates services, while each service satisfies are-
sponseTimerequirement. The service requires EIS resources
for its effective execution, expressed in terms of Quality

of Service (QoS) it should receive from the underlying
infrastructure. The serviceQoS requirement indicates the
amount of processed, stored or transferred information a
service requires during its execution. Consequently, the
serviceQoS properties are average and maximum estimations
of traffic, processingandstorageQoS needed for the service
execution. The QoS for each service is defined by the system
architect, taking into account that it should satisfy corre-
sponding responseTimerequirement. ModuleQoS require-
ment describes the QoS needed for the module execution. It
bears the same properties as serviceQoS and is apparently
derived by the serviceQoS requirements belonging in the
same module. Moreover, moduleQoS requirement properties
are calculated as the aggregation of the values of the
corresponding serviceQoS requirement properties.

Topology View Requirements: Sites satisfy traffic re-
quirements, indicating the amount of information exchange
between the allocated modules. Traffic requirement is de-
scribed in terms of incoming, outgoing and exchanged
traffic. Maximum and average values are computed. It is
derived from moduleQoS and roleBehavior performance
requirements as indicated in figure 2 and it is computed
each time there is a change in allocations performed within
Topology View.

Network Infrastructure View Requirements: Networks
and network nodes are characterized by capacity indica-
tions, for example throughput, storage, speed or processing
power. Their definition by the system architect must take
into account constraints applied by existing infrastructure,
availability, utilization and load requirements, as indicated in
figure 2. Load requirements are computed based on Module-
QoS and Traffic requirement properties satisfied by entities
allocated to the specific network infrastructure component
(for example modules allocated to a specific network node).

In order to effectively define EIS Architecture, the system
architect should ensure that all performance requirementsare
fulfilled. In SysML a test case is used to determine whether
the system meets specifications placed by requirements. A
test case is a set of conditions or variables which will be
tested to ensure requirements are met. Thus, as indicated
in figure 2, a Performance Test Caseshould be used to
verify specific requirements, asresponceTimeor Utilization
indicating the effective EIS operation. Since the verification
of EIS Architecture design is performed using simulation,
Performance Test Caseis used for information exchange
with the simulation environment.

4. SysML Profile Definition

In the proposed SysML profile each view is depicted
using a discrete diagram. Functional, Topology and Network
Infrastructure views are described using hierarchical block-
definition diagrams. SysML blocks can be used throughout
all phases of system specification and design, and can

be applied to many different kinds of systems. Entities
belonging in these three views are related only using stereo-
types ofSysML allocaterelationship, as indicated in 2. Re-
quirements View is depicted using a Requirement diagram.
Requirements are related to entities of all other views using
SysML satisfyrelationship. The profile is implemented using
MagicDraw modeling tool [17].

NFR view is defined in SysML as a stereotype of a
Requirement Diagram. Requirements in SysML are de-
scribed in an abstract, qualitative manner, since they are
defined using a name and a description. In the case of EIS
Architecture Design non-functional requirements and espe-
cially performance requirements should be more accurately
describe using quantitative properties. Furthermore, derived
requirement properties should be automatically computed by
combining specific attributes of requirement and allocation
entities. Though, SysML provides for NFRs description,
SysML requirement entity was heavily extended to ef-
fectively represent the quantitative aspects of performance
requirements and the way they derive from each other.

5. Case Study

In the following we discuss the case of renovating a legacy
information system supporting a large-scale public organi-
zation. The proposed model-based EIS Architecture design
approach was applied to explore alternative architectures
and their implications to the network infrastructure. One
of the main objectives of system architecture re-design was
to enhance application performance without rewriting the
applications themselves. Since NFRs play a significal role
in the re-design of the legacy information system, it was
suggested to apply the proposed SysML profile, to explore
related design desicions.

