
International Journal of Modelling and Simulation, Vol. 21, No. 4, 2001

AN OBJECT-ORIENTED MODELLING

APPROACH FOR DYNAMIC COMPUTER

NETWORK SIMULATION

D. Anagnostopoulos∗ and M. Nikolaidou∗

Abstract

Recent work indicates simulation of dynamic network behaviour

may be used as an effective tool for predicting network performance,

for the near future. Conclusions from such simulation, when applied

to network performance, can greatly enhance network management.

To accomplish this, such simulation must be performed in real time,

with the consequent effect of drastically reducing both modelling and

experimentation requirements. This article introduces a modelling

framework for the uniform manipulation of network entities with

minimum time overhead. This framework, which is based on modular

and hierarchical modelling, extends to both primitive and composite

entities such as communication protocols and nodes, and ensures

that composite network entity models are preconstructed. The

framework thus enables the model to reliably depict variable network

structure and operation parameters. Sample measurements are

presented to illustrate the type of dynamic network behaviour that

such simulation techniques have to deal with. The measurements

also illustrate the adaptability of the model, including reduced time

overhead for simulation experiments.

Key Words

Network simulation, network modelling, object-oriented modelling,

real-time simulation

1. Introduction

Network performance evaluation is used extensively to ex-
tract reliable conclusions for network performance under
real conditions. Simulation modelling, on the other hand,
enables the representation of real conditions, the combi-
nation of complex entities, and the analysis of the overall
network architecture.

Numerous simulation tools, classified according to
their orientation and modelling framework, are actively
used in the networking discipline [1, 2]. When simulation
extends to the overall network architecture and is not re-
stricted to specific entities, modelling tools adopt a layer-
ing scheme and use common modelling principles for the

∗ Department of Informatics, University of Athens, Panepis-
timiopolis, Athens 15771 Greece; e-mail: {dimosthe,
mara}@di.uoa.gr

(paper no. 1998-121)

network entities. Object-oriented modelling contributes to
this. Differences between simulation tools include the level
of detail in the description of network components, mod-
elling decisions and techniques, and the degree of automa-
tion offered. Communication-oriented simulators are the
most widely accepted simulation software category [3], as
they reduce program development time. Simulators enable
automated model construction through the use of built-in
modules, which are closely related to the components of a
communication network [1, 2].

When one is drawing conclusions about network per-
formance, simulation tools are based on the average, or
the worst-case, scenario and thus they contribute only to
an “off-line" performance analysis of an existing network.
This is because they use hypothetical data to represent real
conditions. Intensively dynamic network behaviour, how-
ever, considerably reduces the expressiveness of such data.
When trace-driven simulation is used, the expressiveness of
data is also restricted to the specific real conditions under
which they were extracted.

The modelling approach we introduce involves the
development of a simulation environment that uses real
network data to reach conclusions for network performance
in the near future. It is based on the real-time simulation
methodology we have previously proposed, consisting of
the following main phases: modelling, experimentation,
and remodelling [4]. The real-time objective imposes
new requirements for the network modelling process [5].
Adopting specific modelling techniques is thus necessary to
reduce simulation time, to dynamically modify the model,
and to ensure its validity. The execution time of the model
is critical, as it relates to the collection and processing
of real-time data from the network. In this work, we do
not discuss the issue of making the network model run
faster than the real network; however, generic approaches
in this direction have been proposed [6]. Remodelling (i.e.,
performing dynamic modifications to the model) during the
experiment is also a prerequisite in order to customize the
model to real conditions without recompilation. Finally,
the validity of network component models must be pre-
ensured.

The network operation scenarios handled through this
approach include the most common cases, such as the

1



initiation of new applications (when these have a significant
impact on the overall network load), node start up, active
node crash, critical modification of application load, and
application termination.

Due to performance issues (because simulation is exe-
cuted in real time) we emphasize the quantitative issues of
communication and not the in-depth analysis of protocol
mechanisms. The modelling framework provides extended
abilities to conduct network simulation experiments, with-
out imposing limits on the efficient representation of net-
work entities. Current orientation is towards local area
networks. In the following sections, we present the mod-
elling decisions and techniques proposed for individual en-
tities. Sample measurements indicating dynamic network
behaviour under real conditions, along with conclusions,
as perceived from a prototype simulation environment, are
briefly discussed in the last section.

