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Abstract—Despite the broad use of real-time and faster-than-real-time simulation (FRTS), especially for training and control 

purposes, formalisms focusing on experiment planning and execution have not yet been established. Having previously introduced a 
conceptual methodology for conducting FRTS experiments, we adopt a structured-analysis-based specification that is widely used in 
the real-time system domain and propose a consistent specification for developing FRTS systems. Orientation is towards the activities 
(processes) that have to be carried out and both data and event flows transferred from external agents to processes and vice versa, as 
well as inter-process flows. A common specification is presented for developing FRTS systems for diverse application domains. Due to 
the hard real-time constraints, timing issues related to the execution of simulation activities are also analytically examined. A case 
study where FRTS is applied on a real-time multi-teller system provides an in-depth analysis of the specification introduced. 
 

Index Terms— Simulation Methodology, Faster-than-Real-Time Simulation, Software Engineering, Structured Analysis 
 

INTRODUCTION I. 

 

Faster-than-real-time simulation (FRTS) aims at studying the behavior of real-world systems in the near future [1]. In this type 

of simulation, simulation runs concurrently with the real world system and advancement of simulation time occurs faster than 

real world time. Simulation model interacts with the real world system during experimentation in order to test model validity and 

adjust to system changes. Although constructing models for FRTS is a challenging task, this issue has already been resolved [2], 

[3]. FRTS experimentation deals with the requirements imposed by the concurrent execution of the real world system and 

corresponding simulation model, thus it should be further explored. Real time systems often have hard real-time requirements 

for interacting with a human operator or other agents [2], consequently imposed to FRTS model execution [4]. Current FRTS 

research directions involve the distribution of the experiment over a network of workstations, intelligent control [5] and fault 

diagnosis [6], interactive dynamic simulation [7] and modeling formalisms [8]. 

In [9] a conceptual methodology for FRTS was proposed, aiming at providing a consistent framework for conducting FRTS 

experiments. The following simulation phases have been identified: modeling, experimentation and remodeling. 

Experimentation phase was emphasizing, studying the complexity and hard real-time requirements imposed by the concurrent 

execution and synchronization of the real world system and the simulation model. Experimentation phase is usually supported 

by Simulators especially built for a specific experiment. FRTS experimentation phase can be viewed as a real-time system itself, 
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thus is should be modeled and thoroughly studied, prior the implementation of the FRT Simulator supporting it. 

Structured analysis and real-time system specification techniques [10], [11], have been used to typically describe FRTS 

experimentation phase. A specification of simulation activities and information exchange among them was provided, while 

emphasis was given in activity control and experimental state transition. 

Considering timing issues and the nature of the tasks to be accomplished, experimentation and remodeling complexity is 

significant. This paper adopts the simulation-activity scheme of the methodology discussed in [9], and provides a consistent 

specification of FRTS, resolving simulation control, data exchange and timing issues, as no such approach has so far appeared in 

the literature. To accomplish this objective, we consider FRTS as a real-time system and use a respective specification method to 

provide the required process/data-oriented specification of FRTS. 

The paper contribution is thus summarized in the following:  

(1) specification of a consistent methodology that that can be widely applied for performing FRTS experiments, emphasizing 

simulation activity control, experiment states and state transition, 

(2) specification of data exchange among simulation components, 

(3) resolving timing issues of experimentation and remodeling activities. 

Structured-analysis specification methods and diagramming techniques are widely adopted for formally describing real-time 

systems [11]. Not discussing in terms of specific applications, common specifications are established in this paper for 

developing FRTS systems in diverse application domains. 

A brief introduction to the FRTS conceptual methodology emphasizing experimentation phase in presented in section 2. In 

section 3, we discuss the structured-analysis specification method used for real-time systems and then present the process/data-

oriented specification of FRTS. This extends to the critical (in terms of the real-time constraints) simulation activities, that is, 

monitoring, auditing and remodeling. A simulation example presenting a FRTS application on a multi-teller system modeled as a 

GI/G/s queue is included in section 4, while conclusions reside in section 5. 

