
Frameworks for Model-based Analysis and Design of
Enterprise Information Systems

Mara Nikolaidou1, Nancy Alexopoulou12

{mara@di.uoa.gr, nancy@hua.gr}

1 Harokopio University of Athens,
El. Venizelou Str, 17671 Athens, Greece

2 Department of Informatics and Telecommunications,
University of Athens, Panepistimiopolis, 15771, Athens, Greece

1. Introduction

When building an enterprise information system, the desired properties of the system should be
defined, such as its structure and behavior, while the role of the system in its environment should
also be considered. Many different stakeholders may be involved in this process, each of which
focusing on certain concerns and considering these concerns at a certain level of detail. Therefore,
various methodologies and frameworks have been developed aiming at a consistent development
and configuration of enterprise information systems. Most of them have adopted the notion of
separating concerns by establishing different viewpoints, each depicting the concerns of a specific
stakeholder (e.g. user, designer, implementer, etc.). Following, we focus on the system designer
viewpoint, exploring issues related to the analysis and design of Enterprise Information Systems
(EIS).

System engineering is the process of analyzing system requirements, designing the desired
architecture of a system and exploring performance requirements, ensuring, thus, that all system
components are identified and properly allocated and that system resources can provide the desired
performance. It corresponds to the system designer viewpoint. Although, vendors (as IBM or Oracle)
actively promote information system development based on multi-tiered architectures, the proposed
solutions, although expensive, often fail to provide the desired performance. This is due to the fact
that system designers often neglect system engineering issues contributing to the overall application
performance. In spite of design issues being interrelated, they are often modeled and studied in
isolation, resulting in poor system performance. In practice, discrete issues, as network architecture
description or resource allocation are supported by autonomous automated or semi-automated tools,
each of which adopts its own metamodel for system representation. Thus, no interaction between
them is supported. To effectively explore EIS engineering, heterogeneous tools and system models
should be integrated. This integration could be accomplished by adopting model-based system
engineering (Oliver et al., 1997). Model-based system engineering (MBSE) provides a central
system model (tool-independent) that captures system requirements and design decisions that fulfill
them at different levels of abstraction. It enables integration of system models supported by
autonomous design tools and interoperability between them without interfering with their internal
implementation. Model-based system engineering has already demonstrated a positive impact on

large-scale systems. Thus, we argue that it is best suited for enterprise information system analysis
and design. When applying model-based system engineering, a multi-level, technology-neutral
model for EIS representation should be defined, taking into account different aspects of the system,
such as network architecture, resource allocation, application execution requirements, etc, involved
in system design.

Existing well-known frameworks may be used for system modeling. The Open Distributed
Processing Reference Model (RM-ODP) is such a framework, dealing with aspects related to the
distribution, interoperation and portability of distributed information systems. Another widely
referenced framework is the enterprise architecture framework defined by Zachman, which specifies
the development process of enterprise information systems, starting from the identification of the
enterprise’s business objectives and resulting in a detailed system implementation. Independently of
the framework used, the different system views defined from each viewpoint can be effectively
depicted through models. Models may be expressed using various modeling languages. However,
the most popular and widely adopted modeling language for the representation of models is the
Unified Modeling Language (UML). Numerous designers use the extension mechanisms provided by
UML to create profiles (i.e. specializations of UML diagrams) to better serve their modeling
purposes.

The main focus of this chapter is the exploration of model-based analysis and design
requirements for enterprise information systems. Three alternative approaches for model-based EIS
engineering are discussed, based on the above requirements. All of them adopt UML as the
modeling language for EIS representation. These are: a) the RUP system engineering approach, b)
the UML4ODP proposed standard with emphasis on Engineering Viewpoint and c) the EIS
Engineering Framework proposed by the authors.

The rest of the chapter is organized as follows: In section 2, background information regarding
model-based system engineering and system viewpoints is provided. Also, Zachman’s framework
and RM-ODP are briefly discussed and their relevance to the proposed approach is presented. In
section 3, the requirements for successful model-based engineering for enterprise information
systems are presented. In sections 4-6, the three alternative approaches are analysed and
discussed based on these requirements. Future trends and conclusions reside in the last two
sections.

2. Background

This section describes the main principles of model-based system engineering (MBSE) and its
advantages for enterprise information system analysis and design. System modeling is a critical
issue in MBSE. The IEEE Std 1471, which provides guidelines for the description of systems from
different perspectives (viewpoints), is considered as the basis for the definition of a central system
model for MBSE. An overview of existing frameworks for EIS modeling can be found in (Goethals et
al., 2006) and (Leist, 2006). We discuss two of them, namely the Zachman framework and RM-ODP,
which support the designer perspective, are well-known and come from different origins. It should be
noted, that although defined prior to IEEE 1471 standard, they both adopt the concepts of views and
viewpoints.

2.1 Model-Based System Engineering

System modeling constitutes an important part of system engineering, since it may facilitate the
complete description of all aspects involved and contribute to the effectiveness of the whole process.
How many different system models should be supported? Should all of them provide the same level
of detail? How can the correspondences between different models be identified and ensured? Since
discrete design issues are usually resolved by different methodologies and autonomous software
tools, the support of different system models cannot be avoided. In many cases, these models are
not compatible, thus, design issues, although interrelated, are often solved in isolation. Even if a
certain design problem, for example network architecture, is optimized, there is no guarantee that
the overall EIS architecture will be optimized as well. To resolve such a situation, a central, tool-
independent model should be adopted.

Model-driven technologies for application development, such as Model Driven Architecture (MDA)
(Brown, 2004), proposed by OMG, enable the definition of platform-independent models (PIMs) for
the specification of system functionalities and platform-specific models (PSMs) for the specification
of the implementation of these functionalities on a particular technological platform and the definition
of couplings between PIMs and PSMs. Modeling languages, methods and tools have been
established to support model-driven software development. In a similar fashion, model-based
system engineering (MBSE) provides a central system model (corresponding to a PIM) that captures,
at different levels of abstraction, system requirements and design decisions that fulfill them. In
addition, tool-specific models could be defined (corresponding to PSMs), while MBSE also provides
for model transformation (couplings between PIM and PSMs). Thus, the interoperability between
models and methods corresponding to discrete design issues is achieved, without interfering with
their internal implementation in the respective software tools. The central system model serves all
engineering activities, for example it could be executed by a simulator to validate design decisions.

The Unified Modeling Language (UML) is a modeling language attempting to standardize
graphical language elements for modeling software systems. It is a well-known software engineering
standard, since most software developers are familiar with it, while there is a lot of activity in
advancing both the UML supported functionality and the UML tools. Numerous designers use the
extension mechanisms provided by UML to create profiles (i.e. specializations of UML diagrams) to
better serve their modeling purposes. UML 2.0 (OMG, 2007) consists of thirteen diagram types used
for structural, behavioral and interaction modeling. Many diagram types, such as use-case, state,
activity, can be used for general functional requirement analysis. Evidently, UML is adopted in MBSE
as well, serving as a common enterprise notation language, while UML extensions have been
proposed for system engineering (Murray, 2003a) (Nikolaidou et al., 2006).

As it will be elucidated in this chapter, MBSE is appropriate for enterprise information system
analysis and design. When applying MBSE, a multi-level, technology-neutral model for EIS
representation should be defined, taking into account different aspects of the system, such as
network architecture, resource allocation, application execution requirements, etc, involved in
system design. Existing modeling frameworks are explored for this purpose in the following
paragraphs. Independently of the framework used, we suggest the UML should be adopted for
model representation.

2.2. Defining Views and Viewpoints for Enterprise Information System Architecture

An important milestone in the field of enterprise system architecture descriptions is ANSI/IEEE Std

1471 - Recommended Practice for Architectural Description of Software-Intensive Systems
(IEEE1471). It defines enterprise system concepts and their relationships that are relevant for
architectural description, thus provides a standard way of defining EIS architecture models. It also
provides guidance on the structure of architectural descriptions.

The main concepts standardised are architecture, architectural description, concern, stakeholder,
viewpoint and view. Architecture is defined as “the fundamental organization of a system embodied
in its components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution”. Architecture Description is “a collection of artifacts documenting
the architecture”. Stakeholders are “people with key roles or concerns about the system”, while
concerns are “the key interests crucially important to the stakeholders and determine the
acceptability of the system from stakeholder specific perspective”. Views are “representations of the
whole system from the perspective of a related set of concerns”, while viewpoints define “the
perspective from which a view is taken”. The main concepts of IEEE 1471 standard and their
interrelations are depicted in figure 1.

