
Facilitating Enterprise Information System Engineering
through a UML 2.0 Profile: A Case Study

M. Nikolaidou1, N. Alexopoulou12, A. Tsadimas1, A. Dais1, D. Anagnostopoulos1

{mara@di.uoa.gr, nancy@hua.gr, tsadimas@hua.gr, adais@hua.gr, dimosthe@hua.gr}
1 Harokopio University of Athens,

El. Venizelou Str, 17671Athens, Greece
2 Department of Informatics and Telecommunications,

University of Athens, Panepistimiopolis, 15771, Athens, Greece

Abstract

Modern enterprise information systems are distributed systems usually built on multi-tiered client server
architectures and can be defined using well-established frameworks such as the Zachman framework or the
Open Distributed Processing Reference Model (RM-ODP). Both frameworks identify views regarding the
system designer’s viewpoint, but they do not suggest a methodology for view creation. A consistent
framework for enterprise information system engineering, compatible with both the Zachman framework and
RM-ODP is proposed by the authors. It consists of a metamodel describing alternative system views, a
corresponding methodology comprising discrete stages performed either by the system designer or software
tools and a UML 2.0 profile for view representation. In this paper, a case study where the proposed framework
was applied is discussed, focusing on the features provided to the system designer using the UML 2.0 profile.
The profile is implemented by extending the Rational Software Modeler functionality.

1. Introduction
When building an enterprise information system (EIS), the desired properties of the system should be defined,
such as its structure and behavior, while the role of the system in the environment should also be considered.
Many different stakeholders may be involved in this process, as defined in the Zachman framework (Zachman,
1999). Each of these stakeholders focuses on certain concerns and considers these concerns at a certain level
of detail. A viewpoint defines the way the system is conceived by a stakeholder according to his concerns
(Boer, 2004). The conception of the system according to a certain viewpoint is described as a system view,
thus one or more views correspond to a certain viewpoint. Each view may be formally defined by a model,
while it is communicated to the stakeholder by a representation model, which is a concrete representation of
the system view on some medium (e.g. paper or computer program). A consistent representation of the
systems implies that each view is not examined in isolation but interrelations between views are formally
defined. We argue that the way system views are related must be fully and typically defined in the
corresponding models. In order to formally define a viewpoint, one should define a metamodel describing the
supported views independently of the modeling language used for system representation and then define the
representation model. In this way, a view may be represented using different languages (e.g. UML), in a
common manner, facilitating the transformation between representation modeling languages.

Having adopted this viewpoint-oriented description of information systems, we defined for the system
enginnering viewpoint three complementary views, namely Functional, Logical and Physical. Some of them
may be further decomposed into subviews emphasizing specific entities into a greater level of detail. These
views are part of a framework introduced in (Nikolaidou et al., 2006) which offers a consistent framework for
information system engineering. More specifically our framework comprises:
• A metamodel describing different views and the relations between them (EIS metamodel). These relations

are strictly defined using constraints.

mailto:%7Bmara@di.uoa.gr
mailto:nancy@hua.gr
mailto:tsadimas@hua.gr
mailto:adais@hua.gr
mailto:dimosthe@hua.gr

• A methodology for EIS engineering based on the proposed views. The methodology consists of discrete
stages performed by system designer, software tools or a combination of both. Taking advantage of the
formal definition of relations identified between views, system engineering stages may be invoked
automatically, as a result of the metamodel constraint validation.

• A UML representation for all defined views. A UML 2.0 profile is defined for this purpose (EIS
engineering profile).

The overall framework is briefly presented in section 2, emphasizing the supported views and the
corresponding UML 2.0 profile. In section 3, a case study where the proposed framework was applied is
discussed, focusing on the features provided to the system designer using the UML 2.0 profile. A Rational
Software Modeler plug-in has been implemented to support the additional functionality of the profile.

2. EIS Engineering Framework
The framework is based on three complementary views:

Functional View is used to describe functional specifications such as system architecture, user behavior
and application requirements. System architecture refers to the architectural model adopted. In case of our
framework, multi-tiered client-server models are described. Services provided by each application tier (called
module) are also defined. User behavior is modeled through user profiles describing the behavior of different
user groups and their performance requirements. Application requirements are described in terms of quality of
service (QoS) requirements imposed to the network infrastructure, e.g. amount of data processed, transferred
or stored. Each service is described in a greater level of detail through the service description subview.

Topology View facilitates the definition of system access points and the resource allocation and replication.
To characterize any location (i.e. a building, an office, etc.), the term site is used. As such, a site is a
composite entity which can be further analyzed into subsites, forming thus a hierarchical structure. Functional
and Topology views are interrelated. Resources (e.g. processes and files) correspond to services and data
described through Functional view and are located into sites.

