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Abstract 

Modern enterprise information systems are distributed systems usually built on multi-tiered client server 
architectures and can be defined using well-established frameworks such as the Zachman framework or the 
Open Distributed Processing Reference Model (RM-ODP). Both frameworks identify views regarding the 
system designer’s viewpoint, but they do not suggest a methodology for view creation. A consistent 
framework for enterprise information system engineering, compatible with both the Zachman framework and 
RM-ODP is proposed by the authors. It consists of a metamodel describing alternative system views, a 
corresponding methodology comprising discrete stages performed either by the system designer or software 
tools and a UML 2.0 profile for view representation. In this paper, a case study where the proposed framework 
was applied is discussed, focusing on the features provided to the system designer using the UML 2.0 profile. 
The profile is implemented by extending the Rational Software Modeler functionality. 

1. Introduction  
When building an enterprise information system (EIS), the desired properties of the system should be defined, 
such as its structure and behavior, while the role of the system in the environment should also be considered. 
Many different stakeholders may be involved in this process, as defined in the Zachman framework (Zachman, 
1999). Each of these stakeholders focuses on certain concerns and considers these concerns at a certain level 
of detail. A viewpoint defines the way the system is conceived by a stakeholder according to his concerns 
(Boer, 2004). The conception of the system according to a certain viewpoint is described as a system view, 
thus one or more views correspond to a certain viewpoint. Each view may be formally defined by a model, 
while it is communicated to the stakeholder by a representation model, which is a concrete representation of 
the system view on some medium (e.g. paper or computer program). A consistent representation of the 
systems implies that each view is not examined in isolation but interrelations between views are formally 
defined.  We argue that the way system views are related must be fully and typically defined in the 
corresponding models. In order to formally define a viewpoint, one should define a metamodel describing the 
supported views independently of the modeling language used for system representation and then define the 
representation model. In this way, a view may be represented using different languages (e.g. UML), in a 
common manner, facilitating the transformation between representation modeling languages. 

Having adopted this viewpoint-oriented description of information systems, we defined for the system 
enginnering viewpoint three complementary views, namely Functional, Logical and Physical. Some of them 
may be further decomposed into subviews emphasizing specific entities into a greater level of detail. These 
views are part of a framework introduced in (Nikolaidou et al., 2006) which offers a consistent framework for 
information system engineering. More specifically our framework comprises: 
• A metamodel describing different views and the relations between them (EIS metamodel). These relations 

are strictly defined using constraints. 
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• A methodology for EIS engineering based on the proposed views. The methodology consists of discrete 
stages performed by system designer, software tools or a combination of both. Taking advantage of the 
formal definition of relations identified between views, system engineering stages may be invoked 
automatically, as a result of the metamodel constraint validation.  

• A UML representation for all defined views. A UML 2.0 profile is defined for this purpose (EIS 
engineering profile). 

The overall framework is briefly presented in section 2, emphasizing the supported views and the 
corresponding UML 2.0 profile. In section 3, a case study where the proposed framework was applied is 
discussed, focusing on the features provided to the system designer using the UML 2.0 profile. A Rational 
Software Modeler plug-in has been implemented to support the additional functionality of the profile. 

2. EIS Engineering Framework 
The framework is based on three complementary views:  

Functional View is used to describe functional specifications such as system architecture, user behavior 
and application requirements. System architecture refers to the architectural model adopted. In case of our 
framework, multi-tiered client-server models are described. Services provided by each application tier (called 
module) are also defined. User behavior is modeled through user profiles describing the behavior of different 
user groups and their performance requirements. Application requirements are described in terms of quality of 
service (QoS) requirements imposed to the network infrastructure, e.g. amount of data processed, transferred 
or stored. Each service is described in a greater level of detail through the service description subview. 

Topology View facilitates the definition of system access points and the resource allocation and replication. 
To characterize any location (i.e. a building, an office, etc.), the term site is used. As such, a site is a 
composite entity which can be further analyzed into subsites, forming thus a hierarchical structure. Functional 
and Topology views are interrelated. Resources (e.g. processes and files) correspond to services and data 
described through Functional view and are located into sites.  

Physical View refers to the aggregate network. Network nodes are either workstations allocated to users or 
server stations running server processes. Topology and Physical views are interrelated. Both are decomposed 
to the same hierarchical levels of detail. At the lowest level, network nodes are related to processes/data 
replicas.  