 

II. FRTS METHODOLOGY 

In [9] a conceptual methodology for FRTS was described, aiming at providing a framework for conducting experiments 

dealing with complexity and hard real-time requirements. The following simulation phases have been identified: modeling, 

experimentation and remodeling. In order to conduct FRTS experiments, it is assumed that a model of the real-world system in 

the proper level of detail can be constructed. During experimentation, both the system and the model evolve concurrently and 

are put under monitoring. Data depicting their consequent states are obtained and stored after predetermined, real-time intervals 
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of equal length, called auditing intervals. Experimentation comprises monitoring, that is, obtaining and storing system and the 

model data during the auditing interval, and auditing, that is, comparing them at the end of every auditing interval. During 

auditing the following conditions are examining a) if the system has been modified during the last auditing interval (system 

reformations), b) if the model no longer provides a valid representation of the system (deviations). In both cases, remodeling is 

invoked. In case simulation results (predictions for the near future) are considered to be valid, an additional phase, called plan 

scheduling, is invoked to take advantage of them [9]. Evidently, if conditions (a) or (b) are fulfilled, remodeling is invoked 

without examining condition (c) (figure 1). 
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Fig. 1.  Auditing control flow. 

The system and the model are compared based on their corresponding states. State is a set of attributes describing the model 

and the system at specific time instances. Attributes are defined as Monitoring Variables and describe the system structure, 

operation parameters and input data [9]. Note that monitoring variables do not follow the single-valued definition of program 

variables. Auditing examines monitoring variables corresponding to the same real time points (i.e. the current system state and 

simulation predictions for this point) and concludes for the validity of the model. 

Modeling issues and formalisms for system reformations have been thoroughly studied either at the methodological level [3], 

[12], or for domain/oriented approaches, such as computer networks [13]. To deal with system reformations or system/model 

deviations, remodeling adapts the model to the current system state. This should be accomplished without terminating the real 

time experiment, that is, without performing recompilation. When model modifications are completed, experimentation resumes. 

Remodeling can also be invoked when deviations (expressed through appropriate statistical measures) are indicated between the 

system and the model due to the stochastic nature of simulation, even when system parameters/components have not been 

modified. Both system reformations (e.g. addition of a network node) and system/model deviations (e.g. significant deviation of 
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network throughput) are modeled using monitoring variables. 

To accomplish FRTS experimentation phase should be emphasized. Both system and model evolution in real time is depicted 

in figure 2. Real time points are noted as ti. The states of the system and the model at point ti are noted as Ri and Si, respectively. 

When the model predicts the system state at tn (simulation time equal to tn) at real time point tx, we use the notation Sim(tx)= tn. 

Auditing is performed at tn-1, tn, tn+1 and, thus, compares states Sx and Rn at time point tn. 
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Fig. 2.  Experimentation in FRTS 

If model validity is consecutively ensured within a number of consecutive auditing intervals [tn-2, tn-1], [tn-1, tn], …, it is 

likely that simulation predictions are also valid. Thus, plan scheduling is invoked to take advantage of predictions and 

experimentation resumes. 

Prior implementation, an FRTS experiment designer should have the opportunity to study timing constraints and activity 

duration dependencies, to decide the conditions under which FRTS is feasible and the cost of experimentation. Since FRTS is a 

“real time” system itself, there is a need to establish a formal framework of the specification of FRTS providing the required 

degree of precision regarding timing issues. The whole idea is to have a formalized builded FRT Simulator to provide us the 

computationals limits in order to be able to choose a valid auditing interval. 

 

III. FRTS SPECIFICATION 

A. Structured-Analysis Specification Method 

Structured-analysis specification is widely used in real-time systems development [11]. We provide an overview of the major 

concepts and features of the specification method, which includes the following [11]: a) statement of purpose, b) environmental 

model (context diagram, event list), c) behavioral model (data flow diagrams, state transition diagrams, entity relationship 

diagrams) and d) the supporting textual specifications.  
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Data flow diagrams (DFD) model the basic system functionality in terms of the widely used constructs: data transformations 

(processes), data flows and event flows, data stores and terminators, as introduced by DeMarco and Yourdon [14], [15]. 