Functional View. In figure 3, a fraction of the Functional
View is presented, where an officer working in a small
regional office initiates three services belonging to two
different modules (applications). As shown in the figure, this
role satisfies two role behavior requirements. One of them
refers to average day behavior and the other for a heavy
load behavior. Using these requirements it is possible to test
system performance under different conditions (workloads).
Topology view depicts the structure of regional offices. A
fraction of the Topology view corresponding to a medium
office is depicted in figure 4. Traffic requirements satisfied
by every site are computed and presented in the diagram.
A server room is established in all regional offices. For
each atomic site, all modules running in it are presented.
The same is applied for the roles, which are presented as
usage allocations.Network Infrastructure View represents
existing network topology. Constraint requirements are used
to depict existing infrastructure restrictions. Each regional
office is connencted with IT datacenter through point-to-
point (PTP) connections (figure 4). Every network is related

<<Client-Module>>

application-A

<<Service>>

appA-s1

<<Service>>

appA-s2

<<Server-Module>>

oracle R.O.

<<Service>>

<<Service>>

<<Behaviour-Req>>
<<requirement>>

sROo-b2

activationDistributionFunction = Poisson

endTime = 1400

Id = "sROo-b2"

numberOfOccurences = "30"

startTime = 1200

Text = "High Load Role Behavior "

<<Behaviour-Req>>
<<requirement>>

sROo-b1

activationDistributionFunction = Poisson

endTime = 1400

Id = "sROo-b1"

numberOfOccurences = "10"

startTime = 700

Text = " Average Day Role Behavior"

<<ResponseTime-Req>>
<<requirement>>

appA-s1-RT

Id = "appA-s1-rt"

Text = " "

Value = "10 sec"

<<Service-QoS-Req>>
<<requirement>>

appA-s1-t-r

{Id = "appA-s1-t-r" ,

Text = " " ,

Type = traffic ,

value = "3" }

<<Server-Module>>

oracle Central

<<Service>>

<<Server-Module>>

tuxido R.O.

<<Service>>

<<Server-Module>>

tuxido Central

<<Service>>

<<Client-Module>>

application-B

<<Service>>

appB-s1

<<Service-QoS-Req>>
<<requirement>>

appA-s1-p-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-s-r

<<Module-QoS-Req>>
<<requirement>>

appA-s-r

<<Module-QoS-Req>>
<<requirement>>

appA-p-r

<<Module-QoS-Req>>
<<requirement>>

appA-t-r

<<Role>>

small R.O. officer

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Initiate>>
{percentage = "20" }

<<Initiate>>
{percentage = "20" }

<<Initiate>>

{percentage = "60" }

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

Figure 3. Functional View

package top-medData[]

<<Composite-Site>>

medium R.O. building

<<Role>>

medium R.O. dept C

<<Role>>

medium R.O. dept D

<<Role>>

medium R.O. dept B

<<Role>>

medium R.O. dept A

<<Server-Module>>

tuxido R.O.

<<Server-Module>>

oracle R.O.

<<Client-Module>>

application-C

<<Client-Module>>

application-F

<<Client-Module>>

application-A

<<Client-Module>>

application-G

<<Client-Module>>

application-E

<<Client-Module>>

application-D

<<Client-Module>>

application-B

<<Atomic-Site>>

m server room

<<Traffic-Req>>
<<requirement>>

m-RO-depD-tr

<<Traffic-Req>>
<<requirement>>

m-RO-depA-t
r

<<Traffic-Req>>
<<requirement>>

m-RO-depB-t
r

<<Traffic-Req>>
<<requirement>>

m-RO-depC-t
r

<<Atomic-Site>>

Dpt m-A

<<Traffic-Req>>
<<requirement>>

m-RO-tr

<<Traffic-Req>>
<<requirement>>

mRO-srv-tr

<<Atomic-Site>>

Dpt m-D

<<Atomic-Site>>

Dpt m-B<<Atomic-Site>>

Dpt m-C

<<satisfy>>

<<satisfy>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>
<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<Usage Allocation>>

<<SoftwareAllocation>>

<<satisfy>>

<<satisfy>>

<<Usage Allocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<Usage Allocation>>

<<satisfy>>

<<satisfy>>

<<Usage Allocation>>

<<SoftwareAllocation>>

net-mediumpackage Data[]

<<Composite-Site>>

IT Central building

<<Composite-Network>>

medium R.O.

