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Abstract

Using simulation to support making decisions imposes that models are thoroughly validated. We discuss widely
adopted techniques for testing the validity of simulation results against real observations, as various techniques
may be employed depending on the statistical features and the number of the available system/model data sets.
Confidence-interval-based comparison provides certain advantages, but cannot be employed when a single system
output data set is available. We propose an effective validation technique, performing confidence-interval-based
comparison using a single system data set and multiple model data sets. The system data set is considered as a discrete
signal andm-fold decimation is used, according to signal processing theory, fulfilling the essential requirements
imposed to retain the statistical features of the original data set. We have evaluated both the effectiveness and the
applicability of this technique, and thus have experimented with various data sets (both test and real-world). Results
and conclusions are discussed to indicate the potential of the technique.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important steps in the development of a simulation model is determining whether this is
an accurate representation of the system under study[1]. As a model is developed for a specific purpose (or
application), its validity is examined with respect to this purpose. A widely accepted definition for model
validation is thus “the process of determining whether a simulation model is an accurate representation
of the system, for the particular objectives of the study”[2].

Various kinds of validation can be identified, e.g. conceptual model validation, structural validation and
behavioral validation[3,4]. Conceptual model validation is the evaluation of the conceptual model with
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respect to the system, where the objective is primarily to evaluate the realism of the conceptual model
with respect to the goals of the study. Structural validation is the evaluation of the structure of a simulation
model with respect to the perceived structure of the system. Behavioral validation is the evaluation of
the simulation model behavior. Model validation can also be supportive to system identification, usually
in the context of monitoring and fault detection. Parameter estimation and inverse modeling capabilities
may then be provided. Our concern in this paper is with behavioral validation, that is, the process of
demonstrating that the behavior exhibited by the model is consistent with the expected and/or measured
behavior of the system.

As one cannot establish the “absolute” validity of the model, the goal in the validation process is to
gain a reasonable level of confidence so that inferences drawn from the model can be accepted with
confidence, i.e. they are genuinely applicable to the real phenomenon that is being studied[3]. The most
definite test for model validity is to establish that its output data closely resembles the output data that
would be expected from the actual system.

When the system under study is an existing one, model validation is considerably enhanced. A number
of statistical tests have been described in the literature for comparing the output from a simulation model
and the corresponding real-world system. This comparison is not as simple as it might appear, as the output
processes of almost real-world systems and simulations are nonstationary (i.e. the distributions of succes-
sive observations change over time) and autocorrelated (i.e. observations are correlated with each other)
[5]. Classical statistical tests based on independent and identically distributed (IID) observations are thus
not directly applicable. Hypothesis tests, on the other hand, are far from appropriate in this case, as a null
hypothesis that the system and the model are exactly the same will be false due to the stochastic nature of
simulation. It is thus more meaningful to discuss about the differences between the model and the system,
to determine how close they are, and thus if the model realistically represents the system under study.

The most trivial approach to accomplish system-model data comparison is to compute one or more
statistics from the real-world observations and corresponding statistics from the model data, and then to
compare the two sets of statistics without the use of a formal statistical method (inspection approach)[5].
This approach is vulnerable to the inherent randomness of the observations from the system and, especially,
from the model due to its stochastic nature. A better approach for system-model data comparison uses the
system historical input data for running simulation experiments. This is called the correlated inspection
approach, in which both the model and the system are subjected to the same input data[5]. The randomness
caused by sampling from distributions to represent model input data is thus eliminated. However, this
approach is totally inappropriate in the case of production runs, where the model is used to investigate
the system behavior under various, yet of unknown effect conditions.

A more effective approach is to use confidence intervals to give an indication of the magnitude by
which the system differs from the model. Specifically, we try to reach a reliable approximate confidence
interval for the difference in the two expectations (from the system and the model). There is more than one
technique that can be employed, depending on various criteria, such as the number of available data sets
from the system and the model. Time series may also be employed for system/model data comparison.
In most cases, such approaches require only one set of output data from the system and the model, but
have other constraints (e.g. require that system output is independent from model output, or that a steady
state can be reached).