2. Network Modelling Framework

Because networks are variable structure systems, dealing
with structure modifications during the simulation experi-
ment requires the use of modular models [7]. Modular mod-
els often have a hierarchical structure according to which
components are coupled together to form larger models.
The coupling concept, combined with object orientation,
enables late binding, an essential feature for accomplishing
remodelling without recompilation [8].

Remodelling requirements are thus handled through
object-oriented modelling and the use of preconstructed
model components, which are organized in object hierar-
chies. Object hierarchies reside in model libraries. Either
primitive (atomic) or composite models can be precon-
structed, representing the key network entities. As pre-
constructed models must correspond to the entities that
are likely to participate in a network, all acceptable entity
combinations must be offered. Preconstruction of primitive
and composite models is thus performed for all higher level
entities corresponding to the accepted combinations, and
extends to the level where structural modifications may be
encountered. Network component preconstruction also en-
ables automated model generation. Whenever additional
primitive models are constructed and inserted in object
hierarchies, the corresponding composite models can be
simultaneously derived and made available.

The following are considered to be key network entities
of local networks, modelled in the form of preconstructed
components [9, 10]: communication protocols, communi-
cation and processing nodes, and network applications.

The above classification corresponds to a discrete layer-
ing scheme of network operations [11], such as the OSI ref-
erence model. Hierarchical layering enables the construc-
tion of more complex models by extending the behaviour
of existing objects, and ensures the uniform manipulation
of all equivalent network entities through a common public
interface. As hierarchical layering extends to the compos-
ite network entities, implementation of this scheme proves
to be rather complex. However, the outcome is the precon-
struction of all necessary network components, and this in
turn ensures their availability.

In this layering scheme, data transmission follows the
following well-known sequence: applications feed process-
ing nodes with data, which in turn are processed by the
highest-layer protocol and then forwarded to the next lower
layer. This continues until the protocol data unit (PDU)
reaches the media access control (MAC) layer. The data
are finally transmitted through the physical communica-
tion link. Reception of data follows exactly the reverse or-
der, until data are delivered to the destination applications.
Communicating nodes, on the other hand, are responsible
only for transferring data units between interconnected
networks. When data are received from a communicating
node, they are forwarded to the layer where relaying is
performed and then transferred to the peer protocol layer
of the destination node.

The following issues must be considered in this process:
first, the highest supported layer is not predetermined.
This does not apply to the lowest layer, as media access
mechanisms must be provided. Second, it is possible that
intermediate layers are not supported. The layering scheme
used should deal with these issues.

Network models consist of composite and primitive
models. Applications and communication links are per-
ceived as primitive entities. Network nodes are decom-
posed in terms of their communication and processing el-
ements (virtual entities, which are used to represent the
communication and processing properties of the node) [10].
Because our orientation is towards communication issues,
the processing element can be modelled as a primitive en-
tity. The communication element (i.e., the protocol stack)
is composite, formed on the basis of the protocols operating
in each node. Network nodes can be either processing or
communication nodes. When referring to the lower layers,
protocol stacks of processing nodes can be considered to
be identical.

A simple local networkN thus consists of n1, n2, . . . , nk

processing nodes. The communication element is formed
as a sequence of protocols pr1, pr2, . . . , prn, starting
from the MAC layer. As nodes are identical as far as
communication-oriented issues are concerned, network
N = {ni, 1 = i = k} and ni = (pr1, pr2, . . . , prn). A
widely used TCP/IP-Ethernet protocol stack could thus be
represented as (10BaseT, _ ,IP,TCP). The logical link
control (LLC, IEEE 802.2) layer is not supported here. In
this way, it is possible to represent stacks with acceptable
protocol combinations up to the highest supported layer.

An advantage of this scheme is its ability to support
only specific layers and not to predetermine the highest
layer. However, each layer is modelled through a single
protocol. When two or more protocols operate in the same
layer, a single model must be constructed to provide the
aggregate functionality.

