
Cover Page for Paper:

A WEB SERVICE-BASED PLATFORM FOR CSCW OVER HETEROGENEOUS END-
USER APPLICATIONS

Authors

Georgios-Dimitrios Kapos, Aphrodite Tsalgatidou, Mara Nikolaidou
Department of Informatics and Telecommunications

University of Athens
TYPA Buildings, Panepistimioupolis

Ilisia, Athens, 157 84, Greece
{gdkapos, atsalga, mara}@di.uoa.gr

Presenting Author

Georgios-Dimitrios Kapos

Contact Author

Georgios-Dimitrios Kapos

Keywords
CSCW, web services, interoperability, standards-based collaboration.

A WEB SERVICE-BASED PLATFORM FOR CSCW OVER HETEROGENEOUS END-
USER APPLICATIONS

Georgios-Dimitrios Kapos Aphrodite Tsalgatidou Mara Nikolaidou

Department of Informatics and Telecommunications
University of Athens

TYPA Buildings, Panepistimioupolis
Ilisia, Athens, 157 84, Greece

{gdkapos, atsalga, mara}@di.uoa.gr

Abstract

In this paper, a flexible and extensible
platform for computer supported cooperative work
based on web service technology is presented. This
platform, called HERMES, enables collaboration
among users of heterogeneous applications over the
web. Web services provide an open, standard
communication infrastructure that eliminates
dependencies on proprietary technologies and
platforms. Heterogeneous end-user application support
is facilitated by the definition of abstract collaboration
protocols supporting coordination. Domain specific
collaboration protocols are based on domain standards
and are specified in terms of the proposed Collaboration
Protocol Specification Language. Development of a
collaborative business process modeling application
using HERMES demonstrates the potentials of the
approach.

1 INTRODUCTION

Collaborative environments enable distant

users to work jointly through a series of provided
facilities, such as resource sharing and on-line text,
audio or visual communication. These environments
usually consist of end-user applications and the
underlining collaboration infrastructure. A broad
distinction of end-user applications can be made
depending on the coupling between them and the
collaboration infrastructure, resulting in collaboration-
aware and collaboration-transparent applications [7].
In the first case, end-user applications are developed
according to the requirements and special
characteristics of the collaboration infrastructure.
Therefore, they provide a rich set of features that
facilitate collaboration among users (e.g. advanced
resource sharing, instant messaging). In the case of
collaboration transparency, preexisting single user
applications may be used in collaborative environments.
The collaboration infrastructure bypasses the
application and exploits lower level concepts, such as
file system sharing or input/output manipulation.
Therefore end-user applications are completely
independent of the underlying collaboration
infrastructure. However, the fact that collaboration is
transparent to end-user applications has a negative

impact on the provided collaboration support, in terms
of features and facilities.

Most approaches, either supporting
collaboration-aware or collaboration-transparent
applications are restrictive in that they do not support
collaboration over heterogeneous applications [5], [6],
[14]. For instance, users have to use the same type of
text editing application (e.g. MS Word) in order to
collaboratively create and edit a document. Therefore,
collective contribution from applications with distinct
features is prohibited. Even in collaboration
environments where application heterogeneity is
supported [9], [10], it is restricted by factors such as the
use of specific component models (e.g. JavaBeans) or
programming languages (e.g. Java).

Computer Supported Cooperative Work

(CSCW) systems need to be built in an open, modular,
scalable, highly extensible and customizable way [6],
[8], [11]. Monolithic collaboration infrastructures fail to
support evolving collaboration requirements in end-user
applications, due to modifications in their complex
internal structure. They also mix up application
implementation, communication mechanisms, and
collaboration rules, resulting in unmanageable systems.
This effect is greater in collaboration-aware
applications, where the coupling between end-user
applications and infrastructure is tighter due to the large
set of provided features. Thus, the need for modular,
tailorable collaboration infrastructures has been
identified and dealt with notions such as collaboration
specification languages [2], [4], [8], coordination
protocols [3], [11], and other similar concepts. In these
approaches each collaboration type is specified by a
definition, which determines how each collaboration
participant may act while in a collaboration.

We believe that the following requirements

need to be supported by any CSCW system:
• Transparent collaboration between users of

heterogeneous applications of a specific domain (e.g.
different text editing applications).

• Accommodation of different collaboration patterns for
different application domains.

• Adjustment of collaboration coordination using rules
regarding user rights while in a collaborative session
(policy schemes).