Mission

Environment Architecture System

Stakeholder Architectural
Description

Rationale

Concern Viewpoint View

Library
Viewpoint

Model

Figure 1: IEEE/ANSI Std 1471 conceptual model

A viewpoint defines: a) how to construct and use a view, b) the information that should appear in the
view, c) the modelling techniques for expressing and analyzing the information and d) a rationale for
these choices (by describing the purpose and intended audience of the view). Different stakeholders
with different roles in the system have different concerns, which are expressed through different
viewpoints. Each view is a capture of the representation of the system architecture design, typically
comprising of one or more architecture models. In simple words, a view is what you see, while a
viewpoint is where you are looking from – the vantage point or perspective which determines what
you see. Viewpoints are generic, while a view is always specific to the architecture for which it is
created. To successfully define an architecture description, specific characteristics should be
obtained (Hilliard, 2001):

• Views should be modular. A view may consist of one or more architectural models.

• Views should be well-formed. Each view has an underlying viewpoint specifying view definition
using a formal method, as languages, notations, models and analytical techniques.

• View consistency should be ensured. Viewpoints may also include any consistency or
completeness checks associated with the underlying method to be applied to models within
the view; any evaluation or analysis techniques to be applied to models within the view; and
any heuristics, patterns, or other guidelines which aid in the synthesis of an associated view or
its models.

Although not defined in IEEE 1471, additional issues should be addressed, such as (Hilliard, 2001):

• View integration and inter-view consistency. It has been long recognized that introducing
multiple views into architectural descriptions leads to an integration problem. How does one
keep views consistent and non-overlapping? The introduction of viewpoint declarations, while
not solving the problem, gives us a tool for detecting overlaps and inconsistencies, and
potentially a substrate for solving the integration problem.

• Formalization. The conceptual framework of IEEE 1471 is an informal, qualitative model. If it
is useful, which appears to be the case, it may be insightful to attempt to formalize the
concepts therein. Such a formalization could have benefits in several topics, as view checking,
view integration, and inter-view analysis.

Since its publication in 2000, IEEE 1471 has received much appraisal. The concepts of
stakeholders, concerns and views are accepted as essential. The terminology proposed by IEEE
1471 is now being used by many architects. The focus on concerns of stakeholders is a good
stimulus for otherwise possibly too technically oriented IT architects. After all, it is the interests of the
stakeholders that need to be served.

IEEE 1471 proposes a formal method to define system architectures, but it does not propose nor
prescribe any specific viewpoint for system architects and stakeholders (Greefhorst et al., 2006).
However, it can be used as a guide to define viewpoints and views for EIS model-based analysis
and design, as discussed in the following sections. Inter-view consistency and formal description is
the focus of our concern. As already mentioned, each view may be formally defined by a model,
while it should also be communicated to the stakeholder by a representation model, which is a
concrete representation of the system view on some medium (e.g. paper or computer program)
(Boer et al., 2004). The aforementioned definitions are adopted throughout the rest of the chapter.

The attainment of a consistent representation of the systems entails that view interrelations must
be typically defined. In order to formally define a viewpoint, one should define a metamodel
describing the supported views independently of the modeling language used for system
representation and then define the representation model. In this way, a view may be represented
using different languages, such as UML or ISDL, in a common manner, facilitating thus the
transformation between representation modeling languages. As indicated in (Dijkman et al., 2003),
two basic relations are identified between views: refinement (the internal view refines the external
view on a different level of detail) and complement (two views may complement each other by
considering complementary concerns).

2.3. Zachman Framework

Enterprise information systems can be described based on the Zachman framework. The widely

referenced Enterprise Architecture framework of Zachman (Zachman, 1999), simply referred as the
“Zachman Framework” is a logical structure for organizing and classifying the artifacts created
during the development of enterprise information systems. The purpose of the framework is to
ensure the establishment of enterprise information systems starting from the identification of the
enterprise’s business objectives, as a typical problem of modern enterprises is the time-consuming
and costly implementation of information systems that often fail to meet business objectives.

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM
MODEL
(LOGICAL)

TECHNOLOGY
MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING
ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.
Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity
Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity
Reln = Business Relationship

List of Things Important
to the Business

ENTITY = Class of
Business Thing

List of Processes the
Business Performs

Function = Class of
Business Process

e.g. Application Architecture

I/O = User Views
Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets
Proc.= Computer Function

e.g. Program

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process
I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location
Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition
Means = Step

e.g. Rule Design

End = Condition
Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective
Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle
Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event
Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit
Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User
Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

Figure 2: Overview of the Zachman Framework

The Zachman’s framework is deployed in two dimensions. The first dimension addresses the
different perspectives of the stakeholders participating in information system development. These
perspectives derive from the parallelism of information system development with the construction of
a building. As such, Zachman defines the Owner’s, Designer’s and Builder’s viewpoints. The first
viewpoint, defined by the business model, is a description of the enterprise within which the
information system will function. The second delineates how the system will satisfy the requirements
ensuing from the business objectives, yielding the system model. The third viewpoint represents how
the system will be implemented, providing the builder model. To produce a comprehensive
framework for enterprise information system development, Zachman has added three more
viewpoints, namely Scope which denotes the business purpose and strategy defining the context for
the other viewpoints, the Out-of-Context which includes implementation-specific details, and the
Operational, which is the functioning system. The second dimension distinguishes different focal
points of the system. The Data aspect describes what entities are involved, while the Function
aspect shows how the entities are processed. The Network perspective indicates where the entities
are located. Apart from the what, how and where, the framework addresses also three other
questions, specifically who, when and why. As such, it defines the People who work with the system,
when events occur (Time aspect) and why these activities take place (Motivation aspect). The

combination of the two dimensions in a matrix, with the focal points indicated by the columns and the
different perspectives by the rows, yields the Zachman’s framework as presented in figure 2.

Each cell constitutes a separate view. As such, an organization should create a wide range of
diagrams and documents representing the different views defined within the Zachman framework.
As shown in figure 2, the Zachman framework contains suggested specification models for each
view (e.g. using ER technique for modeling the data description in the owner’s viewpoint or using
functional flow diagrams for modeling the process description in the owner’s viewpoint). However,
the Zachman framework doesn’t suggest a specific methodology or technique for the description of
view models. Moreover it does not typically define a metamodel to integrate the information of all
cells nor does it describe a way to trace information between cells (Frankel et al., 2003). Its objective
is to provide some basic principles that should guide the implementation of enterprise information
systems. As such, it says nothing about the development of conformant views or the order that
should be developed. The strength of the framework is that it provides an organized way of thinking
about an enterprise, in respect to information systems, so that it can be described and analyzed. It
enables the individuals involved in producing enterprise information systems to focus on selected
aspects of the system without losing sight of the overall enterprise context. Moreover, it facilitates
them to find out possible gaps and inconsistencies between view representations and thus modify
the models appropriately to eliminate all inconsistencies.

EIS engineering issues are obviously addressed in the System Model raw of the Zachman’s
matrix. The system designer may actually work concurrently with the system developer (the builder
of the model), although system design is usually performed prior to its implementation. As already
stated, the Zachman framework does not specify whether these two stages must be performed
sequentially or in parallel. In many cases, during system design, although system architecture is
defined and the services provided by the distributed applications are identified, detail software
design and implementation is considered in the builder model. In practice, system engineering
issues can be dealt with independently of the status of software development process. Thus,
following we will focus on the System Model raw of the Zachman’s matrix.

Lastly, it should be noted that while a plethora of methodologies and formalisms exist, each
applicable to some subset of cells, Zachman however encourages a single common language to
describe the subject of all the cells as well as their interrelationships, rather than using a specialized
notation for each view separately (Sowa & Zachman, 1992).

2.4. RM ODP

As enterprise information systems are distributed, they can alternatively be described by the
Reference Model of Open Distributed Processing (RM-ODP). The Open Distributed Processing
Reference Model (RM-ODP) is a conceptual framework established by ISO (ISO/IEC, 1998) for the
specification of large-scale distributed systems. RM-ODP integrates aspects related to the
distribution, interoperation and portability of distributed systems in such a way that network/hardware
infrastructure is transparent to the user. RM-ODP manages system internal complexity through the
separation of concerns, addressing specific problems dealt with during system development from
different viewpoints (ISO/IEC, 1998). It provides an object-oriented representation of the system,
while it is highly technical, relatively complex and focuses on distributed application development.
RM-ODP manages system internal complexity through the identification of five generic and
complementary viewpoints which are as follows:

• Enterprise viewpoint, which concentrates on the business activities of the specified system.

• Information viewpoint, which focuses on the information that needs to be stored and processed in
the system.

• Computational viewpoint, which describes system functionality through functional decomposition
of the system into components that interact via interfaces.