Diagramming techniques have been extended to support the real-time functionality. Control processes are used to control the 

invocation of data transformations, as discussed by Ward and Mellon [16], [17]. This is accomplished by event flows, depicted 

as dotted lines. There are two ways for process invocation: E/D denotes that a process is enabled and then disabled by the 

controlling process, while T denotes that a process is triggered and, when completed, it may return a corresponding signal. In the 

latter case, process execution duration is not determined by the controlling process. State transition diagrams (STD) show the 

dynamics of a system, i.e. how a system behaves over time and what causes the system to change its behaviour, in terms of 

states, transitions, conditions and actions. Finally, the supporting project dictionary [14], [15] holds the specification of all 

diagram components. In a widely-used notation for the specification of data flows [18], data composition is denoted by ‘+’, 

multiple data elements by ‘{ }’, choice of data elements by ‘[ | ]’ and optional data elements by ‘(  )’. The term ‘elemental’ 

denotes that data cannot be broken down any further. To maintain independence of specific application domains, we do not 

discuss E-R specification. 

B. FRTS Activities 

We use the above structured-analysis method to provide a process/data-oriented specification of FRTS. In the context diagram 

depicted in figure 3, the FRTS system is represented as a data transformation process (i.e. simulation activity). The event list 

includes the start/ stop experiment event flow. System and model terminators represent the actual system and the model and send 

raw system data and raw model data, respectively, to the FRTS system. When the model deviates from the current system state, 

remodeling is invoked and a new model is constructed to replace the old one. User terminator has the ability to start/stop the 

experiment. Experiment specifications consist of monitoring variable, auditing interval, state interval, prediction interval and 

model initialisation specifications, which are presented in table 1. 
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Fig. 3.  FRTS context diagram. 

 

TABLE I 
EXTERNAL DATA FLOW SPECIFICATION 

experiment specifications = monitoring variables specification +  
auditing interval +  
state interval +  
prediction interval +  
model initialisation parameters 

 monitoring variables specification = {monitoring variable specification} 
  monitoring variable specification = name +  

deviation range +  
state monitoring indication 

   name = elemental 
   deviation range = elemental  /* determined for each experiment - real */ 
   state monitoring indication = [on | off] /* indicates if used in state monitoring */ 
 auditing interval = elemental 
 state interval = elemental 
 prediction interval = elemental 
 model initialisation parameters = {model initialisation parameter} 
  model initialisation parameter = model class +  

model parameters 
   model class = elemental 
   model parameters = {model parameter} 
    model parameter = [model initialisation parameters | value ] 
     value = elemental 
raw model data = elemental  /* model output data set */ 
raw system data = elemental  /* system output data set */ 
new model = elemental  /* new composite model */ 

 

The FRTS system (figure 3) is further decomposed in figure 4, where all FRTS functionality is illustrated. All the data flows 

shown in figure 3 are also depicted in figure 4, which is our main DFD. Control Process is responsible for controlling the 

experiment by examining event flows, which are set to either true or false, and invoking the corresponding activities. Process 

Control enables and disables Get User Parameters, Initialise Model, Monitor Model, Monitor System, Audit and Remodel. 

Model is initialized and executed according to experiment specifications. Monitoring of the model and the system is performed 

concurrently, and both types of raw data are collected. Data is then processed and respectively stored into Model Data and 

System Data stores. Monitoring is executed for a time period equal to auditing interval, such as [tn-1, tn] in figure 2. Model 
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execution is then paused and Audit is invoked. Monitor Model is disabled during Audit and Remodel. Monitor System, though, is 

never terminated, so that system changes can always be perceived. System and model monitoring variables are calculated and 

then stored. Audit determines if the model still provides a valid representation of the system. If invalid, Remodel is invoked. The 

corresponding data flow specifications are presented in table 2. 
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Fig. 4.  FRTS activities, data and event flows. 

 

TABLE II 
FRTS DATA FLOW SPECIFICATIONS 

time intervals (1) =  auditing interval +  
           state interval 
time intervals (2) =  auditing interval +  
           prediction interval 
model monitoring variables = {model monitoring variable} 
model monitoring variable =  monitoring variable name +  
              output values 
  monitoring variable name = elemental 
  output values = {value}  /* stemming from multiple replications */ 
   value = elemental   
system monitoring variables = {system monitoring variable} 
system monitoring variable =  monitoring variable name +  
              output value 
  monitoring variable name = elemental 
  output value = elemental   
auditing specification =  monitoring variables specification +  
            auditing interval +  
            state interval +  
            prediction interval 
current state = system monitoring variables  
remodeling indication = {indication type + variable names} 
 indication type = [´structure´ | ´operation parameter´ | ´input data´ | ´deviation´] 
  variable names = {name} 
  name = elemental 