In order to address these requirements, we
have decided to use web services technology as the
infrastructure for the development of an open
collaboration management platform, which we call
HERMES. Web services technology [16] has been
receiving great interest in the last few years. The need
for intense communication between clients and web
services has recently been identified and dealt with [1],
[12]. Web services provide a standard communication
platform among heterogeneous applications operating
on a variety of environments and frameworks. Thus,
web services promote interoperability and extensibility.
In addition, web service-based systems are open,
extensible and reconfigurable. Also, as this technology
receives great research attention, new characteristics
related to security, reliability or efficiency are
continuously considered and added.

HERMES is a web-service based infrastructure

for tailorable collaborative environments between
distant partners which cooperate, using heterogeneous
collaboration aware applications. Tailorability is
achieved through a Collaboration Protocol
Specification Language (CPSL). CPSL is the means for
defining different collaboration types, with distinct
features –varying from user entry requirements to
action acceptance rules. End-user application
heterogeneity is realized by the web service-based
underlying infrastructure, which is based on open
standards.

Incorporation of preexisting, single-user

applications in HERMES framework can be a simple,
manageable process. Presentation of the proper
adaptation of a single-user business process modeling
(BPM) application demonstrates this, as well as other
advantages of the framework.

The rest of the paper is organized as follows.

In the following section, the functional and architectural
characteristics of the HERMES platform are outlined.
In section 3, we present the collaboration protocol
specification and collaboration coordination in
HERMES. Section 4 presents the use of the HERMES
platform for collaboration of BPM applications. Finally,
in the last section, the main characteristics and
advantages of HERMES are summarized, and our
considerations for future extensions and research
directions are stated.

2 HERMES FUNCTIONALITY AND

ARCHITECTURE

In this section we present HERMES, a CSCW

framework for collaboration-aware applications based
on web services. In order to fulfill the requirements for
collaborative frameworks, we followed an action-
centric approach for collaboration coordination issues
and befitted the utilization of web services technology.
This approach resulted in a series of benefits in terms of

openness, tailorability and interoperability. The two
main entity types of the collaboration framework are
the Collaboration Management System (CMS) and the
end-user application. The first is the central
collaboration management and coordination
infrastructure, while the latter is the application of end-
users. Communication of the CMS with end-user
applications and between the components of the CMS is
carried out according to the web services standards.

Collaboration support in different application

domains is ensured by the use of the Collaboration
Protocol Specification Language (CPSL) that we have
developed, which enables the specification of
collaboration protocols. A collaboration protocol
determines the actions that can be performed by
participants in a specific type of collaboration and the
way these actions are handled by the collaboration
management system. For instance, a protocol for
collaborative BPM would define domain-specific
actions for the creation, editing and removal of business
process activities. The actual specification of these
actions should be based on widely acceptable standards
(not proprietary solutions), in order to enable
collaboration between heterogeneous end-user
applications.

The main goal of the framework is to enable

collaboration over heterogeneous applications and
therefore considers:
a) heterogeneous end-user applications of specific

domains that:
i) though different, they support a common format

for defining resources and actions of the domain
ii) have a collaboration-communication module

b) a web-service based collaboration management
system that manages and coordinates collaborations

The variety of features that collaboration-

aware applications may deliver, such as customization,
enhanced interaction, intelligent collaboration support,
contrary to collaboration-transparent ones, is the main
reason for adopting this feature in our approach.

In order to achieve the aforementioned goal in

an attractive and efficient manner, the approach ensures
that:
• The addition of the collaboration-communication

module in an existing application is a simple,
straightforward task that does not discourage
developers from extending their applications.
However, this does not entirely rely on the
framework, but also depends on the extensibility and
flexibility of each application itself. Simple, layered
architectures facilitate the incorporation of a
collaboration-communication module, while complex,
monolithic designs complicate it.

• The collaboration management system provides a
simple interface to end-user applications, in order to
retain genericity. This is achieved by having the

collaboration management system coordinate
collaboration actions at a high, declarative level,
letting end-user applications define and interpret
specific actions. This is achieved through the use of
collaboration protocols that define high-level
coordination policy over different application
domains. Different policies are required for different
collaboration types and domains.

• Communication is based on an open, standard
technology. This diminishes uncertainty of
proprietary solutions, and increases viability and
applicability across heterogeneous, restrictive
platforms and networks.