• Engineering viewpoint, which examines the mechanisms and functions required to support
distributed interactions between components.

• Technology viewpoint, which focuses on the choice of technology for system implementation.

For each viewpoint there is an associated viewpoint language which can be used to express a
specification of the system from that viewpoint. The object modeling concepts give a common basis
for the viewpoint languages and make it possible to identify relationships between the different
viewpoint specifications and to assert correspondences between the representations of the system
in different viewpoints. Viewpoint languages provide the means for the detailed description of
systems according to the viewpoint perspective. System views are formally defined based on the
corresponding viewpoint languages.

System engineering issues are addressed in RM-ODP Engineering Viewpoint. The engineering
language focuses on the way system component interaction is achieved and on the resources
needed to do so. In the engineering language, the main concern is the support of interactions
between computational objects, defined in the computational view to represent a service or a
program operating in the distributed platform. As a consequence, there are very direct links between
the viewpoint descriptions; computational objects are visible in the engineering viewpoint as basic
engineering objects, representing the actual implementation of computational objects. Engineering
objects are physically located and associated with processing resources by grouping them into
nodes, which can be thought of as representing independently managed computing systems. A
cluster is a grouping of basic engineering objects, used for resource allocation purposes (all objects
in a cluster are manipulated as a singe entity). Clusters form capsules (a single entity for the
purpose of resource allocation and protection). Capsules are associated to nuclei which are
responsible for making communications and processing facilities available (to capture the notion of a
virtual machine). When engineering objects in different clusters interact, mechanisms are needed to
cope with it. The set of mechanisms needed to do this constitute a channel (represents client-server
communication), which is made up of a number of interacting engineering objects: Stubs are
concerned with the information conveyed in an interaction, binders are concerned with maintaining
the association between the set of basic engineering objects linked by the channel, and protocol
objects manage the actual communication. Basic engineering entities and their interrelations are
depicted in figure 3.

The concepts defined to describe system architecture (as clusters, capsules or nuclei) are
complex ones, while they are not adopted by system designers in their every-day work, thus they
cannot be instantly related to them. Network architecture is described in great detail using client-
server concepts, while the description of systems entities (for example communication channels)
might be too detailed. Alternative architectural approaches should be easily described within
Engineering Viewpoint to enhance its acceptance by system designers. Furthermore, the
dependencies between viewpoints although identified, are not formally enforced.

Regarding system engineering, within Engineering Viewpoint the following aspects are clarified:

• A system-oriented view of distributed applications

• System access points

• The distributed platform infrastructure (e.g. network architecture and hardware configuration)

• The association of software components to network nodes (resource allocation), in order to
ensure performance requirements.

However, the means of actually performing resource allocation are not provided, since performance
requirements are not depicted within Engineering Viewpoint.

Figure 3: Basic engineering entities and their interrelations (ISO/IEC, 1998)

Frankel (Frankel, 2003) suggests separating the Engineering Viewpoint into two discrete sub-
viewpoints, the logical and the deployment one. The deployment one focuses on a technology-
independent description of the network architecture and hardware configuration. The logical one
corresponds to the description of distributed application architecture and the policies adopted for the
operation (e.g. replication policy). This separation helps in clarifying the dependencies between
application requirements and distributed platform infrastructure.

3. Model-based EIS Analysis and Design

Modern enterprise information systems are based on distributed architectures, consisting of a
combination of Intranet and Internet web-based applications. They are built on multi-tiered client-
server models (Serain, 1999), as the J2EE architecture. Such platforms distinguish application logic
from the user-interface and contribute to system configurability and extendibility. Despite the fact that
vendors (such as IBM and Oracle) actively promote information system development using the
aforementioned architectures, the proposed solutions, although expensive, often fail to provide the
desired performance (Savino-Vázquez et al., 2000). This is due to the fact that design issues,

although interrelated, are solved in isolation, while the internal complexity of applications is
neglected when estimating the quality of service (QoS) imposed to the network supporting them.

In practice, discrete issues, as network architecture description or resource allocation are
supported by autonomous automated or semi-automated tools (Gomaa et al., 1996, Graupner et al.,
2001, Nezlek et al., 1999). Each of these tools supports its own representation metamodel (for
example queuing networks, Petri-nets, objects), while different system properties are depicted in
them. The existence of a common metamodel describing all EIS properties is of great importance for
the efficient requirement analysis and design of such systems, since it would facilitate the
communication between autonomous design stages/tools and act as a “reference point”. Thus, a
model-based approach for EIS analysis and design is considered most efficient.

In order to provide an integrated framework for model-based enterprise information system
engineering the following requirements should be addressed:

• Definition of a common, multi-layered, platform-independent model of EIS architecture. EIS
architecture description should follow IEEE Std 1471, thus EIS model definition should consist of
well defined views and viewpoints. Each view should address a discrete design issue and should
be formally defined. Furthermore, view and inter-view consistency should be well-established,
since the main reason for adopting model-based design is to ensure integration of discrete design
issues/tools. Lastly, compatibility of the proposed model with Zachman System Model or RM-
ODP engineering viewpoint should also be supported.

• Covering basic EIS architecture design issues (as defined in both Zachman’s System Model and
RM-ODP Engineering viewpoint). These are: a)definition of EIS architecture (e.g. a system-
oriented view of distributed applications), indicating system performance requirements, b)
definition of system access points, c) description of platform-independent distributed
infrastructure (e.g. network architecture and hardware configuration) and d) mapping of software
components to network nodes (resource allocation), in order to ensure performance
requirements.

• Description of a methodology for EIS architecture design. This could be part of the viewpoints
defined or independent of them. Thus, it could be applied at different levels of detail, facilitating
the progressive definition of system architecture.

• Definition of a UML representation model for EIS architecture. It should provide for an integrated,
easy-to-use interface for system designer.

• Tool integration - Model exchangeability. Since discrete design issues may be resolved using
autonomous tools, heterogeneous tool integration should be supported. Most of them employ
their own internal model for EIS representation. Thus, tool coordination and internal metamodel
transformation should also be supported. According to model-based design principles,
consistency is ensured, since the common metamodel acts as a “reference point”. Prior to using
an existing tool, the partial transformation of the common metamodel (platform-independent) into
the tool’s internal metamodel (platform-dependent) must be facilitated. Using this transformation,
the invocation and initialization of any tool can be automatically performed. Input/output
parameters must be represented in the common metamodel. Their values could be either entered
by the system designer or automatically computed by the tool.

Following, we discuss three alternative approaches for model-based EIS engineering with regard
to the above requirements. All of them adopt UML as the modeling language for EIS representation.
These are: a) the RUP system engineering approach (Murray, 2003a) (Murray 2003b), b) the
UML4ODP proposed standard with emphasis on Engineering Viewpoint (ISO/IEC, 2006) and c) EIS
Engineering Framework proposed by the authors.

4. RUP System Engineering

Rational Unified Process for Systems Engineering (RUP SE) is a framework developed by Rational
(Murray, 2003a) to address system engineering issues in conjunction with RUP methodology for
software engineering. RUP SE adopts all the modeling concepts and perspectives of RUP and is
fully compatible with it. The purpose of RUP SE is to support teams of system engineers as they
determine the black box view of the system (e.g. the system as a whole, that is the services it
provides and the requirements it meets) and specify an optimal white box system design (e.g.
elements or parts that make up the system) that meets all stakeholder needs. In particular, RUP
SE comprises:

1. an architecture framework, which describes the internals of a system (architectural elements)
from multiple viewpoints

2. a set of UML-based artifacts for system architecture modeling

3. a methodology, called use-case flowdown (Murray, 2003c), for deriving requirements for
architectural elements.

4.1. RUP SE System Architecture Modeling Framework

The RUP SE system architecture framework is deployed in two dimensions (Brown & Densmore,
2005), as shown in Table 1. The first dimension defines a set of viewpoints that represent different
areas of concern that must be addressed in the system architecture and design. Analytically, Worker
viewpoint expresses roles and responsibilities of system workers regarding the delivery of system
services. Logical viewpoint concerns the logical decomposition of the system into a coherent set of
UML subsystems that collaborate to provide the desired behavior. Physical viewpoint regards the
physical decomposition of the system and specification of physical components. Information
viewpoint focuses on the information stored and processed by the system. Process viewpoint
examines the threads of control that carry out the computation elements. Lastly, Geometric
viewpoint denotes the spatial relationship between physical components.