Physical View refers to the aggregate network. Network nodes are either workstations allocated to users or
server stations running server processes. Topology and Physical views are interrelated. Both are decomposed
to the same hierarchical levels of detail. At the lowest level, network nodes are related to processes/data
replicas.

2.1 EIS Engineering Methodology and Metamodel

The proposed methodology includes the following discrete stages of the system engineering process:
1. System requirements definition.
2. Resource (process/data) allocation and replication policy definition.
3. Network architecture design.
4. Performance evaluation of the proposed solution (prior to implementation). Although it is not a necessity,

it is certainly useful.
As resource allocation and network design problems cannot be independently solved, stages (2) and (3) are

repeatedly invoked for different abstraction levels until an acceptable solution is reached. Both resource
allocation and network architecture problems are usually supported by automated or semi-automated tools
using mathematics, heuristics or a combination of both. These tools may be repeatedly invoked for different
abstraction levels (Graupner et. al, 2001) and (Nezlek et. al, 1999). The system designer may perform or
partially perform these tasks on his own, thus both options must be supported. To evaluate system
performance, a simulation tool as the one described in (Nikolaidou et al., 2003) can be used. The simulator
uses as input the overall system model and produces performance results. Since each of these tools supports
its own representation metamodel (for example queuing networks, Petri-nets, objects), there is a need to
properly create and instantiate the “internal” system model prior to invoking the tool.

The proposed methodology stages along with the EIS model consisting of the predefined views are
presented in figure 1. Discrete stages receive/modify information from/to specific system views, as depicted
by the arrows between them. The relation between views and between stages is also depicted in the figure.
Requirements definition is the initial stage and corresponds to the definition of system architecture and
application requirements (Functional View), the system access points (Topology View) and, if any, the
existing network architecture (Physical View). Each view is represented by one or more UML diagrams
properly extended. All the required extensions are grouped into a UML 2.0 profile which also describes the
relations between views.

Requirement Definition

Network Design

Performance Evaluation

System
Designer

Topology
View

Physical
View

Performance
accepted

yes

no

EIS
Model

EIS Design Methodology

Topology View
Diagrams

Functional View
Diagrams

Physical View
Diagrams

EIS UML
Representation

Resource Allocation

Functional View

Figure 1: EIS Engineering Framework

As already mentioned the models created follow a formal metamodel which itself contains relationships
and restrictions inflicted between system entities belonging to the same or different views, which may lead to
a specific stage invocation (e.g. if the network hierarchy in Physical View is modified, this modification must
be depicted in Topology View as well). Embedding restrictions within the metamodel facilitates the
management of the EIS engineering, as the overall system model is taken into account and not a specific
system view corresponding to a discrete stage. Thus, the overall process becomes more effective, since
discrete stage (and corresponding tool) dependencies are depicted within the model as view dependencies and
consequently they are easily identified. Furthermore, it becomes more efficient to integrate autonomous
software tools at different levels of detail, as each of them is independently invoked without knowing the
existence of others.

All the entities of the metamodel along with their interdependencies are presented in figure 2. As shown in
figure 2, despite the fact that views concentrate on different aspects and thus include different model elements,
there are however correspondences between them indicated in the diagram by the lines that cross view
boundaries.

FUNCTIONAL VIEW PHYSICAL VIEW

TOPOLOGY VIEW

OPERATION DICTIONARY

Figure 2: EIS Engineering Metamodel

2.2 EIS Engineering UML 2.0 Profile

The defined UML 2.0 (OMG 2004a; OMG 2004b) profile comprises a number of stereotypes. Essentially, the
concepts of the metamodel are reflected onto the stereotype attributes and constraints. Attributes convey the
information required to describe the EIS metamodel entities (e.g. throughput, activationFrequency,
processingPower etc.). Constraints, which are extensively used within the profile, represent relationships and
restrictions between metamodel entities maintaining model consistency. Constraints mainly facilitate:

1) automatic computation of specific attribute values.
2) limiting attribute value range.
3) relating attribute values of specific elements to attribute values of other entities belonging to the same or

other UML diagrams (implementing thus the linkage between different models).
4) model validation in view and overall model level.