2.1 Provided Functionality

As we stated earlier, the framework focuses on

actions performed by users rather than collaboratively
manipulated resources. Resource manipulation is
achieved through appropriate actions, defining the
intended resource processing. The actions are delivered
to end-user applications by the CMS and are interpreted
and performed at each end-user application. Therefore
HERMES framework supports distributed resource
management and manipulation, retaining the CMS as
simple and generic as possible.

There are two different types of actions

provided to collaborating end-user applications:
predefined and domain-specific actions. Predefined
actions allow users to perform general, collaboration
related actions, such as request to join in or exit a
collaboration, register a new collaboration protocol, as
well as other administrative tasks. Domain-specific
actions (e.g. creation of a business process activity in a
BPM) are defined in collaboration protocols and used
during actual collaboration. Actions of this type may
affect resources.

Participants’ actions are dispatched as action-

messages to the Collaboration Management System
(CMS). CMS is responsible for collaboration
configuration, as well as handling real-time
collaboration actions. Collaboration configuration
includes user information management and
collaboration protocol specifications management.
Real-time collaboration requirements include
application input receipt, interpretation and handling,
according to the collaboration protocol, messaging
management between users, and response to other user
requests. The CMS may coordinate multiple
collaboration instances of the same or different
collaboration protocols simultaneously.

CMS receives actions from collaboration

participants, interprets them according to the
collaboration protocol, and takes further actions. The
latter may include communication with a series of
participants for synchronization and consistency
maintenance, as described in section 3. This kind of

communication is made in terms of a set of primitive
messages that each end-user application should be able
to handle.

The sequence diagram of Figure 1 presents a
sample series of messages that may be exchanged
between collaboration platform entities. With messages
1 and 2, the two participants register with the CMS.
Message 3 registers a new collaboration protocol (X)
and message 4 initiates a collaboration based on this
protocol (participant B). Message 5 confirms the
initiation of the collaboration and provides its ID. With
message 6, participant A requests the list of active
collaboration instances based on protocol X, receives
the ID (7) of the collaboration earlier initiated by
participant B, and joins the collaboration (8). Messages
9 to 12 involve two actions and their respective
consistency maintenance messages. Finally, participant
A exits the collaboration (13) and participant B ends it
(14).

Figure 1. Message exchange sequence diagram.

The basic information flow during

collaboration is summarized in Figure 2. Collaboration
participants perform actions and receive coordination
messages. The Collaboration Management System
interprets participants’ action requests, according to the
Collaboration Protocol, and sends coordination
messages, when necessary. The system may handle
multiple collaborations of different types concurrently.

Collaboration Management

System

Application
Application

Application
Application

Application
Application

Applications participating
in a collaboration

Applications participating
in another collaboration

Collaboration
Protocols

Action request Coordination message Read
Figure 2. Information flow during collaboration.

2.2 Architectural Design

An architectural view of the CMS (Figure 3)
shows that it is a composite web service, consisting of
Collaboration Management Web Service (CMWS),
Protocol Management Web Service (PMWS), User
Management Web Service (UMWS), and Messaging
Management Web Service (MMWS). As the names of
the web services imply, each one is responsible for the
management of a different aspect of the system. The
CMWS is the main component of the CMS. The other
web services manage collaboration protocols, user
information and messages.

Collaboration Management
Web Service

Protocol Management
Web Service

Messaging Management
Web Service

User Management
Web Service

Proto-
col
DB

Application
Application

Application

Mess-
aging
DB

Collab
DB

User
DB

CMS

Figure 3. Collaboration Management System (CMS)
architecture.

As Figure 3 shows, the CMWS uses the

functionality provided by the other three web services,
in order to administer the collaboration management
information (static part of collaboration) and coordinate
all running collaboration instances (dynamic part). It is
the heart of the collaboration management system and
the interface to the end-user applications. The
collaboration protocol interpretation and the
coordination of running collaboration instances are also
carried out by the CMWS, with the contribution of the
other web services, as explained in the following
paragraphs.

The PMWS stores collaboration protocols that

are being registered to the CMS. It also retrieves or
updates registered collaboration protocols specified by
the CMWS. Before performing any addition or update
to the collaboration protocol database, it performs
certain checks, in order to ensure the validity of the new
protocol. Similarly, the UMWS keeps a database with
information concerning all registered users. Apart from
that, user authentication is its most important task.