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Atomic-Network>>

datacenter LAN

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Atomic-Network>>

m LAN2

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Atomic-Network>>

server m

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Atomic-Network>>

m LAN1

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Composite-Network>>

IT local network

{ProtocolStack = TCP/IP,

type = Ethernet }

<<Composite-Site>>

medium R.O. building

<<Load-Req>>
<<requirement>>

m-RO-L1-lod

<<Load-Req>>
<<requirement>>

m-RO-L2-lod

<<Constraint-Req>>
<<requirement>>

m-RO-con

<<Constraint-Req>>
<<requirement>>

m-RO-L1-con

<<Constraint-Req>>
<<requirement>>

m-RO-srv-con

<<Constraint-Req>>
<<requirement>>

m-RO-L2-con

<<Load-Req>>
<<requirement>>

m-RO-srv-l
od

<<Utilization-Req>>
<<requirement>>

mRO-DC-util

<<Load-Req>>
<<requirement>>

m-RO-lod

<<Atomic-Site>>

Dpt m-C

<<Atomic-Site>>

Dpt m-A

<<Atomic-Site>>

Dpt m-D

<<Atomic-Site>>

Dpt m-B

<<PTP-connection>>

<<StructuralAllocation>>

<<StructuralAllocation>>

<<StructuralAllocation>>
<<StructuralAllocation>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<StructuralAllocation>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<StructuralAllocation>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

Figure 4. Topology & Network Infrastructure View

to a constraint requirement, which describes the existing
speed of the network and a load requirement, which de-
scribes “how much traffic” do the applications that belong
to that network require. Moreover, a utilization requirement
is satisfied by the point-to-pont connection between regional
offices and the datacenter. Eventually, the designer in order
to define the connection speed between two networks, load
requirements of the networks and utilization of the network
connection must be taken into account. Load requirements
depend on the server distribution, meaning that if the servers
are distributed across the local offices, the load will be higher
whereas if the applications are web-based, load will be
less. For a network of a higher hierarchy, load requirement
is derived by the load requirements of the lower lever
networks. In order to calculate PTP connection utilization

two parameters have to be defined: the network load and the
network connection speed. For a network, a corresponding
load requirement is assigned which is derived by the traffic
requirements for each site allocated to that network.

The network architecture is predefined. The system ar-
chitect was enabled to explore two different database ar-
chitecture scenarios. The first one was to eliminate local
database servers and consolidate them in the IT Center,
without intervening with database architecture. That is, a
local database is kept for every regional office, but all
of them are hosted in the IT Center where the central
database is also maintained, while local Transaction Moni-
toring Servers still operate in Regional offices. The scenario
has no effect on the manner applications operate. Though it
resulted in considerably increasing network traffic over the

<<ResponseTime-Req>>
<<requirement>>

appA-s1-RT

<<Service-QoS-Req>>
<<requirement>>

appA-s1-s-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-t-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-p-r

<<Module-QoS-Req>>
<<requirement>>

appA-s-r

<<Module-QoS-Req>>
<<requirement>>

appA-t-r

<<Module-QoS-Req>>
<<requirement>>

appA-p-r

<<Behaviour-Req>>
<<requirement>>

sROo-b1

<<Behaviour-Req>>
<<requirement>>

sROo-b2

<<Constraint-Req>>
<<requirement>>

s-RO-con

<<Utilization-Req>>
<<requirement>>

sRO-DC-util

<<Traffic-Req>>
<<requirement>>

sRO-csa-tr

<<Traffic-Req>>
<<requirement>>

sRO-srv-tr

<<Load-Req>>
<<requirement>>

s-RO-lod

<<Traffic-Req>>
<<requirement>>

sRO-tr

<<satisfy>>
<<satisfy>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

relates to

relates to

<<deriveReqt>>

<<satisfy>>

<<deriveReqt>><<deriveReqt>><<deriveReqt>>

Figure 5. NFR View - Small Regional Office Example

point-to-point connections between regional offices and the
IT Center, while the processing power needed to support all
databases is consolidated in the IT Center. The second one
was to eliminate local databases and establish one central
database. In this case local Transaction Monitoring Servers
still operate in regional offices, but the applications need
minor rewriting. Though both scenarios have the same affect
to the network architecture, the second one results in a more
efficient architecture solution for the Datacenter since there
is no need to synchronize databases hosted on the same
servers, which consequently affects application performance.
Since it was estimated that performance improved almost by
1/3 by the second scenario, it was decided to apply it despite
the minor application rewriting involved.