Concerning the latter approaches, derivingn simulation output data sets is, in general, not difficult
to accomplish. There are domains, however, where a single output set is only available, as for most
military and manufacturing systems, due to the paucity of real-world data. Another such case is real-time
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simulation, i.e. when simulation reaches conclusions for systems behavior in real time. The termreal
time, as it relates to simulation, denotes that advancement of simulation time must occur in the real-world
time (i.e. not faster or slower). In faster-than-real-time simulation (FRTS), results are delivered earlier
than real-time. In FRTS, we are capable of using system observations and model results to both test model
validity and, in case of a valid model, to reach predictions for the system future states. However, in both
RTS and FRTS, it is most probable that, due to the limited time interval in which system and model data
are collected, only one system output data set will be available.

In model validation, it is acknowledged that confidence-interval-based comparison between the system
and the model provides considerable advantages, being a formal method that may also give an indication of
the magnitude by which the corresponding estimated means differ. Confidence-interval-based comparison
takes under consideration not only the statistical means in system (model) data sets, but also the variance
of these observations. Moreover, the process of calculating confidence intervals and reaching subsequent
conclusions can be automated for real-time execution. However, to be applied, at leastm model output
data sets are required, which is not always feasible in practice.

In this paper, we review existing comparison methods and focus on how validation may be performed
based on either multiple or a single system data set. Considering the disadvantages of the last case,
we introduce a technique for derivingm data sets from a single original system data set, to perform
system/model comparison using confidence intervals (an early approach towards this objective has also
appeared in[6]). Specifically, we usem-fold decimation for producingm sets of system observations
retaining the statistical features of the original sequence. Potential applications of this technique extend
to all types of simulations where model validation must be performed using a single system data set (e.g.
military and manufacturing systems), and especially to RTS, where validation must be accomplished as
an automated process, with minimum time overhead.

The paper is organized as follows: inSection 2, alternative comparison methods for accomplishing
model validation are described. InSection 3, we discussm-fold decimation and the proposed technique
for performing a confidence-interval-based comparison using a single system data set. InSection 4, we
apply the technique to various data sets, both test and real-world, to test its effectiveness and applicability,
and discuss the results obtained, while conclusions reside inSection 5.

2. Model validation

In the general case, validation is accomplished based on a number (k) of measures that are under monitor-
ing in the system and the model. These values can be stored ink corresponding variables (MV1 . . . MV k)
and to accomplish validation,k comparisons need to be made. The values of monitoring variablei for
the system and the model are, respectively, denoted as MVir and MVis. For example, simulating a
single-server/single-queue system, the average delay in the queue can be used for model validation. In
this case, there is a single monitoring variable MV1. MV1r and MV1s are the corresponding values for
the delay in the system and the model.

In each comparison between MVir and MVis, a single comparison technique is used as more appropriate
for the specific data. The acceptable deviation range (dr) must be defined for each comparison, so that,
when model value deviation from the corresponding system values exceeds a predetermined range,
invalidity is indicated. However, as later discussed, deviation range may as well be interpreted in a
different way, depending on the comparison technique employed.
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When the inspection approach is used, deviation range determines the lower and upper endpoints of
the interval [l(MV ir), u(MV ir)] and model validity is obtained when:

MV is ∈ [l(MV ir), u(MV ir)]

l(MV ir) = MV ir(1 − dr), u(MV ir) = MV ir(1 + dr)

The above apply when one system and one model data set are available, deriving a single observation for
the system (MVir) and the model (MVis). If m system data sets andn model data sets are, respectively,
available, a single observation is derived from each data set and MVir, MV is are calculated as follows:

MV ir = sum(MV i1r, MV i2r, . . . , MV imr)

m

MV is = sum(MV i1s, MV i2s, . . . , MV ins)

n

where MVijr (MV ijs) is the statistical sample obtained fromj data set whenm (n) system data sets
(replications) are available. Simulating a single-server/single-queue system, for example, we executen
replications to ensure statistical validity of the results. For the first monitoring variable (MV1) (e.g. queue
delay), each replicationj produces a single value MV1js, i.e. the first replication produces MV11s, the
second one produces MV12s, etc. The final value for the queue delay in the model (MV1s) is calculated
as the average of all values produced by then independent replications. Considering thatm sets of
observations are available for the system under study, the respective final value for queue delay in the
system (MV1r) is calculated as the average of all the values produced by them data sets.