Attributes and constraints for each stereotype are analytically introduced in (Alexopoulou et al, 2006).
Following, the UML diagrams selected for each view are briefly presented. Stereotypes are listed in Figure 2
along with the EIS metamodel entity they correspond to. The relative icons are also included, so that the

reader can understand the figures presented in the case study of section 4. Functional view is represented
through UML component diagram, since component diagrams are eligible for depicting system functionality
at a logical level. Concerning service description subview, it is represented through activity diagram, as it
involves flow of operations. UML communication diagrams, which depict interaction between entities, are
suitable for the representation of Operation Dictionary, since the latter involves interactions between
operations showing in particular invocation order and parameter passing between them. Physical View, which
comprises the network infrastructure, is illustrated through UML deployment diagrams, which are commonly
used to represent network architectures (Kaehkipuro, 2001). Lastly, the representation of Topology View is
based on UML component diagrams.

FUNCTIONAL VIEW
Stereotype EIS Metamodel Entity Notation

ServerModuleComponent Server Module

FileServerModuleComponent Server Module

ClientModuleComponent Client Module

ServiceComponent Service

Invoke Invoke relationship between
Services

UserProfileComponent User Profile

Initiate
Initiate relationship between
User Profiles and Services of
Client Modules

Operation Dictionary

OperationAction Service operation

ElementaryOperationLifeline Elementary Operation

IntermediateOperationLifeline Intermediate Operation

ApplicationOperationLifeline Application Operation

ArgumentsMessage
Message sent between
operations conveying
parameter values

Figure 3. Stereotypes of the EIS Engineering Profile

3. Case Study

The proposed framework has been applied for the engineering of a typical banking system. In this case,
resource allocation and network design stages were performed by IDIS software tool (Nikolaidou, 1999), that
supports the representation and exploration of resource allocation and network topology design through
algorithms combining mathematics and rules of thumb. To evaluate distributed system performance, the
discrete event simulation tool described in (Nikolaidou, 2003) was used. Requirements definition was
performed by the system designer using the EIS engineering UML 2.0 profile, implemented in Rational
Modeler (IBM Co, 2005).

An appropriate UML modeling tool for EIS engineering UML 2.0 profile implementation must fulfill the
following requirements: a) it must be UML 2.0 compatible, b) it must facilitate mechanisms to extend the
provided functionality (e.g. by importing profiles) and c) it must export models in XML based on existing
UML classes and profile-specific stereotypes. After serious considerations regarding various UML 2.0 tools,

PHYSICAL VIEW
Stereotype EIS Metamodel Entity Notation

NetworkPackage Network

ServerDevice Server

WorkstationDevice Workstation

ProcessUnitDevice Process Unit

StorageUnitDevice Storage Unit

TOPOLOGY VIEW
Stereotype EIS Metamodel Entity Notation

SitePackage Site

ServerProcessComponent Server Process Instance

ClientProcessComponent Client Process Instance

UserProfileComponent User Profile Instance

DataComponent Data Entity
Initiate

Initiate relationship between
User Profile Instances and
Client Process Instances.

Invoke Invoke relationship between
Server Process Instances

we decided to implement the profile in the Rational Software Modeler environment (IBM Co, 2005). The
extensibility features of the Rational Software Modeler are based on the open-source Eclipse platform. Eclipse
provides useful APIs, frameworks (e.g. Workbench, Workspace, Help, etc.) and plug-ins that facilitate the
development of new tools. EIS models are stored in an XML format in accordance with XMI (OMG 2005) to
ensure interoperability. Before using a specific tool, the partial transformation of EIS model into the tool-
specific internal model is realized. Using this transformation, the invocation and initialization of any tool can
be automatically performed. The case study focuses on requirements definition and aims at demonstrating the
use and implementation of EIS engineering profile through Rational Modeler. However, hits on the overall
framework functionality are provided.

The Bank supports 38 discrete teller transactions. The amount of transactions/day varies according to branch
size, while the average amount of teller transactions in large branches is over 10.000 per day. The required
response time is 15-18 sec for most transactions. The system architecture relies on server-based computing. A
central database is installed in headquarters, while transaction logs are maintained in local databases of each
branch. Transactions are coordinated by a transaction monitoring system – TMS (Tuxido), also installed in
headquarters. Transactions are composed by 24 discrete atomic transactions initiated by TMS. Each
transaction consists of 3 to 7 atomic ones. All atomic transactions are implemented by stored procedures
running in the central database. To enhance security and ensure a single authentication point, all user programs
run on a dedicated execution server (CITRIX), while in user terminals only the corresponding client (CITRIX
client) is installed.

Functional View
Functional view facilitates the system designer to a) define the EIS architecture (client and server modules)
and b) define the functionality provided by its modules and the requirements imposed by them and the
interaction between them to the network infrastructure.