Assume that the experiment is initiated (or re-initiated, after remodeling) at tn-1 and that we want to reach predictions for ty 
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within the current auditing interval [tn-1, tn] (figure 2). Thus, at tn-1, Sim(tn-1)= tn-1. To achieve faster-than-real-time 

simulation, there has to be a point tk, where Sim(tk)= ty,  tk<tn. In this way, we define that the required prediction interval = ty – 

tn-1. Evidently, prediction interval > auditing interval. As discussed in [9], we usually choose a value p so that: 

 

prediction interval = p⋅ auditing interval,  p ∈ N* 

 

Model validation is performed through comparing the corresponding system and model states, described via monitoring 

variables, which are commonly defined for the model and the system. We emphasize the description of the corresponding data 

flows. Suppose that MV
1
, MV

2
, … MV

k
 are the monitoring variables. Each variable MV

i
 has two properties MV

i
.r and MV

i
.s for 

the system and the model, respectively. MV
i
.r is calculated as a function of either a single-valued variate (performance measure 

or system parameter) or multiple system observations Ri1, Ri2, …, and in this case MV
i
.r = fi (Ri1, Ri2, …). MV

i
.s can also be 

calculated as a function of either a single-valued variate or an output stochastic process. As n replications are executed, MV
i
.s is 

calculated as a function of n stochastic processes. In FRTS, the number of observations per run is not the same, as simulation 

ends at a specific simulation time point, without considering the current status of system entities. Replication results are thus 

extracted from k1, k2, …, kn observations. The output process of each replication produces a single statistical sample Sij = 

g(Sij1, Sij2, …, Sijkj). 

When comparing variables, we either use one or n values for model monitoring variables. In the first case, MV
i
.s = sum(Si1, 

Si2, …, Sin )/n. In the latter, MV
i
.s is multi-valued. We describe monitoring variable specifications, which is part of experiment 

specifications forwarded to the FRTS system, when a comparison is performed with a single sample from the system and the 

model. Monitoring variable specifications, described in table 1, includes its name, a deviation range, which is determined for 

each specific experiment, and a state monitoring indication. State monitoring is described in the remainder of the paper. 

Deviation range (dr) supports a basic-inspection comparison between system and model data, that is, no deviation is 

encountered for MV
i
 when: 

 

MV
i
 .s ∈ [MV

i
.r ⋅ (1- dr), MV

i
 .r ⋅ (1+ dr)] 

 

The structure of monitoring variables – enabling realizing this comparison – is constructed combining MV
i
.r and MV

i
.s with 

the respective MV
i
 specification (table 1), where name, state monitoring indication (smi) and deviation range(dr) are user-

specified. The structure of MV
i
 is the following: 
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MV
i
 = (name, r, s, dr, smi) 

 

In the following paragraphs, we discuss the main FRTS activities, that is, Monitor Model, Monitor System, Audit and 

Remodel. 

C. Monitoring 

System monitoring (figure 5) collects raw system data and calculates system monitoring variables. When Process Control 

invokes Monitor System, monitoring of the real-time clock is also triggered. System monitoring never terminates, but is re-

initiated whenever auditing is invoked (e.g. at tn-1, tn). Assume that function realtime() returns the current real-time point and 

that monitoring is re-initiated at tn. Monitor Real Time Clock continues while: 

 

realtime() – tn < auditing interval - TProc 

 

Then, Control System Monitoring activates Determine System State, which processes raw system data and calculates the 

values of system monitoring variables consuming TProc, which is considered as a constant throughout the experiment. 
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Fig. 5. Monitor System  
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In this way, handling deviations between the model and the system is performed after the auditing interval. This cannot be 

effective when critical, such as structural, modifications have occurred, where remodeling must be performed to restore 

consistency between the model and the system. In state monitoring, a limited set of system data is collected within a smaller 

interval (state interval) than the auditing interval, that is, while:  