Extending protocol stack modelling to the layer where
reliability is ensured (i.e., the transport layer) is strongly
enabled, as application modelling is then close to client-
server programming over sockets and emphasis is given to
purely communication issues. In this way, we can view
applications as sockets operating above the transport layer.
Each node ni is then linked to a set of applications Ai =
{ai1, ai2, . . . , aixi}, where xi is the number of applications

2



of ni.
The structure of a network model is depicted as a

composition tree in Fig. 1, corresponding to the structural
decomposition of the network, using two types of links,
composition and in_out. This is the base structure of the
network. It is determined during the initial specification
phase and is maintained in all network operation scenarios
under consideration. In_out links represent the coupling
relation between node and application models.

Figure 1. Abstract network composition tree.

In the following section, we discuss the realization of
the modelling framework we have introduced. We do this
for the main network entities: namely, applications, com-
munication protocols, and network nodes. Communication
links are modelled at a level of abstraction through repre-
sentation of their main features, such as capacity and error
rate. This is because the characteristics of transmission
are determined by the media access protocol.

Figure 2. Sample application model hierarchy.

2.1 Application Modelling

Applications are associated with a single node but operate
independently, generating and forwarding data to the node
as well as receiving data originating from other applica-
tions. To achieve the uniform manipulation of protocol
models, nodes are responsible for forwarding data units to
the highest supported layer. As it is impossible to deter-
mine this layer, application models must be in a position
to generate data units for all eligible layers. This is also
required for studies that are oriented towards single layers.
Because different layers handle different data units, a dis-
tinct application model must be provided for each layer.
At the very least, this model must support mechanisms
already established in commercial tools [1] for determining
the scheduling, type, size, and destination of data units.

The proposed modelling scheme for applications, em-
phasizing the data link layer, is presented in Fig. 2. We
have built the object class hierarchy using a generalization
relation between classes [12], so that object structure is
inherited from top to bottom, and also through multiple
inheritance. This process comprises the following steps:
1. Construction of the base application mode
2. Construction of a generic model for each layer sup-

ported, as an ancestor of the base application model
3. Construction of the primitive objects that provide the

required functionality for data unit scheduling, data
unit size, and so on

4. Derivation of application models, as ancestors of the
corresponding layer generic model and the primitive
objects that provide the specific functionality
We have used multiple inheritance to implement the

structures required for representing specific features of ap-
plications. If, for example, there are five possible ways
of scheduling the creation of data units and four of deter-
mining their size (e.g., according to corresponding distri-
butions), nine primitive objects should be provided and 20

derived models should be constructed for the correspond-
ing applications of a single layer. The nine primitive ob-
jects can be reused. However, 20 application models must
be derived to provide the equivalent functionality for each
additional layer.

A sample code fragment for the above hierarchy imple-
mentation (in Modsim III) is depicted in Fig. 3. DLUni-
NorApplObj is the application model that forwards data
to the data link layer, and it is constructed as an ancestor
of the generic data link model DataLinkApplObj. Data
creation and size estimation follow uniform distribution
and normal distribution, respectively. Methods Schedule-
DataUnit() and EstimateSize() are inherited from the
primitive objects UniformTimeObj and NormalSizeObj
to provide the required functionality.

2.2 Protocol Modelling

Communication protocol modelling is performed here ac-
cording to hierarchical layering. Because protocols perform
operations corresponding to well-defined layers (not neces-
sarily a single one), modelling issues depend on the specific
layer under study. Protocols are viewed as primitive enti-
ties, as protocol mechanism complexity is inherent. Models
of the same layer, as equivalent entities, become members
of the same object hierarchy, and inter-protocol commu-
nication complexity is handled during the composition of
node models.

Even though protocols are considered to be primitive
objects, it would also be possible to decompose them in
terms of the elements that implement specific mechanisms,
such as the media access mechanism. However, such
a systematic analysis has the disadvantage that not all
mechanisms are supported by protocols of the same layer,
as with flow control in the transport layer. Another
disadvantage is the fact that they are not standardized.
Consequently, a protocol decomposition scheme for the
various layers would require numerous simplifications and
would also be of questionable effectiveness.