In addition to viewpoints, building system architecture requires levels of specification as the
architecture is being developed. There are four model levels defined in RUP SE, consistent to RUP.
As shown in Table 1, these constitute the second dimension of the RUP SE architecture framework.
The Context level treats the entire system as a single entity: a black box. It does not address the
system's internal elements. At the Analysis level, the system's internal elements are defined (white
box approach), describing domain elements at a relatively high level. These elements vary,
depending on the specific viewpoint. For example, in the Logical viewpoint, subsystems are defined
to represent abstract, high-level elements of functionality. Less abstract elements are represented
as sub-subsystems or classes. In the Physical viewpoint, localities are defined to represent the
places in which functionality is distributed. The Design level is where design decisions that will drive
the implementation are captured. The Implementation level concerns decisions about technology

choices for implementation. The intersection of model level rows with the viewpoint columns yields
the different views of a system lifecycle. As shown in Table 1, each view comprises different model
elements. It should be noted that RUP SE does not dictate that all system development efforts
require every viewpoint. The introduced viewpoints are a mechanism to address different
stakeholders’ concerns but also to maintain an integrated, consistent representation of the overall
system design.

 VIEWPOINTS

MODEL
LEVELS Worker Logical Information Physical Process Geometric

Context
UML

Organization
diagram

UML System
Context Diagram

UML Use Case
Diagram

Specification

UML
Enterprise
Data View
Containing
Extended

Product Data

UML
Enterprise

Locality View

UML
Business

Processes
diagram

Domain-
dependent

Views

Analysis
UML Partitioning
of System into

Human Machine

UML System
Logical

Decomposition
Diagram

Product Data
Conceptual

Schema

UML System
Locality View

UML
Process

View

Parameterized
Geometric

Model Layouts

Design UML System
Worker View

UML Software
Component

Design

Product Data
Schema

UUML
Descriptor
Node View

UML
Detailed
Process
View and

Timing
diagrams

MCAD Design

Implementation Hardware and Software Configuration

Table 1: The RUP SE Architecture Framework (Murray, 2003b, Brown & Densmore, 2005)

One could identify a correspondence between RUP SE and Zachman’s viewpoints, while we
consider that Context, Analysis and Design model level could be incorporated within the System
Model row of Zachman’s matrix. The Context model level, in particular, may constitute the bridge to
the upper Zachman row (Business Model) and the Design Model to the lower (Technology Model).

As presented in figure 4, all system model aspects of Zachman framework, except for the
motivation which is not examined within RUP SE, are covered by the corresponding RUP SE
viewpoints. RUP SE defines 18 different views corresponding to the System Model row of Zachman
framework, which could be a bit confusing for the system designer. Furthermore, there is no formal
definition of the models corresponding to each view, although the purpose and functionality of each
of them is clearly defined, as stated in IEEE Std 1471.

Zachman Framework - System Model
People Function Data Time Network

Worker Logical Information Process Geometric Physical
RUP SE

Figure 4: Mapping RUP SE to Zachman Framework

4.2. UML Representation Model

RUP SE employs UML 1.4 to create system artifacts for each view specified in the architecture
framework. Each viewpoint is described using specific collaborating entities through context,
analysis and design levels. The use of UML for both object and relational database modeling is a
well-developed practice that RUP SE makes use of in the information viewpoint, thus no stereotypes
were defined. The process viewpoint is represented as collaborating processes, using standard UML
semantics (for example activity diagrams). The same is applied to geometric viewpoint as well,
described as collaborating components (standard component diagrams).

Figure 5. A system context diagram for a retail system (Murray, 2003b)

Worker viewpoint mainly consists of worker diagrams, deriving from class diagrams containing

worker and machine stereotypes. Logical viewpoint consists of context diagrams, used to depict
logical decomposition of the system as a coherent set of UML subsystems that collaborate to
provide the desired functionality. In UML 1.4 systems and subsystems inherit from classifiers and
packages; there is no UML syntax that captures both the classifier and package aspects of a
subsystem. In RUP and RUP SE, proxy classes are used to represent the classifier semantics. In
RUP SE, systems/subsystems are stereotypes of proxy and package entities, while their distinct
semantics are appropriately defined. System context diagram captures a black box description of
the system (Context level) and is further decomposed to its components in System Logical
Decomposition Diagram (Analysis level). Figure 5 presents as an example a RUP SE system
context diagram for a retail system.

Figure 6. A locality diagram for a retail system (Murray, 2003b)

In the Physical viewpoint, the system is decomposed into elements that host the logical subsystem
services. Locality diagrams are the most abstract expression of this decomposition. They express
where processing occurs without tying the processing locality to a specific geographic location, or
even the realization of the processing capability to specific hardware. Locality refers to proximity of
resources, not necessarily location, which is captured in the design model. The locality diagrams
show the initial partitioning, how the system's physical elements are distributed, and how they are
connected. The term locality is used because locality of processing is often an issue when
considering primarily nonfunctional requirements. Locality is defined as stereotype of UML Node
element. Figure 6 presents a locality diagram that documents an engineering approach to a click-
and-mortar enterprise that has a number of retail stores, central warehouse and a web presence.
The rounded cube icon is used for the representation of the locality.

To support RUP SE, a RUP plug-in is provided for IBM Rational tools. The currently available
plug-in was released in June 2003 and can be used together with RUP v. 2003. It is based on UML
1.4, while in future versions RUP SE will move on to UML 2.0 semantics.

4.3. Use-case flowdown methodology for EIS architecture design

Moving down model levels adds specificity to the models. As you move down the levels, each view
is a more specific decision, resulting in configuration items at the implementation level. It is important
to note that each model level realizes requirements discovered at a higher level. For example,

Physical viewpoint at the design level contains a descriptor node diagram, which shows a physical
design that realizes each locality contained in the system locality diagram.

1 Model an enterprise whitebox as a set of collaborating systems.
2 Model how systems collaborate to realize enterprise services, mission, and so forth.
3 Create a context diagram for the system.
4 Determine actors (i.e., entities that collaborate with the system).
5 Identify I/O entities.
6 Aggregate similar collaborations between the system and its actors into use cases.
7 Add use-case detail: performance, pre- and post-conditions, and so forth.
8 Identify system service and aggregate similar whitebox steps.
9 Add system attributes from your analysis of enterprise needs.

Table 2. Simple flowdown example – System Context Diagram (Murray, 2003c)

The Context level treats the entire system as a single entity, thus the transition from Context to
Analysis level is the process of adding detail in the system model (black box to white box
representation). In going from Analysis to Design, subsystems/classes and localities are transformed
into hardware, software, and worker designs. This is not a direct mapping; since design decisions
have to be made about how the functionality represented in the subsystems and classes will be
allocated. Factored into these design decisions are considerations for supplementary requirements
and distribution represented by the localities. The resulting design must realize all of the
specifications from the Analysis level. In other words, designing the system at the Analysis level,
creates requirements that the Design level must satisfy. Again, going from the Design level to the
Implementation level is a transformation, but this time the mapping is more direct.

Use-case flowdown (Murray, 2003c) is the methodology used for the transition between model
levels. Flowdown can be applied to add detail within a model level or to specify elements at a lower
model level. For example, it can be used to determine system services at the Context level, but
similarly, it can be used at the Analysis level to identify subsystem services and to break subsystems
into further subsystems. Through use-case flowdown requirements may propagate from context to
analysis and to design model levels. Use-case flowdown is applied recursively. Table 2 includes the
steps of a simple flowdown for constructing system context diagram, as the one described in figure
5, and identifying system services.

Flowdown steps may be applied as a joint realization analyzing the way the elements of multiple
viewpoints collaborate in carrying out a service. The generic procedure of joint realization flowdown
for context model level is presented in Table 3.

1 Choose the participating viewpoints. The logical viewpoint is mandatory.

2

For each white box step in realizing a black box service, you must:
- Specify the logical element that executes it.
- Model how the additional viewpoints participate. For example, you might include:

- Physical viewpoint -- Specify hosting locality; if there are two localities, then decompose into
two steps.

- Process viewpoint -- Specify executing process; if there are two processes, then decompose
into two steps.

- Information viewpoint -- Specify which data schema element supports handling of any
information that is used.

Throughout this process, apply the following joint realization rule: If a given logical element white
box step requires more than one element of the other viewpoints, divide that step into further
steps so that each step requires exactly one.

3

Create interaction diagrams for each viewpoint:
- Architecture interaction diagram
- Locality interaction diagrams
- Process interaction diagrams

Table 3. Joint realization procedure (Murray, 2003c)

4.4. Discussion

The plethora of views all referring to the system model, although providing the capability of detail
system description, they are complex to manage. The most important issue is that they should be
kept aligned and consistent with respect to each other. The design activity must ensure that these
views can be related to each other, either directly or indirectly, and to the information system as well.
Thus, in order to ensure consistency and avoid the loss of critical information during system design,
various types of relations between different views (and corresponding models) should be enforced
(e.g. equivalence or refinement relations). To this end, the formal definition of a metamodel
describing views lacking in RUP SE is very important.