A more effective approach is to use confidence intervals to give an indication of the magnitude by which
the system differs from the model[5]. Specifically, we try to reach a reliable approximate confidence
interval for the difference in the two expectations (from the system and the model). There is more than one
technique that can be employed, depending on various criteria, such as the number of available data sets
from the system (m) and the model (n). Law and Kelton suggest the use of the paired-t approach for building
a confidence interval whenm = n (for such a case, see[7]). This approach may be applied even when
results from the respective system and model data sets are correlated with each other. On the other hand, if
there is no such correlation, the approach proposed by Welch[8] may be employed. This approach is used
for comparing two systems with unequal and unknown variances, called theBehrens–Fisher problem,
when output data are normally distributed[8]. This classical approach is appropriate for building a
confidence interval based on a different number of data sets, as it enablesm to be different thann, but
imposes that system data sets are independent from the corresponding model data sets. This approach
has a wider applicability, as usuallym < n. Applying the Welch approach:

MV ir =
∑m

j=1MV ijr

m
, MV is =

∑m
j=1MV ijs

n

S2(MV ir) =
∑m

j=1[MV ijr − MV ir]2

m − 1

S2(MV is) =
∑n

j=1[MV ijs − MV is]2

n − 1
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The estimated degrees of freedom are computed as

f̂ = [S2(MV ir)/m + S2(MV is)/n]2

[S2(MV ir)/m]2/(m − 1) + [S2(MV is)/n]2/(n − 1)

The following interval is an approximate 100(1 − α)% confidence interval for MVir–MVis

MV ir − MV is ± tf̂ ,1−a/2

√
S2(MV ir)

m
+ S2(MV is)

n

Evidently, for confidence intervals, the deviation range defines the valuea, which means that we wish the
confidence interval to cover MVir–MVis with probability 1− a. Suppose the upper and lower endpoints
of the interval are marked asu(a) andl(a), respectively. If 0/∈ [l(a), u(a)], the difference between MVir
and MVis is statistically significant at levela and we consider the model to be invalid. Based on the above,
we acknowledge that confidence-interval-based comparison between the system and the model provides
the following advantages.

1. It is a formal method that may also give an indication of the magnitude by which the corresponding
estimated means differ.

2. It takes under consideration not only the means in system (model) data sets, but also the variance in
these observations.

3. The process of calculating confidence intervals and reaching subsequent conclusions can be automated
for real-time execution.

However, to apply this method with reliability, at leastm model output data sets are required (according
to the Welch approach)—note that it is not possible to increase reliability just by increasingn (i.e. the
number of replications) when a single system data set is available. As already mentioned, is not possible
to havem data sets for specific application domains. Furthermore, in both RTS and FRTS, it is most
probable that, due to the limited time interval in which system and model data are collected, only one
system output data set will be available.

3. m-Fold-decimation-based technique

We introduce a technique for derivingm data sets from a single original system data set, to perform
model validation using the confidence interval approach. We usem-fold decimation for producingm sets
of system observations retaining the statistical features of the original sequence. Potential applications of
this technique extend to all types of simulations where model validation is accomplished using a single
system data set (e.g. military and manufacturing systems), and especially to RTS, where validation must
be accomplished as an automated process, with minimum time overhead.