2.1 EIS Engineering Methodology and Metamodel 

The proposed methodology includes the following discrete stages of the system engineering process: 
1. System requirements definition.  
2. Resource (process/data) allocation and replication policy definition. 
3. Network architecture design. 
4. Performance evaluation of the proposed solution (prior to implementation). Although it is not a necessity, 

it is certainly useful. 
As resource allocation and network design problems cannot be independently solved, stages (2) and (3) are 

repeatedly invoked for different abstraction levels until an acceptable solution is reached. Both resource 
allocation and network architecture problems are usually supported by automated or semi-automated tools 
using mathematics, heuristics or a combination of both. These tools may be repeatedly invoked for different 
abstraction levels (Graupner et. al, 2001) and (Nezlek et. al, 1999). The system designer may perform or 
partially perform these tasks on his own, thus both options must be supported. To evaluate system 
performance, a simulation tool as the one described in (Nikolaidou et al., 2003) can be used. The simulator 
uses as input the overall system model and produces performance results. Since each of these tools supports 
its own representation metamodel (for example queuing networks, Petri-nets, objects), there is a need to 
properly create and instantiate the “internal” system model prior to invoking the tool. 



The proposed methodology stages along with the EIS model consisting of the predefined views are 
presented in figure 1. Discrete stages receive/modify information from/to specific system views, as depicted 
by the arrows between them. The relation between views and between stages is also depicted in the figure. 
Requirements definition is the initial stage and corresponds to the definition of system architecture and 
application requirements (Functional View), the system access points (Topology View) and, if any, the 
existing network architecture (Physical View). Each view is represented by one or more UML diagrams 
properly extended. All the required extensions are grouped into a UML 2.0 profile which also describes the 
relations between views.  
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Figure 1: EIS Engineering Framework 

As already mentioned the models created follow a formal metamodel which itself contains relationships 
and restrictions inflicted between system entities belonging to the same or different views, which may lead to 
a specific stage invocation (e.g. if the network hierarchy in Physical View is modified, this modification must 
be depicted in Topology View as well). Embedding restrictions within the metamodel facilitates the 
management of the EIS engineering, as the overall system model is taken into account and not a specific 
system view corresponding to a discrete stage. Thus, the overall process becomes more effective, since 
discrete stage (and corresponding tool) dependencies are depicted within the model as view dependencies and 
consequently they are easily identified. Furthermore, it becomes more efficient to integrate autonomous 
software tools at different levels of detail, as each of them is independently invoked without knowing the 
existence of others.  

All the entities of the metamodel along with their interdependencies are presented in figure 2. As shown in 
figure 2, despite the fact that views concentrate on different aspects and thus include different model elements, 
there are however correspondences between them indicated in the diagram by the lines that cross view 
boundaries. 
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Figure 2: EIS Engineering Metamodel 

2.2 EIS Engineering UML 2.0 Profile  

The defined UML 2.0 (OMG 2004a; OMG 2004b) profile comprises a number of stereotypes. Essentially, the 
concepts of the metamodel are reflected onto the stereotype attributes and constraints. Attributes convey the 
information required to describe the EIS metamodel entities (e.g. throughput, activationFrequency, 
processingPower etc.). Constraints, which are extensively used within the profile, represent relationships and 
restrictions between metamodel entities maintaining model consistency. Constraints mainly facilitate: 

1)  automatic computation of specific attribute values. 
2)  limiting attribute value range. 
3)  relating attribute values of specific elements to attribute values of other entities belonging to the same or 

other UML diagrams (implementing thus the linkage between different models).  
4)  model validation in view and overall model level. 

Attributes and constraints for each stereotype are analytically introduced in (Alexopoulou et al, 2006). 
Following, the UML diagrams selected for each view are briefly presented. Stereotypes are listed in Figure 2 
along with the EIS metamodel entity they correspond to. The relative icons are also included, so that the 



reader can understand the figures presented in the case study of section 4.  Functional view is represented 
through UML component diagram, since component diagrams are eligible for depicting system functionality 
at a logical level. Concerning service description subview, it is represented through activity diagram, as it 
involves flow of operations. UML communication diagrams, which depict interaction between entities, are 
suitable for the representation of Operation Dictionary, since the latter involves interactions between 
operations showing in particular invocation order and parameter passing between them. Physical View, which 
comprises the network infrastructure, is illustrated through UML deployment diagrams, which are commonly 
used to represent network architectures (Kaehkipuro, 2001). Lastly, the representation of Topology View is 
based on UML component diagrams. 
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Figure 3. Stereotypes of the EIS Engineering Profile 

3. Case Study  

The proposed framework has been applied for the engineering of a typical banking system. In this case, 
resource allocation and network design stages were performed by IDIS software tool (Nikolaidou, 1999), that 
supports the representation and exploration of resource allocation and network topology design through 
algorithms combining mathematics and rules of thumb. To evaluate distributed system performance, the 
discrete event simulation tool described in (Nikolaidou, 2003) was used. Requirements definition was 
performed by the system designer using the EIS engineering UML 2.0 profile, implemented in Rational 
Modeler (IBM Co, 2005). 