RUP SE addresses all issues related to EIS design, utilizing the 6 viewpoints defined.
Furthermore, different levels of detail are supported though model levels. Although the use-case
flowdown methodology is concrete, it is a complex process, which can not be easily automated. The
integration of specific tools for system design is also not mentioned.

UML 1.4 diagrams are employed for the illustration of proposed views. RUP SE framework
defines appropriate stereotypes for the views and a plug-in is provided for UML 1.4. UML 2.0 will be
supported in a later version.

RUP SE is best suited for EIS that are large enough to obtain internal complexity, have
concurrent hardware and software development, obtain architecturally significant deployment issues
and include a redesign of the underlying information technology infrastructure to support evolving
business processes. Usually it is applied in conjunction to RUP.

5. UML4ODP

UML4ODP is a standard developed by ISO (ISO/IEC, 2006), which further refines the ODP systems
by using UML for the expression of ODP system specification in terms of RM-ODP viewpoint

specifications. Using UML concepts, as well as the lightweight extension mechanism supported by
UML, it provides:
- a set of UML 2.0 profiles (one for each RM-ODP viewpoint) and the a way to use these profiles

- a profile for correspondences between viewpoints

- a profile for conformance of implementations to specifications.

UML4ODP is also concerned about the relationships between RM-ODP viewpoint specifications
and model driven architectures such as MDA. UML notation contributes to RM-ODP’s acceptance
and promotes its usage by system designers. The Engineering Profile of UML4ODP expresses the
concepts specified in the RM-ODP engineering viewpoint and conforms to engineering language.

5.1. Engineering Viewpoint metamodel

The basic entities of engineering viewpoint metamodel and their interrelations as defined in
UML4ODP standard are illustrated in figure 7. Most of the entities presented in the figure have been
briefly introduced in section 2.4. The metamodel is defined using standard UML notation.

Figure 7: Part of the RM-ODP Engineering Viewpoint metamodel (ISO/IEC, 2006)

5.2. Engineering Viewpoint UML profile

In the UML4ODP engineering profile, an engineering object is expressed by a UML
InstanceSpecification of component (e.g. an instance of component UML classifier), stereotyped as
NV_Object. Basic engineering objects are particular kinds of engineering objects. Therefore,
stereotype NV_BEO that identifies such objects, inherits from NV_Object. A cluster is expressed by
a UML InstanceSpecification of component, stereotyped as NV_Cluster. This includes a
configuration of basic engineering objects and has bindings to required channels for communication.
Likewise, cluster manager, capsule manager, nucleous, and node are expressed by a UML
InstanceSpecification of component, stereotyped as NV_ClusterManager, NV_CapsuleManager,
NV_Nucleus and NV_Node respectively. A channel is expressed by a UML package, stereotyped as
NV_Channel. It consists of stubs, binders, protocol objects, and possibly interceptors. It is also
expressed by a tag definition of Channel ID for a set of engineering objects (stub, binder, protocol
object and interceptor) comprising a channel. Also, a binder is expressed by a UML
InstanceSpecification of component, stereotyped as NV_Binder. A diagrammatic representation of
part of this UML profile is presented in figure 8.

Figure 8: Part of the Engineering profile of UML4ODP (ISO/IEC, 2006)

All the UML elements corresponding to the engineering language are defined within a UML model,
stereotyped as Engineering_Spec. Such a model contains UML packages that express:

• structure of a node, including nucleus, capsules, capsule managers, clusters, cluster managers,
stubs, binders, protocol objects, interceptors, and basic engineering objects, with UML
component diagram,

• channels, with UML component diagram and packages,

• domains, with UML packages

• interactions among those engineering objects, with UML activity diagrams, state charts and
interaction diagrams.

The stereotype definition also comprises constraints expressed in Object Constraint Language
(OCL) (OMG, 2006). Examples of constraints include:

• Each Stub to which a Basic Engineering Object is related must be part of a Channel to which the
BEO is related

context BEO inv SameChannel:
self.stub->forAll (stub | self.channel->exists (channel | channel = stub.channel))

• For each Channel to which a Basic Engineering Object is related, the Basic Engineering Object
must be related to exactly one Stub that is part of that Channel

context BEO inv OneStubPerChannel:
self.channel->forAll (channel | self.stub->select (stub | stub.channel = channel)->size () = 1)

• The Basic Engineering Objects constituting a Channel's endpoints must each reside in different
Clusters

context Channel inv EndPointsInDifferentClusters:
self.endPoint->forAll (ep1, ep2 | ep1.cluster <> ep2.cluster)

Figure 9: Part of the Engineering profile of UML4ODP (ISO/IEC, 2006)

As an example of the engineering specification, Figure 9 depicts the node structure of the
enterprise server defined for the Templeman Library discussed in Annex B of ISO/IEC, 2006. As
shown, in figure 9, the enterprise server node consists of the node itself, nucleus, capsule, capsule
manager, cluster, cluster manager, basic engineering objects (BEOs), stub, binder, protocol object,
and interceptor. In the enterprise server node configuration, BEOs for all computational objects are
hosted in different clusters. The borrowing cluster is depicted in the figure. Communication is
performed using stub1 (belonging in the channel connecting enterprise server to interaction server)
and stub2 (belonging in the channel connecting enterprise server to enterprise information server).

The UML profiles of the five ODP viewpoints and corresponding metamodels have been defined
using MagicDraw 10.0 and are available from www.rm-odp.net.

5.3. Discussion

It is self-evident that UML4ODP engineering specification fully corresponds to RM-ODP engineering
language. It proposes a well defined metamodel including all entities described in the RM-ODP
engineering viewpoint. Based on this metamodel, a complete UML 2.0 profile is defined comprising
a set of stereotypes, as well as a number of relative constraints written in OCL. The profile
contributes to the wider acceptance and usage of RM-ODP, although it inherits all RM-ODP
expression difficulties since it adopts the same terminology.

UML4ODP, as RM-ODP itself is mainly focused on distributed application implementation based
on the business requirements the applications should fulfill. However, performance requirements, for
example, expected response time for a certain application are not considered. In particular, in the
engineering viewpoint, allocation and replication decisions are not effectively explored, since the
designer may relate engineering objects to nodes but still has no means to explore the performance
of alternative design decisions.

Also, it is not within the scope of UML4ODP to define a formal methodology for EIS architecture
design even though EIS architectures may be represented within engineering viewpoint
specifications. Lastly, the integration of specific design tools (for example for resource allocation or
performance evaluation) is also not mentioned.

6. EIS Engineering Framework

Like RUP SE and UML4ODP Engineering Viewpoint, EIS framework aims at augmenting the system
analysis and design through model development. In particular, the framework provides:
• A metamodel describing different views and the relations between them (EIS metamodel). These

relations are strictly defined using constraints. The defined viewpoints provide the means to a)
describe the network architecture, b) describe application logic in terms of the service
requirements imposed to the network infrastructure and c) perform resource allocation.

• A methodology for EIS engineering based on the proposed views. The methodology consists of
discrete stages performed by the system designer, software tools or a combination of both.
Taking advantage of the formal definition of relations identified between views, system
engineering stages may be invoked as a result of metamodel constraint validation, ensuring that
each stage can be independently performed.

• A UML representation for all defined views. A UML 2.0 profile is defined for this purpose (EIS
engineering profile).

The framework is based on three complementary viewpoints:

Functional Viewpoint is used to describe functional specifications (e.g. system architecture, user
behavior and application requirements). System architecture refers to the architectural model
adopted. In the case of EIS, multi-tiered client-server models are described. Services provided by
each application tier (called modules) are also defined. User behavior is modeled through user
profiles defining the behavior of different user groups and their performance requirements.
Application requirements are described in terms of quality of service (QoS) requirements imposed to

the network infrastructure, e.g. amount of data processed, transferred or stored. Each service is
described in a greater level of detail through the service description sub-view.

Topology Viewpoint facilitates the definition of system access points and the resource allocation
and replication. The term site is used to characterize any location (i.e. a building, an office, etc.). As
such, a site is a composite entity which can be further analyzed into subsites, forming thus a
hierarchical structure. Functional and Topology views are interrelated. Resources (e.g. processes
and files) correspond to services and data described through Functional view and are located into
sites.

Physical Viewpoint refers to the aggregate network. Network nodes are either workstations
allocated to users or server stations running server processes. Topology and Physical views are
interrelated. Both are decomposed to the same hierarchical levels of detail. At the lowest level,
network nodes are related to processes/data replicas.

