
Digital Object Abstraction Layer: A Middleware for Building

Federated Digital Libraries

George Pyrounakis Mara Nikolaidou Michael Hatzopoulos

Dept. of Informatics Dept. of Informatics Dept. of Informatics

and Telecommunications and Telematics and Telecommunications

University of Athens Harokopio University of Athens University of Athens

Athens, 157 84, Greece Athens, 176 71, Greece Athens, 157 84, Greece

forky@di.uoa.gr mara@hua.gr mike@di.uoa.gr

Abstract

Federated digital libraries focus on the develop-
ment of common services over multiple, heterogeneous
digital repositories. To offer advanced services for fed-
erated digital libraries, there is a need to provide an ab-
stract representation of digital objects stored within a
specific repository, maintaining their semantics. In this
paper a middleware for the development of federated
digital libraries is introduced, named Digital Object
Abstraction Layer (DOAL). It aims at (a) providing a
unified abstract representation of digital objects stored
in heterogeneous Digital Repositories independently of
the software and location and (b) facilitating the de-
velopment of complex reusable digital library service
components. Its integration within federated digital li-
brary architecture promotes the creation of large scale
distributed digital libraries, providing the same func-
tionality as in the case where all digital content was
stored in a single digital library system.

Keywords

Federated Digital Library, Digital Repository, Dis-
tributed System, Distributed Digital Object

1 Introduction

As extensively described in the literature, digital
repositories (DRs) are usually employed for hosting
the content produced by academic and research insti-
tutes (e.g. papers, thesis, dissertations, lessons etc).
Meanwhile, the concept of digital libraries (DLs) has
been introduced to identify the set of electronic ser-
vices provided mainly by memory institutions (as li-
braries, museums or archives) on their digital content
(either digitized or born digital). Though digital li-
braries and repositories serve the same scope, there is a
slide confusion regarding their functionality. According

to the notions introduced in [11], DL services are devel-
oped over digital repositories in order to build digital
library systems. This approach was adopted in Perg-
amos Digital Library [8], where the Fedora repository
software [19] is used for the lower layers of the system
architecture, responsible for the storage and retrieval
of digital objects. It is also adopted in the following.
Building DL services over heterogeneous digital repos-
itories, located in different servers and on various soft-
ware platforms, results in the formation of federated
digital libraries.

The basic entity of repositories is the digital ob-
ject, as introduced by Kahn and Wilensky in [15]. A
digital object can be conceived as a human generated
artifact that encapsulates underlying digital content
(text documents, images, videos, etc) and related in-
formation (metadata, internal structure, relations with
other objects). The last few years a great amount of
digital objects is aggregated on repositories created by
scientific organizations, universities and research insti-
tutes worldwide. Although many repositories are mem-
bers of federations, the functionality offered by feder-
ated services (usually searching based on a common
subset of metadata) is not as rich as those provided by
local repositories hosting digital collections. In order
to offer the full functionality of a digital collection, a
federated service must be able to retrieve and under-
stand the semantics of the serialized digital objects,
hosted on each repository. This means that DL ser-
vices are dependent on the repository software they
are build for, and cannot be reused in other reposito-
ries or digital libraries. To offer advanced services for
federated digital libraries, a solution must be explored
for handling the rich semantics stored on each digital
object located in any local repository.

In current distributed platforms, as Web Services
[9] and Common Objects Resource Broker Architec-
ture (CORBA) [1] a middleware is used in order to
abstract objects to a level that the physical and log-

ical representations are separated. Adopting a simi-
lar approach, we propose the creation of a middleware
that interprets the structure and semantics of digital
objects stored in different repository software located
in multiple servers. The proposed middleware should
work over current repository software applications, al-
ready used by various organizations, while its main
target is to facilitate DL services that handle digi-
tal objects without possessing information about their
physical characteristics.

Digital Object Abstraction Layer (DOAL) is the
proposed middleware that allows software developers
to build DL services over digital objects, indepen-
dently of the repositories stored. DOAL uses an ab-
stract form of digital objects that retain their seman-
tics (metadata sets, digital content, relations, behav-
ior) and hides their repository-dependent character-
istics including (a) the location of the stored digital
object, (b) the repository software used for its storage
and (c) the encoding used for its serialization. Such
middleware may widen the horizons on the develop-
ment of advanced services based on the content aggre-
gated on federated digital libraries (e.g. processing dig-
ital objects holding structured information emerging
from experiments and stored on distributed reposito-
ries). Besides typical services offered by the majority of
federated digital libraries, many new usages may arise
starting from browsing collections or building complex
workflow applications.