An appropriate UML modeling tool for EIS engineering UML 2.0 profile implementation must fulfill the 
following requirements: a) it must be UML 2.0 compatible, b) it must facilitate mechanisms to extend the 
provided functionality (e.g. by importing profiles) and c) it must export models in XML based on existing 
UML classes and profile-specific stereotypes. After serious considerations regarding various UML 2.0 tools, 
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we decided to implement the profile in the Rational Software Modeler environment (IBM Co, 2005). The 
extensibility features of the Rational Software Modeler are based on the open-source Eclipse platform. Eclipse 
provides useful APIs, frameworks (e.g. Workbench, Workspace, Help, etc.) and plug-ins that facilitate the 
development of new tools. EIS models are stored in an XML format in accordance with XMI (OMG 2005) to 
ensure interoperability. Before using a specific tool, the partial transformation of EIS model into the tool-
specific internal model is realized. Using this transformation, the invocation and initialization of any tool can 
be automatically performed. The case study focuses on requirements definition and aims at demonstrating the 
use and implementation of EIS engineering profile through Rational Modeler. However, hits on the overall 
framework functionality are provided. 

The Bank supports 38 discrete teller transactions. The amount of transactions/day varies according to branch 
size, while the average amount of teller transactions in large branches is over 10.000 per day. The required 
response time is 15-18 sec for most transactions. The system architecture relies on server-based computing. A 
central database is installed in headquarters, while transaction logs are maintained in local databases of each 
branch. Transactions are coordinated by a transaction monitoring system – TMS (Tuxido), also installed in 
headquarters. Transactions are composed by 24 discrete atomic transactions initiated by TMS. Each 
transaction consists of 3 to 7 atomic ones. All atomic transactions are implemented by stored procedures 
running in the central database. To enhance security and ensure a single authentication point, all user programs 
run on a dedicated execution server (CITRIX), while in user terminals only the corresponding client (CITRIX 
client) is installed. 

Functional View 
Functional view facilitates the system designer to a) define the EIS architecture (client and server modules) 
and b) define the functionality provided by its modules and the requirements imposed by them and the 
interaction between them to the network infrastructure. 

EIS modules identified were the following: File Server, CentralDB, LocalDB, TMS and Citrix. Since 
LocalDB represents logging, only a simple insert service was implemented for recording the log. CentralDB 
supports 33 stored procedures, represented as a different service. TMS Module includes 24 services 
corresponding to discrete atomic transactions. Citrix Module includes 38 services corresponding to discrete 
teller transactions. They involve the invocation and processing of forms, the activation of atomic transactions 
through TMS and log recording. Tellers are modeled as User Profiles initiating CITRIX Client modules 
corresponding to each teller transaction. In the following, we focus on teller transaction to demonstrate real-
world system representation capabilities of the proposed framework. 

Figure 4 represents a fraction of Functional view, implemented as a Component diagram in Rational 
Modeler, emphasizing services needed for the representation of transactions trx31600 (i.e. cash deposit) and 
trx2000 (i.e. request business loan). As depicted in the figure, services are represented as component 
stereotypes and modules as package stereotypes. The trx31600 service of the Citrix Service Module is selected 
in the figure. Additional stereotype attributes are stored in the corresponding fields supported within Rational 
Modeler platform (bottom right part of figure 4). Input parameters of each service are added by system 
designer through a custom menu created using Rational Modeler Eclipse API. In this case (trx31600), only the 
module attribute is filled, since the service has no input parameters (inputParameterList attribute is empty). On 
the left part of Rational Modeler’s screen in figure 4, it is shown that trx31600 service component is further 
decomposed into other entities.  

Trx31600 service is described by the corresponding activity diagram, implemented as a subdiagram of the 
Functional view component diagram. It is represented in figure 5. As shown in the figure, trx31600 includes 
the activation of the appropriate forms (operation action 1), the activation of the central database through the 
TMS (operation action 2 and 3) and local database update (operation action 4). Each discrete step is 
represented by an action instantiating a predefined operation included in the Operation Dictionary. Operations 
represent requirements imposed to system resources (network, processing nodes, etc). When defining an 
action, all input parameter values of the corresponding operation must be filled. They must be either constant 

 



or already defined as trx31600 service input parameters. As shown in figure 5, all operation input parameters 
must be constant, since trx31600 service has no inputParameterList. The corresponding validation constraint is 
implemented as a custom script initiated by Rational Modeler’s Run Validate default menu appearing when 
right-clicking on any UML diagram entity. Some of the actions, as request (selected in figure 5), result in the 
invocation of other services.  