Figure 3. Sample code for constructing the application
model hierarchy.

To ensure the uniform manipulation of protocol mod-
els, we suggest the provision of abstract modelling schemes
for all discrete layers. We could thus depict a protocol
hierarchy for the MAC layer as in Fig. 4. This hierarchy
would be depicted as part of the overall protocol hierarchy.

Figure 4. Sample protocol model hierarchy.

2.3 Node Modelling

The modelling scheme introduced is concerned with
communication-oriented issues and ensures the uniform
manipulation of node models. Preconstruction of the com-
posite models is performed for all the accepted protocol
combinations.

The modelling scheme is presented in Fig. 5. The
object class hierarchy has been built using multiple inher-

3



itance and a generalization relation between classes. This
process comprises the following steps:
1. Construction of the base node model
2. Construction of a node model for the first supported

layer as an immediate ancestor of the base model, with
a specific protocol as an additional attribute; this step
is executed for all protocols of the layer

3. Construction of node models for the upper layer as an-
cestors of the appropriate first-layer node models, with
the corresponding protocols as additional attributes

4. Execution of step 3 for all higher layers, up to the
highest supported layer
The base model provides the primitive node function-

ality along with the mechanisms for inter-protocol com-
munication. When supporting only the first layer, there
should be as many node models as MAC layer protocols.
Repeating this process for all layers results in an object
hierarchy where each node is a unique, complete model
with a specific protocol stack. When a stack needs to be
extended to support a higher layer, an ancestor, which has
the specific protocol as an additional attribute, is directly
constructed. In this way, the accepted protocol combina-
tions are efficiently modelled and no identical models are
built.

Figure 5. Sample node model hierarchy.

As previously discussed, when modelling a protocol
stack, an intermediate layer, such as the LLC, can be
supported or not. In the first case, an LLC node model
can be constructed as an ancestor of a first-layer model. In
the latter case, where the LLC layer is not supported, the
preconstructed NULL protocol model can be used. NULL
protocol only forwards data units to the protocol of the
higher or the lower layer, depending on whether reception
or transmission is performed, without any additional time
lapse. In this way, it is possible to model protocol stacks
when specific layers are not supported.

To give an example, if three protocols were provided
for the MAC layer, one for the LLC layer, and two for the
network layer, there would be a maximum of 12 possible
protocol combinations that need to be constructed. This
would be the case if all combinations are accepted (in terms
of protocol compatibility). This number increases when
certain layers are not supported and the NULL protocol is
used.

Finally, to handle cases where more than one proto-
col is active in the same layer (e.g., TCP and UDP in
the transport layer), a protocol wrapper is constructed
for this specific layer and is responsible for forwarding
data units to the appropriate protocol. This ensures that
inter-protocol communication between layers is performed
uniformly, even in the latter case.

The advantages offered by the node modelling scheme
are summarized as follows:
• Uniform manipulation of protocol models
• Ability to either support specific layers or not
• Ability to model protocols corresponding to more than
one layer, or more than one protocol corresponding to
a single layer

• Extendibility when constructing node models that sup-
port additional, higher layers
In addition, a computer group model can also be used

to reduce the model execution time. We can, nevertheless,
only adopt this concept when a number of nodes have
more or less the same behavioural characteristics. This,
however, is uncommon under real conditions.

2.4 Model Generation and Manipulation

The framework for composite entity modelling provides a
concise means of building model hierarchies. This process
can be more efficient when supported by a simulation model
generator that constructs higher level models according to
the acceptable component combinations, and it can thus
contribute to the availability of component models.

Figure 6. Automated model generation example of appli-
cation modelling.

A model generation example of application modelling
is presented in Fig. 6. The object hierarchy corresponds
to the code fragment in Fig. 3. As additional methods are
provided for scheduling data unit creation and estimating
unit size, these are modelled through the primitive objects
ExponentTime and ExponentSize. We have therefore
constructed the three corresponding application models, as
shown by the dotted lines. The code fragment generated
is presented in Fig. 7. Obviously, as in a real case there
are more features than data unit scheduling and size to be
modelled, the complexity encountered cannot be handled
efficiently by manual means.