Figure 10 suggests a mapping of the proposed views to System Model raw of Zachman’s matrix
and RM-ODP Engineering viewpoint (note that Frankel suggestion is adopted).

Zachman
Framework -

System Model
People Function Data Process Network

EIS

Engineering
Framework

Functional not addressed yet Topology Physical

RM-ODP

Engineering
Viewpoint

Logical
Sub-Viewpoint

Deployment
Sub-Viewpoint

Figure 10: Mapping EIS Engineering Viewpoints to Zachman Framework and RM ODP

6.1. EIS Metamodel

Following, the metamodel will be analytically described in respect to each viewpoint.

Functional Viewpoint

For each distributed application operating in the EIS, a discrete Functional View is defined.
Applications are conceived as sets of interacting modules (either server or client), such as
Application Servers, Database Servers, etc. Modules represent a coherent unit of functionality
provided by a system. Each module offers specific services, representing the specific set of tasks
executed when a module is activated in a certain way. Data entities are defined to indicate portions
of data used by application modules. A File Server module is used in each application for managing
data entities. For each data entity, the name, size and specific characteristics (whether it is
executable or data, shareable, updatable and replicable) must be defined.

User behavior is also described in Functional View, through user profiles activating client
modules. Each profile includes user requests, which invoke specific client services. Each user
request acquires a percentage attribute, indicating how often the user activates the specific
application module and a response time attribute indicating the time within which the request must
be served.

Figure 11: Proposed EIS Metamodel

For each module service, the requirements imposed to the distributed platform infrastructure must
be defined. Thus, the portion of data processed, stored or transferred must be estimated. Also other
services participating in its implementation must be identified. This is performed using a set of
predefined operations, sketching service functionality and describing its needs for processing,
storing and transferring (called elementary operations) (Nikolaidou & Anagnostopoulos, 2005). Since
it is difficult for the system designer to estimate the elementary operations describing service
requirements, an operation library, named Operation Dictionary is provided. Complex operations are
added in the dictionary, as request responsible for other service activation, or write/read for data
entity management. Complex operations represent the requirements of composite functionality. All
complex operations are further decomposed into others, elementary or not. The system designer
may add custom complex operations in the Dictionary, to ease the description of a specific
application. Thus, a Service Description sub-view is defined for every service appearing in the
Functional view (see figure 11).

Physical Viewpoint

 Physical view comprises the network infrastructure. The overall network is decomposed to
subnetworks producing thus a hierarchical structure. LANs typically form the lowest level of the

decomposition. Nodes, such as servers and workstations are associated with LANs of the lowest
level. Nodes may include a processing unit and a storage unit.

Topology Viewpoint

 Topology view comprises sites, processes (defined as instances of application modules), data
entity replicas (stored in the corresponding File Server processes) and users (defined as instances
of user profiles) (see figure 11). Two types of sites are supported: composite, composed by others,
and atomic, not further decomposed, constituting therefore the lowest level of site hierarchy. Users,
processes and data replicas are associated with atomic sites. In essence, the hierarchy indicates
where (in which location) each process runs and each user is placed. The site hierarchy should
correspond to the network hierarchy depicted in the Physical view, while processes, files and users
are related to nodes included in Physical view. Each site is characterized of Quality of Service (QoS)
requirements as average and maximum network rate regarding process communication a) within site
limits (avgWithin and maxWithin attributes of the Site entity), b) exiting the site (avgOut and maxOut)
and c) entering the site (avgIn and maxIn). These requirements must be satisfied by throughput
attribute of the corresponding network (see attributes of Network entity in figure 11). Thus, Topology
and Physical views are interrelated. Both views can be either defined by the system designer or
automatically composed by logical and physical configuration tools. The introduction of progressive
site refinement, as well as the mapping of site range onto network range, enables the identification
of dependencies between application configuration and network topology (Nikolaidou &
Anagnostopoulos, 2005).

Consistency between these two views is accomplished using constraints embedded in the
metamodel. Some of the constraints implementing the restrictions imposed between Topology and
Physical views include:

• Network and site hierarchy must be identical, thus corresponding network and site entities must
have corresponding parents. This constraint is used to initiate the respective logical or physical
configuration tool, whenever the site or network hierarchy is changed.

• Topology View may only contain components (e.g. processes) related to entities (e.g. modules)
belonging to existing Functional Views.

• Constraints are used to relate Topology view entities (e.g. a server process) to the respective
Physical view entities (e.g. server node).

It is obvious, that definition of constraints is a powerful mechanism to represent the dependencies
between Topology and Physical view in a similar fashion for both the user (system designer) and
configuration software tools.

6.2. EIS engineering Methodology

EIS engineering framework facilitates the following discrete stages of System Engineering process:

1. System requirement definition

2. Resource (process/data) allocation and replication policy definition

3. Network architecture design

4. Performance evaluation of the proposed solution (prior to implementation); although it is not a
necessity, it is certainly useful.

As resource allocation and network design problems cannot be independently solved, stages (2) and
(3) are repeatedly invoked for different abstraction levels until an acceptable solution is reached
(Nikolaidou & Anagnostopoulos, 2005). Both resource allocation and network architecture problems
are usually supported by automated or semi-automated tools using mathematics, heuristics or a
combination of both. These tools may be repeatedly invoked for different abstraction levels
(Graupner et al., 2001, Nezlek et al., 1999). The system designer may perform or partially perform
these tasks on his own, thus both options must be supported. To evaluate system performance, a
simulation tool as the one described in (Nikolaidou & Anagnostopoulos, 2003) can be used. The
simulator uses as input the overall system model and produces performance results. Since each of
these tools supports its own representation metamodel (for example queuing networks, Petri-nets,
objects), there is a need to properly create and instantiate the “internal” system model prior to
invoking the tool. In order to facilitate model exchangeability, the common metamodel is realized in
XML, which is a standard exchangeable format. The partial transformation of the common
metamodel into tool-specific metamodel must be facilitated before using an existing tool for a
specific configuration stage.

Figure 12: EIS Engineering Framework

The proposed methodology stages along with EIS model consisting of the predefined views are
presented in figure 12. Discrete stages receive/modify information from/to specific system views, as
depicted by the arrows between them. The relation between views and between stages is also
depicted in the figure. Requirement definition is the initial stage and corresponds to the definition of
system architecture and application requirements (Functional view), the system access points

(Topology view) and existing network architecture – if any- (Physical view). A metamodel is provided
for the formal definition of views and the relations between them. Each view is represented by one or
more UML diagrams properly extended, thus a corresponding UML 2.0 profile is defined. Relations
between views must also be described in the UML profile. Specific tool invocation and co-ordination
must also be facilitated either by the profile or the metamodel itself or by both.

The metamodel itself contains relationships and restrictions inflicted between system entities
belonging to the same or different views, which may lead to a specific stage invocation (e.g. if the
network hierarchy in the Physical view is modified, this modification must be depicted in the
Topology view as well). Embedding restrictions within the metamodel facilitates EIS engineering
process management taking into account the overall system model and not a specific system view
corresponding to a discrete stage. Thus, the overall process becomes more effective, since discrete
stage (and corresponding tool) dependencies are depicted within the model as view dependencies
and consequently they are easily identified. Furthermore, it becomes more efficient to integrate
autonomous software tools at different levels of detail, as each of them is independently invoked
without knowing the existence of others.

6.3. EIS Engineering UML 2.0 Profile

In order to provide a standard method to represent system views and help the designer to efficiently
interact with them, a UML 2.0 profile was defined facilitating the following:

1. Representation of EIS metamodel different views. More than one UML 2.0 diagrams may be used
for each view. Thus a specific system entity may participate in more than one diagram
represented through a different UML entity.

2. Linkage between different model views, as represented in the metamodel.

3. Representation of all relationships and restrictions included in the metamodel. This must be
applied between entities participating in the same or different UML diagrams to ensure model
consistency.

4. Definition of system entities, attributes and relationships.

UML 2.0 diagrams are used for the representation of different EIS views. The relative EIS entities
are depicted as UML elements, properly extended to include additional properties and constraints.
This means that appropriate UML 2.0 stereotypes have been defined for each view. Essentially, the
concepts of the metamodel are reflected onto the stereotype attributes and constraints. Attributes
convey the information required to describe EIS metamodel entities (e.g. throughput,
activationFrequency, processingPower etc.). Constraints, which are extensively used within the
profile, represent relationships and restrictions between metamodel entities maintaining model
consistency. Constraints mainly facilitate:

• automatic computation of specific attribute values

• limiting attribute value range

• relating attribute values of specific elements to attribute values of other entities belonging to the
same or other UML diagrams (implementing thus the linkage between different models) and

• model validation in view and overall model level.