The MMWS is responsible for delivering text

messages exchanged by the collaborating users or sent
by the management system to end-users. These
messages are high level informative messages for
human users and cannot by interpreted by the CMS or
end-user applications. This kind of messaging, due to
its important and application-independent nature in
collaboration, is handled independently of other

application-dependent interaction between
collaborating users. The MMWS is responsible for the
message distribution. Logs of message exchanges are
also kept in a database.

End-user applications may be either specially

developed for this collaboration environment, or
properly adjusted by adding a collaboration-
communication module. In either case, the requirements
set by the proposed architecture are restricted in the
existence of the collaboration-communication module
and do not interfere with application internals
(representation structures, resource handling). Thus, the
integration of existing applications in HERMES
framework is facilitated in a flexible manner, in contrast
to other approaches. The loose coupling between
application internals and collaboration issues reinforces
the separation of concerns, which amplifies the clarity
of collaboration models and simplifies application
implementation.

From a technical point of view, end-user

applications need to be able to communicate with the
collaboration management system. This is done as
defined in the web services standards, via SOAP
message transmission over HTTP [13]. Thus, the
application does not depend on any proprietary
communication mechanism. On the other hand, it is
bound to the chosen collaboration protocol. However,
this binding can be perceived as a natural, conceptual
dependency of the application to its domain. Thus,
collaboration protocols are expected to be based on
domain standards (e.g. XPDL for business process
modeling) and therefore this is an open, non-proprietary
binding.

3 COLLABORATION SPECIFICATIONS

AND COORDINATION

3.1 Collaboration Protocol Specification

Collaboration protocols are defined with an

XML-based language, the Collaboration Protocol
Specification Language (CPSL), developed for this
purpose. A CPSL document defines a set of specific
actions that users may perform during collaboration in a
certain context (application domain). Intended
interpretation of actions by the collaboration
management system is also specified. The interpretation
does not deal with action actual semantics, or the
resource it may affect. It rather specifies how each
action will be carried through during collaboration, so
that all users are aware of the same actions. For
example, in a BPM context, actions for creating and
editing BPM entities should be defined.

The schema of the CPSL is simple and

generic. For each collaboration it allows an ID, a
textual description and a list of actions. These actions
are the only domain specific actions that may be

performed during collaboration. For each action defined
in the collaboration protocol the name, a set of
parameters and the mode is specified. The name
uniquely identifies each action, while the mode deals
with action permission, as described later. There may
be defined as many parameters as needed for each
action, as there is no predefined number of parameters.
Every parameter has a name and a type. When an action
is requested by a user, those parameters will have to be
provided.

As far as allowance to perform an action is

concerned, there are three levels of action permission:
• An action is stated to be free, when there is no

restriction for any participant to perform it. A free
action is considered valid upon reception of the
appropriate request by the CMS.

• When an action is stated to require confirmation by
the initiator (the person who initiated the
collaboration), it is considered valid only after the
confirmation by the initiator.

• When an action is stated to require confirmation by
the majority of the collaboration participants, it is
considered valid only after more than half of the
participants have confirmed it.

In case an (non free) action is not confirmed

by the initiator or the majority, it is considered invalid
and any actions caused by it to requestor application
has to be undone.

Table 1 illustrates a sample collaboration

protocol for incomings-expenses handling. It defines
two actions: one for the addition of an income and one
for the addition of an expense.

Table 1. Sample collaboration protocol.

<COLLABORATION_PROTOCOL id=”INC-EXP”
 description=”A collaboration protocol for
 incomings-expences handling”>

 <ACTIONS>
 <ACTION name=”AddIncome”>
 <PARAMETERS>
 <PARAM name=”date” type=”DATE” />
 <PARAM name=”amount” type=”MONEY” />
 <PARAM name=”description” type=”TEXT”
 </PARAMETERS>
 <MODE type=”FREE” />
 </ACTION>
 <ACTION name=”AddExpense”>
 <PARAMETERS>
 <PARAM name=”date” type=”DATE” />
 <PARAM name=”amount” type=”MONEY” />
 <PARAM name=”description” type=”TEXT”
 </PARAMETERS>
 <MODE type=”INITIATOR_CONFIRM” />
 </ACTION>
 </ACTIONS>
</COLLABORATION_PROTOCOL>

In order to instantiate a collaboration,

administrative policy issues need to be determined.
These are specified in an additional document which
defines whether users may join, exit, or even end a
collaboration instance and how they would do so.
Joining a collaboration may be free, require the

confirmation by the initiator, the confirmation by the
majority of existing participants, or the provision of a
password, which is set by the initiator of the certain
collaboration. Similar rules may be applied for exiting
or ending a collaboration. Rules for sending text
message are also defined here. They specify which
users may send unicast, multicast, and broadcast
messages. The XML fragment of Table 2 defines a
sample collaboration policy where joining a
collaboration requires the initiators confirmation,
exiting the collaboration is free, and ending a
collaboration requires the approval of the majority.