NFR View integrates all NFRs from all views and their
relations. These relations are in accordance with the general
requirements relations as depicted in figure 2. Different
views are interrelated through the relations of their require-
ments, which is accomplished by the NFR diagram. Figure 5
presents an example of the requirements of a small regional
office and their relations.

6. Conclusions & Future Work

In practice, EIS Architecture design is usually performed
by properly integrating EIS components already defined by
other stakeholders in an efficient manner. Thus, NFRs must
be emphasized. The provision of a well-defined model to
represent NFRs and the relations between them in a separate
view, enhances the system designer’s perception of the way
specific design decisions may affect others, as they are
practically represented through derived requirements.

Though, SysML provides for requirements description,
this is supported in a abstract fashion. During system de-
sign, NFRs and particularly performance requirements have
to be extensively described using quantitative parameters,

while the way they are derived from each other should be
expressed in a quantitative manner. To provide such a func-
tionality, SysML requirement entity used heavily extended.

The proposed profile is currently tested in other case
studies as well. Furthermore, we are exploring the proposed
solution validation using simulation in an automated fashion.
Information exchange between the simulation environment
and SysML profile is explored.

References

[1] INCOSE. INCOSE Handbook SE Process Model, September
2003. http://g2sebok.incose.org/.

[2] A. Aurum and C. Wohlin. Engineering and Managing
Software Requirements. Springer, 2005.

[3] E. R. Byrne. IEEE Standard 830: Recommended Practice for
Software Requirements Specifications, 1998.

[4] A. v. Lamsweerde. Goal-Oriented Requirements Engineering:
A Guided Tour. InFifth IEEE International Symposium on
Requirements Engineering (RE’01), p 249, 2001.

[5] J. Mylopoulos, L. Chung and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. InIEEE Trans. Softw. Eng, 18(6):483-497, 1992

[6] L. Zhu and I. Gorton. Uml profiles for design decisions and
non-functional requirements. InSHARK-ADI ’07, p 8, 2007.
IEEE Computer Society.

[7] M. Glinz. On non-functional Requirements. 15th IEEE
International Requirements Engineering Conference, 2007.

[8] C.-W. Ho, L. Williams, and B. Robinson. Examining the
relationships between performance requirements and ”not a
problem” defect reports. InRE ’08, p 135–144, 2008. IEEE
Computer Society.

[9] J. A. Estefan. Survey of Model-based Systems Engineering
(MBSE) Methodologies. INCOSE MBSE Focus Group, May
2007.

[10] M. Nikolaidou, A. Tsadimas, N. Alexopoulou, D. Anag-
nostopoulos. Employing Zachman Enterprise Architecture
Framework to Systematically Perform Model-Based System
Engineering Activities InHICSS-42,p 1–10, 2009.

[11] O. M. G. Inc. Systems Modeling Language (SYSML)
Specification. Version 1.0, September 2007.

[12] S. Leist and G. Zellner. Evaluation of current architecture
frameworks. In H. Haddad, ed,SAC, p 1546–1553. ACM,
2006.

[13] M. Nikolaidou and N. Alexopoulou. Enterprise Information
System Engineering: A Model-Based Approach Based on the
Zachman Framework. InHICSS’08. IEEE Computer Society,
2008.

[14] A. Fatolahi and F. Shams. An investigation into applying
UML to the Zachman Framework. Information Systems
Frontiers, 8(2):133–143, 2006.

[15] C. M. Pereira and P. Sousa. A method to define an Enterprise
Architecture using the Zachman Framework. In H. Haddad,
A. Omicini, R. L. Wainwright, and L. M. Liebrock, editors,
SAC, p 1366–1371. ACM, 2004.

[16] OMG. UML Profile for Modeling, Quality of Service and
Fault Tolerance Characteristics and Mechanisms, September
16, 2004, omg.org

[17] MagicDraw UML. http://www.magicdraw.com/.
[18] I. Ozkaya. Representing requirement relationships. InREV

’06, p 3, 2006. IEEE Computer Society.