Consider that MVir is calculated from a sequence of system valuesx1, x2, . . . , xn, wherex(n) is a
stochastic process andn is an integer. Having this single sequencex(n), we consider it as a discrete signal
and use well-established methods from digital signal processing to obtain a number of sequences that
retain the statistical features of the initial sequence. A basic operation in multirate system digital signal
processing is decimation. Them-fold decimator takes an input sequencex(n) and produces the output
sequence

xm(n) = x(mn)
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Fig. 1.m-fold decimation (m = 2).

wherem is an integer[9]. Only these samples fromx(n) that occur at time equal to multiples ofm are
retained by the decimator.Fig. 1 demonstrates this idea form = 2. As is substantiated, decimation
results in aliasing, unlessx(n) is bandlimited[9]. To retain the statistical features of a sequencex(n)
using a sequencexm(n), we need to be able to reconstructx(n) from xm(n). In general, it may not be
possible to recoverx(n) from xm(n) because of loss in information. To avoid this,m must satisfy the
condition[9]

|ω| <
π

m
(1)

ω being the angular frequency ofx(n). To calculate |ω|, we use the discrete time Fourier transformation
(DTFT) onx(n) [10].

X(ω) =
n=+∞∑
n=−∞

x(n)e−jωn

Fulfilling condition (1) is required since decimation causes an expansion to the Fourier transformX(ejω)
of the input signalx(n). When a signal is being decimated by a factor ofm, the stretched version ofX(ejω)
may overlap with its shifted replicas and, in this case,x(n) cannot be recovered fromxm(n) (the overlap
effect is called aliasing)[9].

To find the appropriate frequencyωmax to bandlimit the signal spectrum in the range|ω| < ωmax, we
estimate the power spectral density (PSD) ofx(n) using the Welch method[11]. In the PSD ofx(n), the
Fourier coefficients determine the distribution of power at the various discrete frequency components.
The range ofω is [0, ω]. The area below PSD(ω) in the power spectrum density is a measure of the
amount of information ofx(n) (Fig. 2). Bandlimitingx(n) in the range|ω| < ωmax, frequencies above
ωmax are excluded. To avoid a significant loss of information, the following condition is applied:

ωmax∑
i=0

PSD(ωi) ≥ (1 − l)

π∑
i=0

PSD(ωi) (2)

Using (2), we determine the frequency range and may accordingly apply a bandlimit filter to preserve
x(n), depending on the choice ofl. The maximum frequency preserved isωmax(l). The smaller the value of
l, the smaller is the information loss. Bandlimiting the signal is achieved through a digital filter, i.e. a filter
that takes a sequence of numbers (the input signal) and produces a new sequence of numbers (the filtered
output signal). Applying a simple low-pass filter is required, i.e. one that does not affect low frequencies
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Fig. 2. Example PSD ofx(n).

Fig. 3. Digital filter.

and rejects high frequencies. The gain of the ideal low-pass filter is equal to 1 for frequencies between
0 Hz and the cutoff frequencyfc Hz, and 0 for all higher frequencies (ωmax = 2πfc) [12], as depicted in
Fig. 3. The output spectrum is produced by multiplying the spectrum obtained from the PSD ofx(n) by
the transfer function, and contains the information included in [0, PSD(ωmax)].

Having ensured (1), it is possible to obtainxm(n) throughm-fold decimation. Signalsxk(n), 1 ≤ k ≤ m,
also preserve the statistical features ofx(n), using a lower degree of decimation. Decimation signals can
be produced using a digital filter bank which splitsx(n) into m sequencesxk(n), 1 ≤ k ≤ m, typically
called subband signals[9]. Independence between subband signals is enabled when a subset of them is
selected, with various (as different as possible) degrees of decimation.

Summarizing,m data sets can be derived from the original signal using a technique comprising the
following steps (Fig. 4).

1. Calculate the power spectral density of the data set.
2. Calculate the maximum frequency contributionωmax where

∑ωmax
i=0 PSD(ωi)(1 − l) ≥ ∑π

i=0PSD(ωi).
Then, calculatem using condition (1)

3. Constructm sequencesxk(n), 1 ≤ k ≤ m, usingm-fold decimation
4. Selectm′ sequences using as different as possible degrees of decimation. As sequencesx1(n) andxm(n)

are evidently selected (having decimation degrees equal to 1 andm, respectively),m′ − 2 sequences
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Fig. 4. Derivingm′ data sets fromx(n).

need to be selected from the remainingm−2 ones. This is optimally accomplished when the following
sequences are ultimately selected:

x1(n), x1+div(m−1,m′−1)(n), x1+2 div(m−1,m′−1)(n), . . . , x1+(m′−2)div(m−1,m′−1)(n), xm(n)

where div(x, y) is the integer quotient of the division of the numeratorx by the denominatory.