 

realtime() – tstate_init < state interval 

 

where tstate_init is initially set to tn.Then, state monitoring completed signal is emitted, tstate_init is set to realtime() and 

state monitoring is re-initiated. State monitoring is efficient, as less computationally intensive, due to the amount of state 

monitoring data and the rather trivial comparisons it requires, so that TProc = 0 for calculating state monitoring variables. State 

monitoring variables are examined within Audit (state auditing activity) with no time overhead, as model execution is not 

paused. State interval duration is usually chosen so that: 

 

auditing interval = g⋅ state interval, g ∈ N* 

 

Model monitoring (figure 6) is executed while the model is running, that is, while predictions are reached for the 

predetermined prediction interval within the given time frame (i.e. auditing interval). The predicted time point at any real time 

point is denoted by the simulation clock (figure 2). Assume that auditing is invoked at point tn. Monitoring is initiated at tx, after 

auditing and remodeling are completed, and simulation clock is set to the starting point of the current auditing interval, thus: 

 

tx – tn = TAudit + TRemodel

 

Sim(tx)= tn

 

Monitor Simulation Clock duration is equal to the model execution time (TExec): 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=−

−−−

=

interval  predictionnt)y Sim(twhere,xtyt

ProcT RemodelT  AuditT inteval  auditing

  minExecT  

Then, Control Model Monitoring activates Determine Model State, which sends request data to the model (i.e. invokes the 
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corresponding method of the model object) and obtains raw model data. Data is then processed to calculate monitoring 

variables, consuming TProc. Then, model monitoring terminates. 
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Fig. 6. Monitor Model 

D. Auditing 

Audit (figure 7) is the key experimentation activity determining model validity through comparing the corresponding system 

and model monitoring variables. Auditing is activated either after a state interval or an auditing interval. Two distinct cases are 

thus considered: state auditing and standard auditing. Throughout this paper, the term auditing refers to standard auditing. State 

auditing is explicitly referenced. 

1. State auditing: Check System inspects the current system state to determine if reformations have occurred. In this case, the 

model no longer provides a valid representation and the relevant remodeling indication is produced. Auditing Control then 

notifies Process Control, so that remodeling is invoked. Only variables designated as state monitoring variables (table 1) 

are used in this process. As each variable may potentially cause remodeling, a potential state auditing algorithm (according 

to figure 7) is given in the following. This algorithm directly invokes remodeling to modify the model with minimum time 

overhead, without exhaustively examining all remodeling conditions. 

 

for (i=1; i<=k; i++) 

if (MV
i
.smi == on) && (deviates (MV

i
.r, MV

i
.s, MV

i
.dr)) { 

build_remodel_indication(indication, MV
i
.r, MV

i
.s, MV

i
.name); 
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store(indication);  

return(modified); 

} 

return(not_modified); 

where  
⎩
⎨
⎧ +⋅≥⋅≤

=
otherwise0,

 dr)(1.riMV.siMV or dr)-(1.riMV.siMV1,
.dr)iMV.s,iMV.r,iVdeviates(M
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Fig. 7. Audit 

2. Standard auditing: System modifications, involving its input data, operation parameters and structure, as well as deviations 

between the system and the model are examined to determine model validity. If remodeling is required, remodeling 

indication is produced. Compare States examines the corresponding monitoring variables, and informs Auditing Control. 

All monitoring variables are used in this process. Considering that all comparisons may potentially cause remodeling, an 

algorithm determining whether remodeling should be invoked on the basis of the k monitoring variables is given in the 

following. This algorithm examines all potential conditions before invoking remodeling so that a complete indication is 

formed. 

 

for (i=1;  i<=k;  i++) 
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if (deviates (MVi.r, MVi.s, MVi.dr))  

build_remodel_indication(indication, MVi.r, MVi.s, MVi.name); 

 

if (!empty(indication)){ 

store(indication) 

return(invalid); 

} 

else  

return(valid); 

 

 

E. Remodelling 

Remodel (figure 8) is invoked to handle system reformations and deviations between the system and the model. Especially for 

structural changes, accomplishing remodeling in real time is possible when model components are preconstructed and reside in 

model libraries, so that recompilation can be avoided [13]. 