EIS modules identified were the following: File Server, CentralDB, LocalDB, TMS and Citrix. Since
LocalDB represents logging, only a simple insert service was implemented for recording the log. CentralDB
supports 33 stored procedures, represented as a different service. TMS Module includes 24 services
corresponding to discrete atomic transactions. Citrix Module includes 38 services corresponding to discrete
teller transactions. They involve the invocation and processing of forms, the activation of atomic transactions
through TMS and log recording. Tellers are modeled as User Profiles initiating CITRIX Client modules
corresponding to each teller transaction. In the following, we focus on teller transaction to demonstrate real-
world system representation capabilities of the proposed framework.

Figure 4 represents a fraction of Functional view, implemented as a Component diagram in Rational
Modeler, emphasizing services needed for the representation of transactions trx31600 (i.e. cash deposit) and
trx2000 (i.e. request business loan). As depicted in the figure, services are represented as component
stereotypes and modules as package stereotypes. The trx31600 service of the Citrix Service Module is selected
in the figure. Additional stereotype attributes are stored in the corresponding fields supported within Rational
Modeler platform (bottom right part of figure 4). Input parameters of each service are added by system
designer through a custom menu created using Rational Modeler Eclipse API. In this case (trx31600), only the
module attribute is filled, since the service has no input parameters (inputParameterList attribute is empty). On
the left part of Rational Modeler’s screen in figure 4, it is shown that trx31600 service component is further
decomposed into other entities.

Trx31600 service is described by the corresponding activity diagram, implemented as a subdiagram of the
Functional view component diagram. It is represented in figure 5. As shown in the figure, trx31600 includes
the activation of the appropriate forms (operation action 1), the activation of the central database through the
TMS (operation action 2 and 3) and local database update (operation action 4). Each discrete step is
represented by an action instantiating a predefined operation included in the Operation Dictionary. Operations
represent requirements imposed to system resources (network, processing nodes, etc). When defining an
action, all input parameter values of the corresponding operation must be filled. They must be either constant

or already defined as trx31600 service input parameters. As shown in figure 5, all operation input parameters
must be constant, since trx31600 service has no inputParameterList. The corresponding validation constraint is
implemented as a custom script initiated by Rational Modeler’s Run Validate default menu appearing when
right-clicking on any UML diagram entity. Some of the actions, as request (selected in figure 5), result in the
invocation of other services.

A constraint automatically adds the corresponding invoke entity between the relative service components of
Functional View (figure 4). The invoke entity has the same name as the action.

 Figure 4: Fraction of Functional View –
Transactions trx31600 and trx2000

Figure 5: Trx31600 activity diagram

Operation Dictionary
Figure 6 represents a fragment of the operation dictionary. All operations are decomposed into elementary
ones (processing, storing, transferring), representing processing, storing and network requirements. The system
designer may add new operations in the dictionary, to enhance operation expression.

Figure 6: Operation Dictionary Fragment

In figure 6, the addition of form_access operation is presented. Three steps should be accomplished:
parameter definition, definition of dependencies to existing operations and validation performance. A related
constraint checks if all the parameters defined for an operation are passed as values to called operations used
for its execution. Parameter and dependency definition is performed through pop-up forms. Form_access

operation parameters are FileServer, form_name and processing. Form_access operation “uses” two other
operations in order to be executed: processing and write. First, calls processing (which is elementary
operation) and then write and then again processing. Parameter values of the called operation must be defined.
The pop-up window entitled Set Call Parameters depicts write operation parameter definition.

Topology and Physical Views
The Topology View facilitates process and user profile allocation to sites. Allocation is performed by the
designer through Rational Modeler interface. Alternative, the designer may invoke IDIS to perform the
allocation of processes or data. Three different types of branches are supported: large, medium and small.
Large branches have more than 30 tellers stationed at two different floors. The upper floor is dedicated to
business transactions (10 tellers), while all others are served in the main hall. The corresponding fraction of
Topology View is depicted in figure 7. Each hall is represented as a subsite of a branch site (both represented
as Site Packages). Headquarters is also presented as a site.

Figure 7: Fraction of Topology View

Figure 8: Fraction of Physical View

Tellers, modeled as users, are placed in Main Hall and Upper Floor sites, along with corresponding Citrix
client processes. Since the system relies on server-based computing, most server processes are placed only in
headquarters, while no replication is employed simplifying the overall architecture. Furthermore, since there
was a request to maintain log data in local branch databases, a local database server replica is placed in each
branch. The only issue to be explored was the placement of CITRIX Server. Although the system designer
placed a CITRIX Server process in each branch, the logical configuration tool removed the processes from
medium and small branches and placed one in Headquarters to minimize communication cost. This is codified
in the EIS model stored in XML. When this model is loaded again in the UML tool, Topology View appears
automatically updated.