Attributes and constraints for each stereotype are analytically introduced in (Nikolaidou et al., 2006).
Following, the UML diagrams employed for each view are briefly presented. Each stereotype has

been named so that the first part of the name indicates the corresponding EIS metamodel entity,
while the second part denotes the UML class it derives from.

Functional View

Functional Views are represented as UML Component diagrams, since the latter are eligible for
representing system functionality at a logical level. As such, modules are defined as stereotypes of
the UML Component element (ServerModuleComponent and ClientModuleComponent). Module
services are also defined as stereotypes of Component (ServiceComponent stereotype) because in
UML, a component has recursive properties, meaning that it may include other components. For the
interactions among services, the InvokeDependency stereotype has been defined. Dependency is
the relationship defined in UML between components. FileServerModuleComponent is the
stereotype defined for the representation of a File Server, which is associated with
DataEntityComponent stereotypes used to depict data.

Figure 13. Functional View example

The UserProfileComponent stereotype has been defined for the representation of user profiles.
Each profile may initiate client module services. Therefore, we have defined the InitiateDependency
stereotype as a specialization again of UML Dependency. As mentioned earlier, the interaction
between user profiles and services plays a determinative role in system engineering, since user
profiles include performance requirements imposed by users. This is indicated by attributes of the
UserProfileComponent and InitiateDependency stereotypes. ActivationProbability attribute, for
example, denotes how often a service is initiated while the user profile is active. Percentage attribute
of the InitiateDependency stereotype indicates how often a specific service is activated by the user
profile, while responseTime denotes the time constraints imposed to the execution of the service in
respect to the user profile.

 Simple Search Decomposition A fraction of Operation Dictionary

Concerning service implementation, it is represented through an activity diagram
(ServiceImplementationActivity stereotype), as it involves flow of operations. Consequently, each
ServiceImplementationActivity maps to a ServiceComponent. Thus, these two stereotypes have the
same attributes. As already mentioned, service implementation consists of a sequence of operation
activations executed upon module activation. Operations are represented through the
OperationAction stereotype. The Operation Dictionary that includes the operations is represented
through communication diagrams as the latter are used to show interactions among elements.

Figure 13 presents a simple application as an example. A user (student) initiates a simple search
in a library OPAC, thus performs a database search through the appropriate CGI in the Web server.
The example involves three modules: Web Client, Web Server and External Database Server,
consisting of services. Web Server module, for example, includes two services, Get Page and
Perform Search. Figure 13 illustrates also the implementation of the Simple Search service as well
as a fraction of the Operation Dictionary. The dotted lines indicate the correspondences among the
external part of Functional View, the implementation of Simple Search and the Operation Dictionary
fraction.

Physical View

UML deployment diagrams are typically used to represent network architectures (Kaehkipuro,
2001). As such, the elements that denote devices are represented through stereotypes of Device
(ServerDevice, WorkstationDevice, ProcessUnitDevice, StorageUnitDevice stereotypes), which is a
specialization of the UML Node element, commonly used in deployment diagrams.

Figure 14a: Topology View Example Figure 14b:Physical View Example

As each network comprises sub-networks, the most suitable UML element for its representation is
the Package element, which is used for grouping purposes. Thus, we have created the
NetworkPackage stereotype from the UML Package element. These stereotypes may be connected
to each other through the membership relation introduced in UML 2.0. Its notation is presented in the
example of figure 14b. This example illustrates part of the University of Athens Library network.

 Stereotype Notation Constraints

Network
Package

1. The value of attribute type is either “atomic” or “composite”.
2. Composite NetworkPackages contain only other NetworkPackages while simple

NetworkPackages correspond to simple LANs and contain only ServerDevices or
WorkstationDevices.

3. Each NetworkPackage corresponds to a single SitePackage in the Topology View.
4. Corresponding Network and Site Packages are of the same type.
5. Corresponding Network and SitePackages have corresponding parents.

Server
Device

6. Each ServerDevice relates to a set of ServerProcessComponents defined in the Topology
View.

Workstation
Device

7. Each WorkstationDevice relates to one userProfileComponent defined in the Topology
View.

8. Each WorkstationDevice relates to all ClientProcessComponents defined in the Topology
View that are invoked by the userProfileComponent assigned to it.

9. The items value is the same as the instances value of the corresponding
userProfileComponent in the Topology View.

ProcessUnit
Device

10. Each ProcessUnitDevice relates to an existing ServerDevice or WorkstationDevice.

Ph
ys

ic
al

 V
ie

w

StorageUnit
Device

11. Each StorageUnitDevice relates to an existing ServerDevice or WorkstationDevice.
12. Each StorageUnitDevice hosts data replicas defined in the Topology View.

SitePackage

1. The value of attribute type must be either “atomic” or “composite”.
2. Composite SitePackages contain only other SitePackages while simple SitePackages

contain only ServerProcessComponents, ClientProcessComponents, and
UserProfileComponents.

3. Each SitePackage corresponds to a single NetworkPackage in the Physical View.
4. Corresponding Network and Site Packages have corresponding parents.
5. max and avg attributes are automatically computed based on traffic flow within, in and out

of the site.

Server
Process
Component

6. application corresponds to one Functional View.
7. The module attribute indicates an existing ServerModulePackage in the selected

Functional View.
8. The value of the name attribute is produced as a concatenation of processId and module

attributes.
9. Each ServerProcessComponent relates to a ServerDevice in the Physical View.
10. NetReq attributes are automatically computed based on traffic flow to the

ServerProcessComponent.
11. ProcReq attributes are automatically computed based on the processing requirements of

the process.

DataReplica
Component

12. The names and other attribute values are extrapolated by corresponding
DataEntityComponent attributes of relative Functional View.

13. DataReplicaComponent is related to an existing StorageUnitDevice of Physical View.

To
po

lo
gy

 V
ie

w

Invoke
Dependency

14. Invoke connects only ClientProcessComponents or ServerProcessComponents to
ServerProcessComponents.

15. Every Invoke relationship is included in the corresponding Functional View.

Table 4. Stereotypes and Constraints for Physical and Topology Viewpoints

Topology View

Topology view is based on UML Component diagrams. All entities included in Topology view are
represented through the corresponding stereotypes of Component (ServerProcessComponent,
ClientProcessComponent and UserProfileComponent stereotype). Data replicas are also
represented trough a stereotype of Component (DataReplicaComponent stereotype). Since each
site comprises sub-sites, the most suitable UML element for its representation is the Package
element (as with network in Physical view) Therefore, we have defined the stereotype SitePackage
as a specialization of Package. Interaction among process instances, as well as between user
profile and client process instances, are represented through the InvokeDependency and
InitiateDependency stereotypes respectively, with different constraints though, defined within the
context of Topology view. Sites relate to each other through the membership relationship. The
Topology view corresponding to the Physical view of figure 14a is presented in the figure 14b.

As already stated, in order to represent relationships and restrictions between Physical and
Topology views of the EIS metamodel and relate the corresponding stereotypes constraints are
defined. An excerpt of the constraints defined in both views to ensure the consistency between them
is included in Table 4.

Constraints 3-5 of the network package and 3-4 of site package ensure that site hierarchy of the
Topology view should correspond to the network hierarchy depicted in the Physical view. Composite
sites correspond to composite networks, while atomic sites correspond to atomic networks
representing simple LANS. Max and avg netReq attributes of Site Package are automatically
computed based on traffic flow within, in and out of the site (constraint 5 in Topology view).
Instances of processes/user profiles (constraints 6-11 in Physical view and constraint 9 in Topology
view) and data replicas (constraint 12 in Physical views and 13 in Topology view) located in atomic
sites are allocated to nodes (servers or workstations) and storage devices included in the
corresponding LAN of Physical view. Note that constraints, as for example those relating data
replicas to storage devices, are applied in both views to avoid inconsistencies. Constraints are
checked every time the system designer makes a change in either Topology or Physical view or a
design tool is invoked. Changes may be either prohibited or propagated.

The proposed UML 2.0 profile has been implemented in Rational Software Modeler in the form of
a plug-in (EIS plug-in). EIS plug-in, apart from the definition of the stereotypes and constraints, it
also provides additional functionality that first, augments usability for the system designer and
second, performs validation of the constraints defined within as well as between viewpoints. Through
this plug-in, external tools can be invoked either by the system designer or automatically to enforce
consistency between views.

6.4. Discussion

In EIS engineering framework, a small number of viewpoints is proposed. The viewpoints as well as
their interrelationships are formally defined through a metamodel. Based on this metamodel,
consistency between views is ensured through the definition of constraints relating model entities,
belonging to the same (view consistency) or different (inter-view consistency) views. The small
number of views enables the easy manipulation of them.