Figure 7. Code generation when constructing new primi-
tive objects.

Because all the above operations are performed on
structures residing in object libraries, it is important to
address the issue of manipulating these structures. When
retrieval is performed, the model required is directly im-
ported, as the overall structure is precompiled. Apart from
retrieval, which is the only action that occurs during exper-
imentation, three other actions are likely to be performed:
insert, update, and delete.

Insertion of new nodes in a model hierarchy is per-
formed through creation of an ancestor of either single
or multiple objects, thus extending the behaviour of the
existing object nodes. When referring to high-level struc-
tures, this process can be automated through model gen-
eration techniques, as shown in Figs. 6 and 7. The overall
hierarchy is then subjected to recompilation.

Model update is performed with minimum overhead
when modifying the implementation part of a method,
whereas object definition modifications must be propa-
gated to other objects. Model hierarchies are then sub-
jected to recompilation. However, model updates are not
likely to be performed for composite models, as these are
built on the basis of existing, primitive models. The
“Delete" operation is not common, either, because it is
used only to remove objects that provide a functionality

4



that is no longer needed. When deleting, recompilation is
also required. However, before deletion it must be ascer-
tained that there are no pending references to these object
classes.

The above issues regarding the manipulation of object
structures apply to all entity models described in the
previous sections.

3. Network Experimentation

Network performance evaluation under real conditions re-
quires handling of the scenarios causing modifications to
the network state, as the model must be adapted to the
new conditions, while maintaining reliability of results. It
is therefore essential that the simulation environment be
capable of collecting and processing real network data, as
well as drawing conclusions in real time.

Numerous networking issues emerge during the net-
work operation. We can divide these issues into two main
categories: those that intervene in the network structure
and those that intervene in operation parameters. Struc-
tural modifications acquire an increased degree of complex-
ity. We discuss the following common networking issues:
activation of a network node, active node crash, critical
modification of an application network load, change in data
unit (packet) size, and so on.

To indicate the occurrence of any of the above scenar-
ios, specific parameters of the model and the network are
monitored. We refer to these parameters, which are com-
monly defined for both systems, as monitoring variables,
and analyze and compare the corresponding states of the
model and the network, which are expressed through ap-
propriate monitoring variables [13]. Due to the stochastic
nature of simulation, comparisons can indicate both modi-
fications to the state of the network and deviations between
the model evolution and the actual trace. Comparisons
are performed through a well-determined set of statistical
measures, indicative of the network performance, such as
end-to-end delay and aggregate throughput, when the
auditing interval (i.e., the time period where both sys-
tems are being monitored) has elapsed. Auditing activity
(i.e., examination of both systems’ evolution) is regularly
initiated after the preceding interval and exploits monitor-
ing variables from both systems to determine whether the
model is close to the actual network trace. This is the fea-
ture that enables the reliability of simulation predictions.

We perform network modelling according to the com-
position tree in Fig. 1. A sample local network used to
describe the experimentation framework, consisting of four
processing nodes, is given in Fig. 8. The most significant
applications generating input data (in terms of network
load) and the interconnection scheme between applications
are also included.

Figure 8. Network structure modification example.

If node2 crashes, monitoring data are collected and
cross-examined to indicate potential modifications or de-
viations between the two systems. When auditing be-
gins, it detects that node2 /∈ N and appl21 /∈ A2, appl22 /∈

A2, appl12 /∈ A1, appl42 /∈ A4 and concludes that the net-
work structure was modified during the preceding interval.
Remodelling activity is thus invoked to restore the consis-
tency between the model and the network, and simulation
results are discarded. Remodelling removes and disposes of
the corresponding components from the model composition
tree and reconfigures the coupling between the remaining
components. When all modifications are accomplished, the
model is once more subjected to experimentation, starting
from the current real-time point.

A node activation event imposes the integration of
additional components within the network model, and thus
the appropriate model is directly imported, initialized, and
dynamically linked to the existing model. If, for example,
node5 with protocol stack (10BaseT, _ ,IP,TCP) was
activated, the corresponding model would be initialized
according to the current operation parameters, to represent
the current network state.