Processes and users appearing in Topology View must correspond to EIS modules and user profiles
represented in Functional View. As shown in figure 7, when defining process replicas, a shortcut menu
containing two drop-down lists appears. The first one corresponds to the application (described by a discrete
Functional View) and the other one to the module (defined within the Functional View). Furthermore, the
corresponding relationships between processes and modules must be defined in both diagrams. The properties

of server process stereotype are shown at the bottom part of Rational Modeler Screen. In figure 7, the property
values of Kallithea DB server component are shown. A related constraint is activated by the Run Validation
menu option.

Physical View is rather trivial. It facilitates network design and is performed by the designer through
Rational Modeler interface. Alternative, the designer may invoke IDIS to perform this task. A fraction of it is
presented in figure 8. The overall network is TCP/IP based. Branches are connected to headquarters using
leased lines, forming a private WAN. The connection speed is indicated as the name of membership relation
between node devices and site packages. As indicated in the figure, branches are internally supported by
switched 100BaseT Ethernet. The structure of Physical View in the banking system (network architecture) was
predefined. As shown in the figure, the system designer may define the processes running on a node through a
pop-up window. The candidate processes for a server node must belong to the corresponding site and be server
processes. Network hierarchy must correspond to site hierarchy and vice versa. Thus, when validating the
model presenting in figure 8, an additional site (corresponding to the Bank Private WAN) should be
automatically added in Topology View of figure 7.

4. Conclusions
A consistent framework for EIS engineering was introduced. It consists of a metamodel describing alternative
system views and the relations between them, a corresponding methodology comprising discrete stages
performed by the system designer or software tools and a UML 2.0 profile for view representation. The main
advantage of the proposed framework is the formal definition of views and their consistent UML 2.0
representation. This is accomplished using constraints in both the metamodel and the UML profile. As proven
by the presented case study, constraints play an important role in the consistent representation of the system
under study, since they impose the necessary restrictions and relationships between entities participating in
different views. The proposed framework is currently tested in terms of completeness and expressiveness,
using large-scale EIS architectures as test cases.

5. Acknowledgement

This research was supported in part by Pythagoras program (MIS 89198) co-funded by the Greek Government
(25%) and the European Union (75%).

6. References
Alexopoulou N., Nikolaidou M, et al, 2006. “Introducing a UML Profile for Distributed System configuration”, in proceedings of

ICEIS 2006.
Boer F.S., Bonsangue m.M., Jacob J., Stam A., Torre L., 2004. “A Logical Viewpoint in Architectures”, in proceedings of IEEE

EDOC 2004.
Graupner S., Kotov V., Trinks H., 2001. “A Framework for Analyzing and Organizing Complex Systems”, in Proceedings of the 7th

International Conference on Engineering Complex Computer Systems, IEEE Computer Press.
IBM Co, 2005. Introducing Rational Software Modeler, http://www-128.ibm.com/devworks/rational//05/329_kunal/
Kaehkipuro P., 2001. “UML-Based Performance Modelling Framework for Component-Based Distributed Systems”, Lecture Notes in

Computer Science 2047, Performance Engineering, Springer-Verlag.
Nikolaidou Μ., Lelis D., Mouzakis D., Georgiadis P., 1999. “A Discipline Approach towards the Design of Distributed Systems”,

Distributed System Engineering Jοurnal, Vol. 2, No 2, IOP.
Nikolaidou M. Anagnostopoulos D., 2003. "A Distributed System Simulation Modeling Approach", Simulation Practice and Theory

Journal, Vol. 11, No 4, Elsevier Press.
Nikolaidou M., N. Alexopoulou, A. Tsadimas, A. Dais, D. Anagnostopoulos, 2006. “A Consistent Framework for Enterprise

Information System Engineering”, in proceedings of IEEE EDOC 2006.
OMG Inc, 2004a. UML Superstructure Specification, Version 2.0, 8/10/2004.
OMG Inc, 2004b. UML 2.0 Infrastructure Specification, 30/4/2004.
OMG Inc, 2005. MOF 2.0/XMI Mapping Specification, v2.1
Zachman A. J. ,1999. “A Framework for Information Systems Architecture” IBM Systems Journal, Vol. 31, No. 3, pp.445 –470.

	Abstract
	1. Introduction
	2. EIS Engineering Framework
	2.2 EIS Engineering UML 2.0 Profile
	3. Case Study
	4. Conclusions
	5. Acknowledgement

	6. References