To give an example, form = 128 andm′ = 10, div(m − 1, m′ − 1) = 14 and, thus, sequencesx1(n),
x15(n), x29(n), x43(n), x57(n), x71(n), x85(n), x99(n), x113(n) andx128(n) are selected.

3.1. An example

An example system/model data comparison using the above technique is the following: the assembly
process of a manufacturing system consumes time equal todi. A single data set is only available from the
manufacturing system, whilen data sets (n > 1) are available from experimentation with its respective
simulation model.

Model validation objective is to reach reliable conclusions for the quality of the model. We use the
average delay (avgdelay) for comparing the system and the corresponding model. A single monitoring
variable MV1 is thus required. We apply the proposed technique to enhance the effectiveness of the
inspection-approach-based model validation.

Considering the original sequenced(r) = d1, d2, . . . , dr, we derive the power spectral density of this
spectrum and then calculate the maximum frequency contributionωmax where the amount of information
is greater than at least (1− l)% of the overall information ofd(r). The maximumm is calculated according
to condition (1). System observation datad(r) andn = 10 model data setsy1(r), y2(r), . . . , y10(r) are
depicted inFig. 5for µ = 10 andσ2 = 2.0. The time consumed (di) follows the normal distribution and
the model is an accurate representation of the system.

Using a value of 0.001 forl parameter, the power spectral density ofd(r) andωmax are depicted in
Fig. 6. In this case,m is calculated to be equal to 128. Then,m sequencesdk(r) are constructed using
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Fig. 5. System-model initial data sets.

Fig. 6. Power spectral density.

m-fold decimation. Sequencesdk(r) for various values ofk are depicted inFig. 7. Then,m′ sequences are
finally selected. Asm = 128, sequencesx1(n), x15(n), x29(n), x43(n), x57(n), x71(n), x85(n), x99(n), x113(n)
andx128(n) are selected. Obtainingm′ system observation data sets andn model data sets, we build a
100(1−a)% confidence interval for MV1r–MV1s (a single monitoring variable is used). We first calculate
MV1r, MV1s, S

2(MV1r), S
2(MV1s) andf̂. Then, we construct the confidence interval [l(a), u(a)]. The

difference between MV1r and MV1s is statistically significant at levela if 0 /∈ [l(a), u(a)].

4. Experimental evaluation

To evaluate the proposed technique, we have made numerous experiments with various data sets (both
test and real-world). We also experimented with both exact and approximate model representations of
the system, to determine if the model seems to be (a) valid, when actually is an accurate representation of
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Fig. 7. Decimated system data sequences.

the system and (b) invalid, when actually is an approximate representation. For the case of hypothetical
data, we have experimented with data sets from the following distributions: uniform, normal, poisson,
lognormal and gamma. Results from system/model comparisons, for both accurate and approximate
representations, are depicted inTable 1. All steps of this process were automated using Matlab.

In all cases presented inTable 1, we used models producing output following the same distribution
with system data. Distribution parameters for both the system and the model are presented along with the
corresponding statistical properties (mean, variance), which are determined by the specific distribution
parameters. For instance, using parameters 6.0 and 10.0 for the gamma distribution, the theoretic mean
is 6.0 and variance is 1.9. Values ofn andm and the lower and upper endpoints [l(a) andu(a)] of the
confidence interval formed are also depicted. Calculation ofm was performed forl = 5 × 10−2. In case
m > 5, we setm′ = 5 and respectively, selected only 5 system data sets. In all cases, we used five model
data sets and built 90% confidence intervals.

Based on the above results, the technique was successfully employed in all test cases, indicating model
validity (invalidity) when the model was an accurate (approximate) representation. This is indicated by
success (s) in the last column ofTable 1, when 0∈ [l(a), u(a)] for accurate representations and 0/∈
[l(a), u(a)] for approximate models. There was also a case the technique was not applied (i.e. decimation
was not possible) (second row ofTable 1). Such cases, however, should not be considered as failures, as
no misleading results are obtained.