In the next section, current state of federated dig-
ital libraries is described and the motivation for intro-
ducing DOAL is explained. In section 3, basic DOAL
concepts are introduced, as the resulting Federated
Digital Library System architecture and the concept
of Distributed Digital Objects (DDOs). In section 4,
implementation issues as the Digital Repository Con-
nectors and the Abstraction Mechanism, based on Dig-
ital Object Prototype, are explored. An example of
the abstraction process of DDOs is also included to
demonstrate the feasibility of the proposed concepts.
Conclusions and future work reside in section 5.

2 Federated Digital Libraries

Most approaches for building federated digital li-
braries are based on a centralized architecture, using
a server that harvests digital objects information from
the repositories participating in the federation. Har-
vested metadata from digital objects are imported on
a central repository so they are available to the ap-
propriate DL services developed on top of it. Open
Archive Initiative Protocol for Metadata Harvesting
(OAI-PMH) [16] is mainly used for the creation of the
first generation of federated digital libraries where the

provided services are searching and browsing, based on
a core metadata set. Updating of digital objects can-
not be controlled by OAI-PMH, so local repositories
are entirely responsible for the creation and editing
of the digital objects that are provided through the
federated digital library. In such cases, if a user is nav-
igating in the web interface of the federated digital
library and needs more complicated operations than
searching and browsing (e.g. navigation in a collection
hierarchy or digital content presentation) he is usually
redirected to the web interface of the local repository
that contains the specific collection. Some of the fed-
erated digital library projects that use OAI-PMH are
the China Digital Museum Project [20], the National
Science Digital Library [12], the European Library [6]
and CORDRA [14].

The centralized architecture based on OAI-PMH
is defined on Fig. 1. There are also other approaches

Figure 1: A centralized Federated Digital Library ar-
chitecture based on OAI-PMH

for the federation of digital repositories, not depen-
dent on OAI-PMH, as MARIAN [13], DRIVER (Digi-
tal Repository Infrastructure Vision for European Re-
search) [4] and BRICKS (Building Resources for In-
tegrated Cultural Knowledge Services) [3]. Although,
most of them facilitate harvesting of both metadata
and digital content, they are also based on a central-
ized architecture for the provision of federated services.
Still in order to homogenize all content harvested by
different repositories, the full semantics of digital ob-
jects remain on the local repository, encoded and seri-
alized as specified by the repository software. Usually
the local repositories are those that handle the seri-
alized digital objects and provide the more advanced
DL services.

A basic disadvantage of the current technology
DL services is that the digital objects and their se-
rializations are treated as a single entity. Two stan-
dards that are used for digital object serializations
are the Metadata Encoding and Transmission Stan-
dard (METS) [7] and MPEG-21 Digital Item Dec-

laration Language (DIDL) [10]. These standards are
used for the persistent storage of a digital object in a
repository or for importing/exporting digital objects
to/from a repository, that stores them in an internal
non-standard format. These formats cover the need for
storing and providing digital objects using the notion
of Archival Information Package (AIP) and Dissemi-
nation Information Package (DIP) as described by the
Open Archival Information System (OAIS) reference
model [2]. In order for a DL service to access the seri-
alized digital objects must have repository specific in-
formation like the physical representation of the digital
objects, the location of repository server or the repos-
itory Application Programming Interface (API).

Some of the federated services not supported by
federated digital libraries, due to the lack of a common
interface to the semantic rich digital objects, are:

• workflows for submitting, editing and publishing
digital objects,

• management of user access policies applied on dig-
ital objects and their components,

• management of digital collections,

• digital content handling (conversion, watermarks,
compression etc.)

• preservation policies for digital content.

In order to provide such federated services, there
is a need to provide an abstract digital object repre-
sentation, that should be different from its serialized
form.