Cases such as protocol parameter, application data
size, and scheduling modifications, where intervention in
the model structure does not take place, are handled
through adjustment of the corresponding parameters. As
modifications are indicated through monitoring variables,
appropriate variables should be defined for all networking
issues under consideration. If, for example, data trans-
mission parameters of appl12 were modified, resulting in
a different data unit size, the corresponding parameter
would be set to a new value, taking into consideration
both previous and current measurements. Such tasks are
accomplished with less complexity and time overhead than
structural modifications. There are also issues, such as
the transmission speed, that are closely related to specific
protocols. In this case, potential changes can be handled
using a different protocol stack, as a structural modifica-
tion. However, many networking issues, such as transmis-
sion speed, flow control parameters, and routing strategies,
are not commonly modified during a network operation.

To summarize, networking issues are classified accord-
ing to whether they cause structural modifications or not.
In the first case, model components are inserted, deleted,
and coupled with the existing model so that the variable
network structure is efficiently represented. In the second
case, the appropriate parameters of both the aggregate and
individual models are adapted to the current network state
and operation. Monitoring variables must be defined and
examined prior to reaching conclusions on such issues. The
way variables are examined and conclusions are drawn is
determined by the auditing algorithm.

It should also be noted that the capabilities provided
for traffic modelling are undoubtedly reduced in compari-
son with those of traditional simulation, as traffic analysis
cannot be very effective in real time. We thus suggest use
of renewal traffic models as an efficient approximation, as
used in the prototype implementation we discuss below.
Further discussion on experimentation and remodelling
activities can be found in [13].

5



4. Prototype Implementation

The proposed modelling guidelines are platform indepen-
dent and can be widely adopted in network simulation
studies. A prototype implementation was carried out for a
local network of a university campus building using Mod-
sim III simulation language [13]. The selection of this
application domain enabled dealing with both structure
and operation parameter modifications. The actual net-
work under study was a 10Base-TCP/IP network, which
was relatively slow, and included more than 30 computer
nodes.

Network components were modelled according to the
proposed framework so that the key features of commu-
nication protocols were represented. Model manipulation
and modification were performed in real time during the
simulation experiment.

The simulation environment was used in conjunction
with SUNnet Manager NMS in order to extend manage-
ment capabilities over the Ethernet segments, and con-
tributed to obtaining results for network performance in
the near future and the indication of potential problems,
such as excessive input load.

An example of the experimentation process is pre-
sented in Figs. 9 and 10. The throughput and the number
of active sessions in the model and the actual network are
plotted for 17 consecutive time intervals (1,052 seconds).
Simulation predictions are obtained at time points prior
to those corresponding to real time. When values of these
measures in the model deviate from the real observations,
the model is appropriately modified. These time points are
depicted with marks below the horizontal axon (note that
the marks are not positioned identically in the two figures,
depicting the corresponding deviations). When remod-
elling occurs, the model behaviour is closer to the actual
network trace within the next auditing interval. However,
if the network structure and operation parameters are re-
peatedly modified, the model is often subjected to remod-
elling. Both the dynamic nature of the network, expressed
in terms of the varying throughput and the number of
sessions, and the ability to constantly adapt the model are
thus demonstrated.

Due to the increased number of deviations encountered
in this example, results are often discarded during remod-
elling and simulation time is re-initiated from the current
time point. Simulation predictions thus refer only to near-
future time points. In the above example, whenever audit-
ing is performed, simulation time is at least one interval
ahead of world time, even when remodelling has previously
occurred, regardless of the number of active nodes and the
network load.

Taking advantage of simulation results to reach reliable
conclusions is possible only when both systems are moving
close enough for a considerable amount of time [4], as
for example at time point 1,052 in Fig. 9. The decision
concerning the reliability of predictions is taken based
on the comparison between the real observations and the
corresponding simulation results obtained at previous real-
time points.

Figure 9. Variation of active sessions.