We also experimented with real-world data sets. In such a test case, we used traces of HTTP requests—a
set from the University of Saskatchewan’s www server is available athttp://ita.ee.lbl.gov/html/contrib/
Sask-HTTP.html. We simulated the responses issued by web servers (heading to client processes) and
built a single data set using the HTTP requestreply size field. Data analysis indicated thatreply size
follows the normal distribution withm = 4805 andσ2 = 18,653. Applyingm-fold decimation with

http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html
http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html
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Table 1
Data sets and comparison results

Distribution type Parameters Statistical properties: mean/variance Data sets Confidential interval Success/fail

System Model System Model n m l(a) u(a)

Gamma 6/10 7/1 6/1.9 7/7 5 2 −1.75 −0.60 s (invalid)
Gamma 950/6 1000/11 950/387.84 1000/301.51 5 – – – na
Gamma 1000/11 1000/11 1000/301.51 1000/301.51 5 128 −13.52 54.31 s (valid)
Lognormal 2/6 5/7 6/2 7/5 5 2 −2.61 −0.29 s (invalid)
Lognormal 350/1050 300/1000 1050/350 1000/300 5 4 −68.61 −15.74 s (invalid)
Lognormal 300/1000 300/1000 1000/300 1000/300 5 4 −34.29 66.28 s (valid)
Normal 6/2 7/5 6/2 7/5 5 2 −2.63 −0.50 s (invalid)
Normal 1050/350 1000/300 1050/350 1000/300 5 2 3.95 118.66 s (invalid)
Normal 1000/300 1000/300 1000/300 1000/300 5 2 −34.08 64.65 s (valid)
Poisson 12 13 12/3.46 13/3.61 5 2 −2.37 −0.76 s (invalid)
Poisson 13 13 13/3.61 13/3.61 5 2 −1.40 0.14 s (valid)
Poisson 960 950 960/30.98 950/30.82 5 128 9.60 16.94 s (invalid)
Poisson 950 950 950/30.82 950/30.82 5 128 −0.40 6.94 s (valid)
Uniformreal 3/9 −2/16 6/1.73 7/5.20 5 3 −1.37 −0.12 s (invalid)
Uniformreal 500/1400 400/1600 950/259.81 1000/346.41 5 4 −68.61 −15.74 s (invalid)
Uniformreal 400/1600 400/1600 1000/346.41 1000/346.41 5 4 −18.76 34.08 s (valid)
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Table 2
Applying m-fold decimation for various data sets

Distribution type Parameters Statistical properties: mean/variance M1 M2 Figure

Normal 103/0.001 103/0 128 16 8(b).1
Normal 103/0.005 103/0.01 128 16 8(b).2
Normal 103/0.05 103/0.05 128 14 8(b).3
Normal 103/0.01 103/0.01 128 16 8(b).4
Normal 103/102 103/100 128 na 8(b).5
Gamma 1/1 1/1 na na 8(c).1
Gamma 1/10 1/0.32 2 na 8(c).2
Gamma 1/102 1/0.10 128 na 8(c).3
Gamma 1/103 1/0.03 128 na 8(c).4
Gamma 1/104 1/0.01 128 na 8(c).5
Poisson 100 100/10 128 na 8(d).1
Poisson 200 200/14.14 128 na 8(d).2
Poisson 300 300/17.32 128 na 8(d).3
Poisson 400 400/20 128 na 8(d).4
Poisson 500 500/22.36 128 na 8(d).5
Lognormal 106/106 106/106 na na 8(e).1
Lognormal 103/106 106/103 128 na 8(e).2
Lognormal 1/106 106/1 128 16 8(e).3
Lognormal 106/103 103/106 na na 8(e).4
Lognormal 106/1 1/106 na na 8(e).5
Uniform −10/10 0/5.77 128 na 8(f).1
Uniform 0/20 10/5.77 64 na 8(f).2
Uniform 0/40 20/11.55 3 na 8(f).3
Uniform 0/60 30/17.32 2 na 8(f).4