 

Remodeling
Control

7.1

remodeling 
completed

Build Model
7.3

Model Library

T

model built

System Data

current state

Model

Determine 
Updated
Model

7.2

T

done

new model 
specification

object 
specifications

model  objects

New Model 
Specification

new model 
specification

new model 

T

Remodeling 
Indication

remodeling 
indication

 
Fig. 8. Remodel 

Determine Updated Model is the activity generating new model specification after examining current state (indicated by the 

system monitoring variables), remodeling indication and object specifications, which describe all available model classes 

residing in the library. The generated specification includes the new model class and model parameters, which involve its 
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properties and submodels. Build Model activity constructs and initializes the new model based on these parameters. When this is 

accomplished, remodeling completed signal is emitted back to FRTS Control Process. Remodel data flow specifications are 

presented in table 3. 

F. FRTS State Transition  

States and state-transition conditions are a substantial part of a discrete system description and are depicted in the STD of 

figure 9. There is a direct correspondence between an STD and a control process – whenever a control process exists on a DFD 

there is corresponding STD, and vice versa [10]. Conditions in the STD correspond to incoming event flows to the process and 

actions correspond to outgoing event flows, as depicted in figure 4 and figure 9. FRTS states concern only the activities that 

must be accomplished fulfilling the real time constraints, specifically Model Initialising, Model Monitoring, System Monitoring, 

Audit and Remodel. Apparently, there is also a one-to-one correspondence between STD states and FRTS processes, i.e., each 

simulation activity can be considered as a separate state. 
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Fig. 9. FRTS state transition 
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TABLE III 
REMODEL DATA FLOW SPECIFICATIONS 

new model specification =  new model class +  
                 new model parameters 
 new model class = elemental /* object class, member of object hierarchy */ 
 new model parameters = {new model parameter} 
  new model parameter = [new model specification | value] 
   value = elemental  
object specifications =  {object specification}  
 object specification =  model class + 
                model description         
  model class = elemental  
  model description = elemental  /* related to the model library organisation */ 
model objects = {model} 
 model = elemental  /* object class, member of object hierarchy */ 

 

IV. A FRTS EXPERIMENT OF A MULTI-TELLER SYSTEM 

We describe a FRTS experiment for a multi-teller system modeled as a GI/G/s queue, where s≥1 (figure 10). This system has 

a variable number of servers that are modified during runtime, as servers may be abruptly activated or de-activated. The 

interarrival distribution type and parameters, as well as the service distribution type and parameters may also be modified, but all 

active servers have identical service properties. The objective of FRTS is to reach reliable conclusions for the near future and to 

ensure model validity taking into consideration potential system changes. The multi-teller example domain enables dealing with 

reformations of all three types. We discuss the potential reformations, deviations and main data flows: monitoring variables, 

time intervals, model initialisation parameters, raw model and system data, remodeling indication and new model specifications 

(figure 4). 

 

1 S2

 
Fig. 10. GI/G/s system 

In a GI/G/s system (queue), GI (general independent) refers to the distribution of interarrival times, G (general) refers to the 

distribution of service times and s is the number of servers. We use general distributions, as interarrival and service times may be 
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modified during runtime. Potential system reformations involve the following: the number of tellers, corresponding to a 

structural reformation, service distribution characteristics (type and parameters), corresponding to operation parameter 

reformations, and interarrival distribution characteristics (type and parameters), corresponding to input data reformations. We 

also consider two potential deviations, concerning the average time in the system and the average wait time in the queue, which 

may be detected even when reformations have not occurred. According to the above, we consider 7 corresponding monitoring 

variables: teller_no, service_distr_type, service_distr_params, interarr_distr_type, interarr_distr_params, avgresponseD and 

avgwaitD. Potential monitoring variable specifications (according to table 1) are the following: 

 

1) (‘teller_no’, 0.0, on) 

2) (‘service_distr_type’, 0.0, off) 

3) (‘service_distr_params’, 0.2, off) 

4) (‘interarr_distr_type’, 0.0, off) 

5) (‘interarr_distr_params’, 0.2, off) 

6) (‘avgresponseD’, 0.3, off)  

7) (‘avgwaitD’, 0.3, off) 

 

As MV
1
.dr = 0.0, no deviation is allowed between the number of tellers in the model and the system; otherwise, remodeling is 

invoked. MV
1
.smi = on denotes that this variable is used in state monitoring. A deviation range = 0.0 is suitable for the service 

distribution type (MV
2
). MV

3
.dr = 0.2 denotes that a range of 20% is allowed between service distribution parameters. 