In current architectural structures like Web Ser-
vices and CORBA a middleware is used in order to
abstract objects to a level that the physical and log-
ical representations are separated. CORBA provides
an infrastructure that allows for the cooperation of
software components written in different programming
languages and run in different servers, solving the
problem of interoperability between distributed appli-
cations developed using different languages. Adopting
a similar approach, we propose the creation of a mid-
dleware that interprets the structure and semantics of
digital objects stored in different repository software
located in multiple servers. Instead of the previous
mentioned architecture, where digital objects are im-
ported to a central server in a simplified form and the
DL services are built on top of that, in our architecture
for federated digital libraries this middleware preserves
the role of the “interpreter” between the DL services
and the digital objects that remain located in the lo-
cal repositories. This middleware provides an API to
the DL services which use an abstract but semantic-
rich form of the digital objects, independent from the
repository that are stored, as shown on Fig. 2.

The proposed middleware should work over cur-

Figure 2: Using a middleware for the communication
between DL services and digital repositories

rent repository software applications, already used by
various organizations, libraries, academic and research
institutes. The main target of such middleware is to fa-
cilitate DL services to handle digital objects without
possessing information about their physical character-
istics. This information should be provided to the mid-
dleware in order to create this abstract digital object
from its serialized form stored in the repository.This
feature must be bidirectional allowing to save abstract
digital objects that have been updated by the DL ser-
vices, back to the repository. More specifically, the
middleware should offer (a) the manipulation of a digi-
tal object as a logical entity without knowing its repos-
itory dependent characteristics (location and format)
and (b) the ability for grouping and managing the be-
havior of digital objects.

In order for a repository software to cooperate
with the proposed middleware a specific connector
must be created supporting the basic repository oper-
ations. The concept of repository connectors is similar
to CORBA architecture that uses stubs and skeletons
in order to interpret an object from a server to a format
compatible to the client. Similar functionality is offered
on Database Management Systems (DBMS) by Open
Database Connectivity (ODBC) standard API, where
an application can communicate with a database in-
dependent of the DBMS used. Database drivers are
used as connectors between ODBC Driver Manager
and databases. In ODBC and databases, as long as
CORBA and software applications, except the proto-
cols, a software designer should be aware of the se-
mantics for each entity used. In CORBA paradigm
the structure of an object is needed, while in DBMSs
the database schema is necessary in order to access a
database.

In digital library systems the semantics of a digi-
tal object can be determined by its object type, as de-
fined by the Digital Object Prototype (DOP) concept
in [18]. The semantics of a digital object are specified
by its components -categorized in metadata sets, re-

lations, digital content and behaviors- which are com-
mon for digital objects of the same type. The proposed
middleware can use the DOP mechanism for the ab-
straction of a digital object to a semantic-rich form,
according to its type. Because this middleware creates
an abstract form of digital objects, can be named as
Digital Object Abstraction Layer (DOAL). DOAL of-
fers the proper API for handling a digital object from
a DL service, while its semantics are determined by
its associated type. The DL services don’t need to be
bundled to specific repository software, but communi-
cate with the DOAL that interprets methods from the
repository software using specified connectors. Specif-
ically, the key benefits of DOAL are the following:

1. Abstracts the serialized digital object in a form
manageable by DL services independently of the
repository software where is stored.

2. Associates digital objects to their DOP, so they
are handled in a common manner by the DL ser-
vices according to the their type.

3. Homogenizes the digital collections of different
repositories that are part of a federated digital
library.

3 DOAL Concepts

3.1 Digital Library System Architecture

As presented in Fig. 3 the architecture for a fed-
erated digital library system using DOAL comprises of
three layers. The lower layer contains the digital repos-
itories storing serialized digital objects. The middle
layer consists of DOAL, that supports the instantia-
tion of serialized digital objects to their abstract form
according to their type. In order for a repository soft-
ware to be accessible by DOAL a DR connector must
be implemented. The upper layer constitutes of the
DL services that provide the functionality needed to
the end users, the collection designers, the cataloguers
and the other user roles involved in the federated dig-
ital library. In Fig. 3, the DL services that are defined
for demonstrative purposes, use the DOAL API in or-
der to handle the abstract digital objects. The com-
munication between DL services and abstract digital
objects is bidirectional, meaning that, except reading
digital objects and their components, the services may
create, update or delete them.

Since DOAL is a layer between DL services and
repositories it acts as a distributed software -using its
classical meaning- in a way that hides to the upper
layers the location and physical form of the digital ob-
jects. It supports the usage of digital objects stored in
any repository, from DL services located in any node,

Figure 3: Using DOAL middleware in order to build a
federated digital library

in a way transparent to the user and the software de-
veloper. A DOAL module exists in each node taking
part to the federated digital library either as content
provider through the repository or as a DL services
provider.