A constraint automatically adds the corresponding invoke entity between the relative service components of 
Functional View (figure 4). The invoke entity has the same name as the action.  

 

    Figure 4: Fraction of Functional View – 
Transactions trx31600 and trx2000 

 

 
Figure 5: Trx31600 activity diagram 

 

Operation Dictionary 
Figure 6 represents a fragment of the operation dictionary. All operations are decomposed into elementary 
ones (processing, storing, transferring), representing processing, storing and network requirements. The system 
designer may add new operations in the dictionary, to enhance operation expression.  

 
Figure 6: Operation Dictionary Fragment 

In figure 6, the addition of form_access operation is presented. Three steps should be accomplished: 
parameter definition, definition of dependencies to existing operations and validation performance. A related 
constraint checks if all the parameters defined for an operation are passed as values to called operations used 
for its execution. Parameter and dependency definition is performed through pop-up forms. Form_access 

 



operation parameters are FileServer, form_name and processing. Form_access operation “uses” two other 
operations in order to be executed: processing and write. First, calls processing (which is elementary 
operation) and then write and then again processing. Parameter values of the called operation must be defined. 
The pop-up window entitled Set Call Parameters depicts write operation parameter definition.  

Topology and Physical Views 
The Topology View facilitates process and user profile allocation to sites. Allocation is performed by the 
designer through Rational Modeler interface. Alternative, the designer may invoke IDIS to perform the 
allocation of processes or data. Three different types of branches are supported: large, medium and small. 
Large branches have more than 30 tellers stationed at two different floors. The upper floor is dedicated to 
business transactions (10 tellers), while all others are served in the main hall. The corresponding fraction of 
Topology View is depicted in figure 7. Each hall is represented as a subsite of a branch site (both represented 
as Site Packages). Headquarters is also presented as a site. 
 

 
Figure 7: Fraction of Topology View 

 

 
Figure 8: Fraction of Physical View 

Tellers, modeled as users, are placed in Main Hall and Upper Floor sites, along with corresponding Citrix 
client processes. Since the system relies on server-based computing, most server processes are placed only in 
headquarters, while no replication is employed simplifying the overall architecture. Furthermore, since there 
was a request to maintain log data in local branch databases, a local database server replica is placed in each 
branch. The only issue to be explored was the placement of CITRIX Server. Although the system designer 
placed a CITRIX Server process in each branch, the logical configuration tool removed the processes from 
medium and small branches and placed one in Headquarters to minimize communication cost. This is codified 
in the EIS model stored in XML. When this model is loaded again in the UML tool, Topology View appears 
automatically updated. 

Processes and users appearing in Topology View must correspond to EIS modules and user profiles 
represented in Functional View. As shown in figure 7, when defining process replicas, a shortcut menu 
containing two drop-down lists appears. The first one corresponds to the application (described by a discrete 
Functional View) and the other one to the module (defined within the Functional View). Furthermore, the 
corresponding relationships between processes and modules must be defined in both diagrams. The properties 

 



of server process stereotype are shown at the bottom part of Rational Modeler Screen. In figure 7, the property 
values of Kallithea DB server component are shown. A related constraint is activated by the Run Validation 
menu option.  

Physical View is rather trivial. It facilitates network design and is performed by the designer through 
Rational Modeler interface. Alternative, the designer may invoke IDIS to perform this task. A fraction of it is 
presented in figure 8. The overall network is TCP/IP based. Branches are connected to headquarters using 
leased lines, forming a private WAN. The connection speed is indicated as the name of membership relation 
between node devices and site packages. As indicated in the figure, branches are internally supported by 
switched 100BaseT Ethernet. The structure of Physical View in the banking system (network architecture) was 
predefined. As shown in the figure, the system designer may define the processes running on a node through a 
pop-up window. The candidate processes for a server node must belong to the corresponding site and be server 
processes. Network hierarchy must correspond to site hierarchy and vice versa. Thus, when validating the 
model presenting in figure 8, an additional site (corresponding to the Bank Private WAN) should be 
automatically added in Topology View of figure 7. 

4. Conclusions  
A consistent framework for EIS engineering was introduced. It consists of a metamodel describing alternative 
system views and the relations between them, a corresponding methodology comprising discrete stages 
performed by the system designer or software tools and a UML 2.0 profile for view representation. The main 
advantage of the proposed framework is the formal definition of views and their consistent UML 2.0 
representation. This is accomplished using constraints in both the metamodel and the UML profile. As proven 
by the presented case study, constraints play an important role in the consistent representation of the system 
under study, since they impose the necessary restrictions and relationships between entities participating in 
different views. The proposed framework is currently tested in terms of completeness and expressiveness, 
using large-scale EIS architectures as test cases. 
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