Considering a system for which auditing must be performed every 20 seconds, we set auditing interval = 20.0 and state interval 

= 2.0, so that state monitoring is more frequent. To reach conclusions for 6 auditing intervals ahead, we set prediction interval = 

120.0. Assume that a FRTS experiment starts at real time point 0.0 and that a M/M/1 model is initially used to represent the 

system. Model initialisation parameters determining the number of tellers and the distribution types and parameters of 

interarrival and service times are expressed as: 

 

(MM1Obj, 1, (FIFOQueueObj1, exponential, 1.5), (ServerObj, exponential, 3.4)) 

 

The composite M/M/1 model consists of a queue model and a server model. The former acts as a customer generator and thus 

has the following properties: interarrival distribution type = exponential and interarrival distribution parameters = 1.5 (λ=1.5). 

The teller model is respectively initialized. 
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The only variable used in state monitoring is teller_no. If MV
1
.r is not modified throughout the auditing interval, auditing will 

be executed at time point 20.0 As prediction interval = 120.0, model results and system data produced up to this point are the 

following: 

Model             System 

MV
1
.s .. MV

7
.s (20.0)        MV

1
.r .. MV

7
.r (20.0) 

MV
1
.s .. MV

7
.s (40.0)             - 

MV
1
.s .. MV

7
.s (60.0)             - 

MV
1
.s .. MV

7
.s (80.0)            - 

MV
1
.s .. MV

7
.s (100.0)            - 

MV
1
.s .. MV

7
.s (120.0)            - 

 

 

TABLE IV 
MONITORING VARIABLE STRUCTURE AND REMODELING DECISION (AT 20.0) 

MV
i

Name r  s dr smi remodeling 

MV
1

teller_no 2 1 0.0 on √ 

MV
2

service_distr_type exponential exponential 0.0 off  

MV
3

service_distr_ params 0.29 0.34 0.2 off  

MV
4

interarr_distr_type exponential exponential 0.0 off  

MV
5

interarr_distr_params 0.23 0.28 0.2 off √ 

MV
6

avgresponseD 0.49 0.55 0.3 off  

MV
7

avgwaitD 0.19 0.26 0.3 off √ 
 

Assume that monitoring variables obtain the values illustrated in table 4 at point 20.0. Auditing indicates that a structure 

reformation has occurred based on MV
1
. The remodeling indication formed is the following: 

 

((‘structure’, ‘teller_no’), (‘operation parameter’, ‘interarr_distr_params’), (‘deviation’,’avgwaitD’)) 

 

Multi-teller systems are variable-structure systems consisting of queue and server entities, thus preconstructed and modular 

models have to be used to dynamically update the model. As MV1.s=2, integration of an additional teller model is required. The 

model is directly imported from the model library and the new composite model is generated. In a similar way, if a teller were 
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de-activated, remodeling would remove and dispose the corresponding model component. Thus, new model specification is 

expressed as:  

 

(MM2Obj, 2, (FIFOQueueObj,exponential,2.0), (ServerObj,exponential,3.1), (ServerObj,exponential,3.1)) 

 

When modifications are accomplished (also the ones imposed by MV5 
and MV7), experimentation resumes from the current 

real time point. Assuming that 0.7 seconds were needed for auditing and remodeling (TAudit + TRemodel = 0.7), experimentation 

would resume at 20.7. As prediction interval = 120.0, the model has to reach results for points 40.0 to 140.0 within auditing 

interval [20.0, 40.0], that is, before real-time point 40.0. There is always the possibility, though, that remodeling will be invoked 

during intermediate state monitoring points (e.g. 22.0, 24.0, etc) to update the model to critical system changes (i.e. teller 

activation and deactivation). Otherwise, auditing is executed at 40.0 to examine -once again- model validity. 

V. CONCLUSIONS 

We expressed the functionality of FRTS using structured-analysis, real-time system specification techniques to provide an 

analytical, formal description of this specific type of simulation. A conceptual FRTS methodology was used as a basis, as there 

is no formal approach focusing on experiment planning and execution. A process/data-oriented specification of simulation 

activities was provided, emphasizing activity control and experiment state transition, and respective timing issues were 

addressed. As simulation activities and control/data flows may be common in diverse FRTS implementations, we supported 

establishing a common basis for FRTS system development.  
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