DOAL creates the preconditions for the realiza-
tion of a total distributed environment for federated
digital library systems. This is a new concept to the
development of DL services, since there is no limit to
where and how the digital objects and their compo-
nents are stored. For this reason an advanced version
of digital objects is introduced, in order to utilize the
full functionality given by the distributed environment,
called Distributed Digital Object (DDO). DDO is de-
scribed in the next paragraph.

DOAL middleware contains the following mod-
ules:

• The DDO Registry, DOP Registry and DR Registry
that hold the necessary information for the DDOs,
DOPs and digital repositories respectively.

• The DDO Pool that holds the DDO instances
which are available to be used by the DL services
through DOAL API.

• The Connectors Pool that contains the available
DR connectors for the communication with the reg-
istered repository software.

• The Abstraction Mechanism that is responsible for
the abstraction of digital objects according to their
type, as also implemented in Pergamos Digital Li-
brary. Abstraction Mechanism implementation is
described in paragraph 4.2.

3.2 Handling Distributed Digital Objects

Distributed Digital Object concept is used for the
abstract representation of digital objects on the dis-
tributed DL environment offered by DOAL. DDO is
described by a permanent identifier and belongs to a

specific type (defined by its DOP). DDO constitutes
of one or more Serialized Digital Objects (SDOs), lo-
cated in different repositories. Each SDO contains a
different part (one or more digital object components)
of the DDO. An example of a DDO of type photo is
presented in Fig. 4, where DDO1 constitutes of SDOx
and SDOy, stored on two different repositories (Node
A and Node B). SDOx contains descriptive metadata
of the photo using the metadata standard suggested
by Dublin Core Metadata Initiative (DCMI) [5] and a
thumbnail of the contained image (DC and THUMB
in figure). SDOy contains two different forms of the
digital image: one of low quality for the web and one
of high quality for preservation purposes (respectively
WEB and HQ). SDO does not contain information
about its type (because it is a part of the whole ob-
ject), neither a persistent identifier with global scope
outside the repository. Nevertheless it must contain
the persistent identifier of the DDO it belongs.

Figure 4: An example of a simple DDO of type photo
constituted of two SDOs on different repositories

Some of the advantages provided by distributed
digital objects are the following:

1. Flexibility in the location and category of storage
(repository, filesystem, database, etc).

2. Distribution of serialized digital objects according
to the available storage capacities.

3. Usage of repositories that fits best for each type of
component (e.g. one repository storing metadata,
a second digital images and a third digital videos).

4. Ability to store SDOs according to the network
infrastructure.

5. Load balancing of the systems storing and serving
digital objects.

4 Implementation Issues

4.1 Digital Repository Connectors

DR connectors are application modules that are
registered in DOAL middleware, responsible for inter-
preting basic repository methods between DOAL and
the respective repository software. The methods that
need to be implemented in a DR connector are the
following:

• Get/Save/Remove a digital object from the repos-
itory.

• List the components of a digital object.

• Get/Save/Remove a specific digital object compo-
nent.

• Search for digital objects using specified metadata
(e.g. identifier, date, creator, etc). In order for this
method to be available, proper mappings between
the metadata fields defined in DOAL and the fields
stored on specified metadata set in the digital ob-
ject must be determined.

DR connectors are available to the Abstraction
Mechanism through the Connectors Pool. The Ab-
straction Mechanism is aware of the DR connector to
use for each digital object by the DR Registry. This
registry holds for each repository: (a) a unique iden-
tifier, (b) a unique name, (c) a persistent URL and
(d) a link to the DR connector. In Pergamos DL [8] a
connector for Fedora version 2.0 is implemented and
bundled in the digital library system. To be used in
DOAL this connector is being unbundled from Perg-
amos DL and reengineered as a separate application
module. Connectors in DOAL can also be implemented
for data sources other than repositories, like databases
or filesystems.