The average time required for examining whether both
systems are evolving in the same direction and the execu-
tion of the appropriate actions (auditing and remodelling)
is relatively low (close to 2 seconds), as indicated in Figs.
9 and 10, and the duration of the auditing interval is 60
seconds. As the two-second period is dead time, this con-
tributes to the effectiveness of the simulation experiment.

Figure 10. Variation of throughput.

5. Conclusion

The modelling approach that we have introduced has con-
tributed to the manipulation of network models with mini-
mum time overhead during execution of simulation experi-
ments. Because of this, consistency is maintained between
the model and the network, and predictions can be suc-
cessfully made regarding network performance for the near
future. Maintaining consistency is the feature that ensures
the reliability of simulation predictions, even though dy-
namic network behaviour may sometimes make it unfeasi-
ble to take advantage of predictions. We have discussed
in depth a uniform, concrete modelling framework for the
main network entities. This framework can be widely used
in network simulation. Although these concepts are cur-
rently applied in computer networks, application in other
domains, such as routing algorithms, could also be con-
sidered. Our research is geared towards integration of
the results extracted within the network management en-
vironment in order to improve its effectiveness by taking
advantage of simulation predictions for the near future.

References

[1] CACI Products, COMNET III reference manual (San Diego:
CACI Products, 1997).

[2] Mil3 Inc., Opnet Modeller modelling manual (Washington, DC:
Mil3 Inc., 1997).

[3] A. Law & M. McComas, Simulation software for communica-
tion networks: The state of the art, IEEE Communications
Magazine, 1994.

[4] D. Anagnostopoulos et al., A conceptual methodology for
conducting faster-than-real-time experiments, SCS Trans. on
Computer Simulation, 16(2), 1999.

[5] D. Anagnostopoulos & M. Nikolaidou, Applying real time
simulation in the LAN domain: Modelling considerations,
Simulation Modelling and Analysis (SAMS), 18(7), 1995.

[6] K. Lee & P.A. Fishwick, OOPM: An object-oriented multi-
modelling and simulation application framework, Simulation,
70(6), 1998.

[7] T. Pawletta, B. Lampe, S. Pawletta, & W. Drewelow, An
object-oriented framework for modelling and simulation of
variable structure systems, Proc. SCS SCSC ’96, Portland,
OR, USA, 1996.

[8] B.P. Zeigler, Object-oriented simulation with hierarchical, mod-
ular models (copyright held by author, 1995: originally pub-
lished by Academic Press, 1990).

[9] J. Cramer & J. Magee, Configuring distributed systems, Proc.
5th ACM Workshop on Models and Systems for Distributed
Systems Structuring, Mont St. Michel, 1992.

[10] M. Nikolaidou, D. Anagnostopoulos, & P. Georgiadis, Mod-
elling and simulation of distributed systems, Proc. IASTED
Modelling and Simulation Conf. ’96, Pittsburgh, PA, USA,
1996.

6



[11] S. Jones & C. Smythe, A generic framework for the simulation
analysis of protocol layered communication systems, Proc.
MASCOTS’93, Simulation Series, 25(1), 1993.

[12] P. Fishwick, OOPM/RT: A multimodeling methodology for
real-time simulation, ACM Trans. Modelling and Computer
Simulation, 9(2), 1999.

[13] D. Anagnostopoulos, M. Nikolaidou, & G. Philokyprou,
Computer network performance prediction for the near fu-
ture through faster than real time simulation, Proc. SCS
SPECTS’99 (part of SCSC ’99), Chicago, IL, USA, 1999.

Biographies

Dimosthenis Anagnostopoulos
is Assistant Professor at Haroko-
pion University of Athens. He
received a Degree and a Doctorate
Degree, both in computer science,
from the University of Athens in
1991 and 1996, respectively. His
research interests include mod-
elling and simulation, object-
oriented systems, and distributed
systems and networks, as well
as modelling and performance

evaluation of transportation systems.

Mara Nikolaidou received a De-
gree and aDoctorate Degree, both
in computer science, from theUni-
versity ofAthens in 1990 and 1996,
respectively. She is currently in
change of the Library Automa-
tion Centre of the University of
Athens. Her research interests in-
clude distributed systems, digital
libraries, modelling and simula-
tion, and workflow systems.

7