EIS framework strictly focuses on system design issues, as resource allocation and architecture
specification. The Function column of the Zachman’s matrix is regarded as the initial view the

system designer should consider, corresponding to system architecture and functionality (Functional
viewpoint). Data and people columns do not fall into the scope of EIS engineering framework as the
latter deals only with data allocation and replication policies rather than data specification, while user
profiles are used mainly to indicate user behavior and performance requirements affecting system
modules. All views are supported by UML 2.0 stereotypes, typically defined in a UML profile.
Constraints are used extensively to maintain consistency and depict all the relations defined
between system entities included in the metamodel.

The methodology proposed addresses all issues related to EIS design, utilizing the viewpoints
defined, through four discrete stages (Requirement Definition, Resource Allocation, Network Design
and Performance Evaluation). The last three stages may be performed by the system designer or
specialized tools. Moreover, EIS framework supports model exchangeability through the
transformation of the common metamodel to internal tool-specific metamodels.

7. Future Trends

Model-based software engineering promotes the development of applications based on consistent
models representing both application requirements and the respective implementation. Model-based
system engineering, defined in a similar fashion, is based on the assumption that a central system
model can be defined covering all aspects related to system analysis and design. In both cases,
UML is the dominating choice for representation purposes. An important issue though is the
provision of an integrated model for both software and system engineering and the relative
methodologies. There are already endeavors initiated, such as RUP framework, working towards
this direction. It is important that not only common principles are introduced, but also a formal
identification and definition of dependencies and transformations is established.

 Agile systems, as described by Dove (2005), are an imperative for modern enterprises operating
in highly turbulent environments, since such systems are able to adjust to both expected and
unpredicted changes in a timely and cost-effective manner. Model driven architectures, as MDA, are
working towards obtaining system agility, which can be strengthened by a common model-based
approach to study all aspects regarding enterprise information system design and development.
Existing enterprise architecture frameworks, as those presented in this chapter, should be enhanced
to serve agility.

8. Conclusions

This chapter discussed model-driven engineering of enterprise information systems and the principle
requirements for applying it to EIS analysis and design. Three different frameworks, namely RUP
SE, UML4ODP and EIS engineering framework, were studied in respect to these requirements. The
frameworks have different origin, and they target at different system engineering aspects. However,
they all adopt UML language for model representation and contribute to system analysis and design
process. The characteristics of each framework in respect to the system engineering requirements
they address are summarized in Table 5.

 RUP-SE UML4ODP EIS

Central system model
System Engineering
Design Issues

Methodology

UML representation
Model exchangeability –
Tool Integration

Table 5. Characteristics of RUP-SE, UML4ODP and EIS Frameworks in respect to system
engineering requirements

References

Boer F.S., Bonsangue m.M., Jacob J., Stam A., Torre L. 2004. A Logical Viewpoint in Architectures.
Proceedings of IEEE EDOC 2004.

Brown Dave & Densmore Jim 2005. The new, improved RUP SE architecture framework. IBM
Rational Edge.

Brown Allan 2004. Model driven architecture: Principles and practice. Software System Modeling, 3,
314–327.

Dijkman R.M., Quartel D.A.C., Pires L.F., Sinderen M.J. 2003. An Approach to Relate Viewpoints
and Modeling Languages. Proceedings of IEEE EDOC 2003.

Dove Rick 2005. Fundamental Principles for Agile Systems Engineering. Conference on Systems
Engineering Research (CSER), Stevens Institute of Technology, Hoboken, NJ, March 2005.

Frankel D. 2003. Applying EDOC and MDA to the RM-ODP Engineering and Technology
Viewpoints: An Architectural Perspective. INTAP - David Frankel Consulting.

Frankel, D., Harmon P., & Mukerji J. 2003. The Zachman Framework and the OMG’s Model Driven
Architecture. Business Porcess Trends.

Goethals F, Lemahieu W, Snoeck M, Vandenbulcke J. 2006. An overview of enterprise architecture
framework deliverables. In Banda RKJ (ed) Enterprise Architecture-An Introduction, ICFAI University
Press.

Gomaa H., Menasce D., Kerschberg L. 1996. A Software Architectural Design Method for Large-
scale Distributed Information Systems. Distributed System Engineering Journal, 3(3), IOP.

Graupner S., Kotov V., Trinks H. 2001. A Framework for Analyzing and Organizing Complex
Systems, Proceedings of the 7th International Conference on Engineering Complex Computer
Systems, IEEE Computer Press.

Legend:

 not supported

 supported

 fully supported

Greefhorst D., Koning H. & Hans van Vliet 2006. The Many Faces of Architectural Descriptions.
Information Systems Frontiers, 8(2), 103-113.

Hilliard Rich 2001. IEEE Std 1471 and Beyond. Position Paper for SEI’s First Architecture
Representation Workshop, January 2001.

IEEE Std 1471. IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems. 2000.

ISO/IEC, 1998. Information Technology – Open Distributed Processing – Part 1 – Overview –
ISO/IEC 10746-1 | ITU-T Recommendation X.901.

ISO/IEC, 2006. Information Technology – Open Distributed Processing – Use of UML for ODP
system specifications. ITU-T Recommendation X.906.

Kaehkipuro P. 2001. UML-Based Performance Modeling Framework for Component-Based
Distributed Systems. Lecture Notes in Computer Science 2047, Performance Engineering, Springer-
Verlag.

Leist S. & Zellner G. (2006). Evaluation of Current Architecture Frameworks. Proceedings of SAC’06,
April, 23-27, 2006, Dijon, France.

Murray Cantor 2003a. Rational Unified Process for Systems Engineering - Part 1: Introducing RUP
SE Version 2.0, Rational Edge.

Murray Cantor 2003b. Rational Unified Process for Systems Engineering – Part II: System
Architecture. Rational Edge.

Murray Cantor 2003c. Rational Unified Process for Systems Engineering – Part III: Requirements
Analysis and Design. Rational Edge.

Nezlek G.S., Hemant K.J., Nazareth D.L. 1999. An Integrated Approach to Enterprise Computing
Architectures. Communications of the ACM, 42(11), ACM Press.

Nikolaidou M. & Anagnostopoulos D. 2003. A Distributed System Simulation Modeling Approach.
Simulation Practice and Theory Journal, 11(4), Elsevier Press.

Nikolaidou M., Anagnostopoulos D. 2005. A Systematic Approach for Configuring Web-Based
Information Systems. Distributed and Parallel Database Journal, 17, 267-290, Springer Science.

Nikolaidou M., Alexopoulou N., Tsadimas A., Dais A., Anagnostopoulos D. (2006). Extending UML
2.0 to Augment Control over Enterprise Information System Engineering Process. International
Conference on Software Engineering Advances (ICSEA 2006), Tahiti, French Polynesia, October 29
- November 1, 2006.

Oliver W. David, Kelliher P. Timothy & Keegan G. James 1997. Engineering Complex Systems with
Models and Objects. INCOSE.

OMG Inc, 2006. Object Constraint Language. Version 2.0, 6/5/2001.

OMG Inc, 2007. Unified Modeling Language: Superstructure. Version 2.1.1, 3/2/2007.

Savino-Vázquez N.N. et al., 2000. Predicting the Behavior of three-tiered applications: dealing with
distributed-object technology and databases. Performance Evaluation, 39(1-4), Elsevier Press.

Serain Daniel (1999). Middleware. Practitioner Series Springer-Verlag.

Sowa F. J. & Zachman A. J. 1992. Extending and formalizing the Framework for Information
Systems Architecture. IBM Systems Journal, 38(2&3), 590 – 616.

Zachman A. J. 1999. A Framework for Information Systems Architecture. IBM Systems Journal,
31(3), 445 –470.

Terms and Definitions

System Engineering: The process of analyzing system requirements, designing the desired
architecture of a system and exploring performance requirements, ensuring, thus, that all system
components are identified and properly allocated and that system resources can provide the desired
performance.

Model-based System Engineering: A system engineering method providing a central system
model (tool-independent) that captures system requirements and design decisions that fulfill them at
different levels of abstraction. It enables integration of system models supported by autonomous
design tools and interoperability between them without interfering with their internal implementation.

View: A rrepresentations of the whole system from the perspective of a related set of concerns.

Viewpoint: The perspective from which a view is taken. It serves a specific category of system
stakeholders.

System Model: A set of entities and their relationships describing a system.

System Model Representation: A graphical notation for the illustration of a system model.

Central System Model: A technology-neutral multi-level model used as a basis for model-based
system-engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