4.2 Abstraction Mechanism

Abstraction in DOAL is based on the notion of
Digital Object Prototype (DOP), facilitating the de-
scription of a type of digital objects (e.g. book, paper,
photo, etc) by specifying the common characteristics
that define it. These characteristics are specified for
each of the four components constituting a digital ob-
ject that are: (a) the metadata sets, (b) the digital
content, (c) the structure and relations with other ob-
jects and (d) its behavior. The specifications of each
DOP are given using a template written in XML. By
using DOPs it is feasible for DL services to handle dig-
ital objects of the same type in a unified manner. For
example, if the loaded DDO is of type book, a DL ser-
vice is aware of the metadata fields available, the im-
age files for the cover page, the relations with possible
DDOs of page type and the interfaces that determine

its behavior (e.g. show page, table of contents, book
description, etc). This process, as analyzed in [17], is
equivalent to the “instance-of” relation between ob-
jects and prototypes in Object Oriented Programming.
The abstraction process covers the DDO loading from
the associated serialized digital objects, while at the
same time conformance to its type is ensured. When
a DDO is loaded, it is available in the DDO Pool in
order to be used by a DL service.

In the distributed environment of DOAL, the ab-
straction process of a DDO must be realized in the
node where the calling DL service is located. In that
way multiple instances of a DDO may exist concur-
rently in different nodes. When DOAL is loading a
DDO in a node two cases exist: (a) if the object com-
ponent is stored in a repository located in the same
node as the DOAL module it is loaded immediately
from it, (b) in a different case, a request for the re-
quired component is forwarded to the node that con-
tains it. The communication between the two nodes is
realized on the DOAL layer and not in the repositories
layer. Repositories don’t possess the proper informa-
tion to communicate with its other and usually they
don’t support an appropriate protocol for that pur-
pose.

Abstraction Mechanism is implemented and used
in the productive environment of Pergamos Digital Li-
brary, hosted by the University of Athens. Existing
implementation is currently extended in order to sup-
port the functionality of distributed digital objects and
the communication between DOAL modules hosted in
different nodes.

4.3 An Example of Handling Distributed
Digital Objects

The process of DDO abstraction in DOAL is an-
alytically explained using as an example DDO1, pre-
sented in Fig. 4, which is of type photo and comprises
of two serialized digital objects. As shown in Fig. 5,
the Browse service in Node A of a federated digital
library requests the DC metadata set and the web im-
age of DDO1. The SDOs stored in Node A contain the
Dublin Core metadata describing the photo and the
thumbnail image (DC and THUMB components re-
spectively), while SDOs stored in Node B contain the
low quality image for the web and the high quality
image (WEB and HQ components).

Using DDO identifier the proper record is re-
trieved by the DDO Registry and the associated
DOP is loaded through the DOP Registry. A record
on DDO Registry contains: (a) the persistent iden-
tifier of the DDO, (b) the identifier of the associ-
ated DOP and (c) the locations of the DDO com-
ponents stored in specified SDOs. DDO1 instance

Figure 5: An example of a DDO abstraction in DOAL

is created on Node A that holds the whole infor-
mation provided by the two registries, which con-
tains the DDO identifier, the DOP definition and
the full paths of its components (for DDO1 the full
paths are: nodeA:SDOx:THUMB, nodeA:SDOx:DC,
nodeB:SDOy:WEB and nodeB:SDOy:HQ). When ab-
stracting a DDO, the components are not loaded (each
component is loaded on demand), but the DDO in-
stance holds all the data needed to load them. In the
case of DDO1:DC, where the repository is also on Node
A, it is loaded using the Connectors Pool of that DOAL
module. For the DDO1:WEB component the request is
redirected to the DDO1 instance of Node B (if it does
not exist in the DDO Pool it is loaded). Finally, the
requested component is forwarded back to the DDO1
instance on Node A. In both cases, this is realized in a
transparent fashion for both the DL services developer
and the end-user.

DDOs and corresponding loaded components, af-
ter loaded as instances on DOAL, are retained for
a specified time interval, since it is most likely they
will be requested again. Though, in a distributed envi-
ronment, corresponding SDOs may be updated. Thus,
digital object consistency should be maintained and
a proper synchronization policy should be applied
in case of updating the SDO containing the loaded
components. When loading a component in a node,
DDO holds a timestamp specific for that node (e.g.
NodeA:DDO1:WEB.TIMESTAMP). Each time this
component is requested from that node, the DDO in-
stance in that node communicates with the relative
DDO instance on the node that contains the respec-
tive SDO, and the timestamps are compared. In case
the component has been updated at that time interval,
it is forwarded to the proper node and the timestamp
is renewed. If there is no change the loaded component
is provided as is.