l = 5 × 10−2, m was calculated to be equal to 128, as depicted inFig. 8(a). We selectedm′ = 5 system
data sets and also derived 5 model data sets. We then compared the actual data set with two diverse
model data sets, using either an accurate model (m = 4805 andσ3 = 18,653) or an approximate model
(m = 4500 andσ2 = 20,000). For the accurate model, the confidence interval [−204.93, 45.90] was
built. As 0∈ [−204.93, 45.90], the model is considered to be valid, which is correct. For the approximate
model, the confidence interval [87.27, 356.12] was built. As 0/∈ [87.27, 356.12], the model is considered
to be invalid, which is also correct.

The applicability of the technique introduced was also a matter of concern, as evidently, not all data
sets can be subjected tom-fold decimation. To examine applicability, we have experimented with diverse
data sets from the previously mentioned distributions: uniform, normal, poisson, lognormal and gamma.
A subset of experiments is depicted inTable 2. Each data set contains 3,000 samples. We also examined
if decimation is possible for two different values ofl:l1 = 5 × 10−2 andl2 = 10−8. Two values form
(m1 andm2) are, respectively, calculated. When decimation cannot be applied, na is used to denote it.
Table 2presents these results, including: the distribution type of system data, the parameters and statistical
properties (mean, variance) determined by these parameters and the two respective values form (m1 and
m2) calculated forl1 andl2.

We used various values ofl to explore the effect of this parameter, as evidently lower values reduce the
applicability ofm-fold decimation. The power spectral density and calculation ofm for system data sets



D. Anagnostopoulos et al. / Mathematics and Computers in Simulation 65 (2004) 273–288 285

Fig. 8. Power spectral density: (a) real-world HTTP requests; (b) normal distribution data; (c) gamma distribution data; (d)
poisson distribution data; (e) lognormal distribution data; (f) uniform distribution data.
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Fig. 8. (Continued ).
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of Table 2are depicted inFig. 8(b)–(f)(a reference to these results appears in the last column). The PSD
and calculation ofm for the real-world HTTP request data are depicted inFig. 8(a). For l = 5 × 10−2,
decimation was possible in nearly all cases. On the other hand, the technique could not be widely applied
for very low values (close to 10−8).

Overall evaluating the effectiveness and applicability of the technique introduced with both real-world
and hypothetical data, the technique performed well, indicating that the model was valid—when accurately
representing the system—and invalid otherwise. When approximate model representations were tested
against the real system, confidence intervals clearly indicated this deviation, also providing an indication
of the magnitude by which the model deviates from the system. Applying this technique, validation may
be accomplished as an automated process. However, parameterization is critical, as low values ofl reduce
applicability (lower values forl resulted in the calculation of lower values form). It is also evident that se-
lection ofa when constructing the confidence interval has a well-known impact on the reliability of results.

Comparing this technique with the inspection approach, in the latter approach there were numerous
cases where an approximate representation seems to be valid due to the inherent randomness of simulation
runs. This was almost eliminated in the experiments employing this technique.

As far as applicability is concerned, it depends on the specific data sets. Applicability is enhanced
when (a) deviation in system data (s) is reduced; (b)l is increased; and (c) a high number of samples are
available; in our experiments, we used at least 500 samples. However, not being able to apply decimation
should not be considered as a failure, as no misleading results are obtained.

5. Conclusions

We introduced a new model validation technique using a single system data set, to perform system-model
comparison considering not only the statistical mean of data sets, but also the variance of observations.
In this way, validation is far more effective than simply examining the difference between statistical
means, i.e. the currently used approach. The system data set is considered as a discrete signal and
m-fold decimation is used, according to signal processing theory. Model validation is then realized as a
confidence-interval-based comparison. Applications of this technique involve manufacturing and military
system simulation due to the paucity of real-world data, and certainly RTS. The technique was effec-
tively applied for both accurate and inaccurate model representations and validation was accomplished
as an automated process. Appropriate parameterization is however critical, as may considerably affect
the applicability achieved.
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