5 Conclusion - Future Work

DOAL middleware enables DL service developer
and collection designer to create reusable services
without worrying about where and how the digital ob-
jects are stored. The first develops generic DL services
using the methods offered by the DOAL API, while
the second designs collections for a federated digital
library just by defining the different types of digital
objects. End-users have also a great benefit by the ad-
vanced services provided on the distributed environ-
ment of federated digital libraries.

We are currently working on the implementation
of a full operational DOAL module. This includes the
communication channels between the DOAL nodes,
the caching for the DDO instances and components,
and the DOAL API specification. Implementation will
contain the synchronization of registries on different
nodes, methods for avoiding save conflicts on serial-
ized digital objects and DR connectors for basic open
source repository software, like Fedora, DSpace and
EPrints.

References

[1] Common object request broker architecture
(corba / iiop), version 3.0.2. Available from:
http://www.omg.org/technology/documents/

formal/corba_iiop.htm.

[2] Reference model for an open archival information
system (oais). Technical Report Blue Book, Issue
1, Consultative Committee for Space Data Sys-
tems, 2002.

[3] Bricks web site, 2009. Available from: http://
www.brickscommunity.org/.

[4] Driver web site, 2009. Available from: http://
www.driver-repository.eu/.

[5] Dublin core metadata initiative (dcmi) meta-
data terms, 2009. Available from: http://www.
dublincore.org/documents/dcmi-terms.

[6] The european library, 2009. Available from:
http://www.theeuropeanlibrary.org.

[7] Metadata encoding & transmission standard
(mets), 2009. Available from: http://www.loc.
gov/standards/mets/.

[8] Pergamos digital library, 2009. Available from:
http://pergamos.lib.uoa.gr/.

[9] Web services, 2009. Available from: http://www.
w3.org/2002/ws/.

[10] J. Bekaert, L. Balakireva, P. Hochstenbach, and
H. Van de Sompel. Using mpeg-21 dip and niso
openurl for the dynamic dissemination of complex
digital objects in the los alamos national labora-
tory digital library. D-Lib Magazine, 10(2), Febru-
ary 2004.

[11] L. Candela, D. Castelli, N. Fuhr, and Y. Yoanni-
dis. Current digital library systems: User require-
ments vs provided functionality. Technical Report
DELOS Deliverable D1.4.1, 2006.

[12] C. Lagoze et al. Core services in the architecture
of the national science digital library (nsdl). In
JCDL ’02: Proceedings of the 2nd ACM/IEEE-
CS joint conference on Digital libraries, 2002.

[13] M. A. Goncalves, R. K. France, and E. A. Fox.
Marian: Flexible interoperability for federated
digital libraries. In Proceedings of the 5th Euro-
pean Conference on Research and Advanced Tech-
nology for Digital Libraries, 4 - 9 September 2001.

[14] H. Jerez, G. Manepalli, C. Blanchi, and L. Lan-
nom. Adl-r: The first instance of a cordra registry.
D-Lib Magazine, 12(2), February 2006.

[15] R. Kahn and R. Wilensky. A framework for dis-
tributed digital object services. Technical report,
Corporation of National Research Initiative - Re-
ston USA, 1995.

[16] C. Lagoze and H. Van de Sompel. The open
archives initiative: Building a low-barrier inter-
operability framework. In First ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL’01),
2001.

[17] K. Saidis, G. Pyrounakis, and M. Nikolaidou. On
the effective manipulation of digital objects: A
prototype-based instantiation approach. In 9th
European Conference on Digital Libraries, 2005.

[18] K. Saidis, G. Pyrounakis, M. Nikolaidou, and
A. Delis. Digital object prototypes: An effective
realization of digital object types. In 10th Euro-
pean Conference on Research and Advanced Tech-
nology for Digital Libraries, 2006.

[19] T. Staples, R. Wayland, and S. Payette. The fe-
dora project: An open-source digital object repos-
itory management system. D-Lib Magazine, 9(4),
April 2003.

[20] R. Tansley. Building a distributed, standards-
based repository federation: The china digital
museum project. D-Lib Magazine, 12(7/8),
July/August 2006.