Table 2. Sample collaboration policy.

<COLLABORATION_POLICY id=”Coll_Policy_1”>
 <JOIN_COLLABORATION mode=”INITIATOR_CONFIRM” />
 <EXIT_COLLABORATION mode=”FREE” />
 <END_COLLABORATION mode=”MAJORITY_CONFIRM” />
 <MESSAGING>
 <BROADCAST allowed=”initiator” />
 <MULTICAST allowed=”all” />
 <UNICAST allowed=”all” />
 </MESSAGING>
</COLLABORATION_POLICY>

3.2 Collaboration Coordination

In the proposed approach, collaboration

protocols play a key role in all collaborations. A
collaboration protocol practically defines the way users
may collaborate within an application domain, e.g. how
users may use their BPM applications jointly in order to
create a business process model. In this case, the
protocol could specify which standard representation
would be used for the business process definitions,
what actions could be performed on them, and how
these would be coordinated by the collaboration
management system. The BPM applications may use
their own representations, as long as they exteriorize
their behavior in terms of the protocol and the standard
representation that it specifies.

The collaboration specification mechanism has

been designed to be simple, in order to make the
approach generic and easily applicable in many fields.
This also has a positive impact in efficiency. It is
implied, though, that greater functionality is expected at
the end-user application level, for the interpretation and
execution of the collaboration protocol-dependent
action.

As far as the collaboration infrastructure

(CMS) is concerned, interpretation and coordination of
user actions is a four-step process, as it is described in
the following:
a) Action-request message receipt: User credentials are

checked and relevant collaboration is identified. In
case of failure an error message is returned.

b) Request interpretation: The request is interpreted
according to the protocol of the specific
collaboration. Validity of action name and
parameters is checked. In case of success, a list of

further actions is constructed. Otherwise, an error
message is returned.

c) Execution of further actions: The collaboration
management system executes the actions in the list
produced in the previous step. These actions are
either requests for confirmation by one or more
participants, or propagations of the performed
action.

d) Validation or cancellation of the action: According
to the results of confirmation requests, the action is
either considered valid or it is cancelled.

3.3 Consistency Maintenance

Within HERMES framework, collaboration is

not directly associated with central or distributed
resources. It is rather action oriented, since users
request actions to be performed. Requests are known to
the whole collaborating community and are validated
by it. Taking into account that all collaborating users (a)
are aware of the same action request, (b) know whether
the action has been validated or not, and (c) share the
same understanding of the collaboration protocol, it is
presumable that consistency is retained after each
action. Actions performed by participants are shared
within the collaboration group and the independently
replicated resources are managed across all
collaboration participants’ sites by end-user
applications.

This scheme seems to require increased user

input for the estimation and validation of other users’
requests, in comparison to approaches where
sophisticated resource management is utilized [4]
through resource sharing with locks. However, such
approaches [2] focus on a quite lower level and
therefore do not support advanced features, like
collaboration customization and support for
heterogeneous end-user applications. Furthermore, kind
of intelligence may be incorporated at end-user
application level in order to facilitate users, e.g. by
decreasing required user input for action validation
purposes. Incorporation of intelligence at the client site
will be quite straightforward, as it will not interfere
with the entire collaboration infrastructure. Also,
different type of user support may be provided for
different applications, according to their distinct user
interfaces and functionality.

4 COLLABORATIVE BPM WITH

HERMES

In this section we present how an existing

application may become collaboration-enabled within
the HERMES framework. We do this by presenting the
adaptation of an existing application for business
process modeling. First, we briefly describe the
application and our initial considerations and
expectations from the transformation. Then we provide
the collaboration protocol we defined for collaborative

BPM. Finally, we focus on implementation aspects of
the adaptation, such the necessary architectural
modifications.

4.1 Use Case Context

The application in question is a single user

BPM application, facilitating business process
modeling using multilevel Modified Petri Nets (MPN)
as described in [15]. The approach is based on mapping
business process entities to Petri Net elements for the
creation of multilevel nets. The formal processing that
can be applied on the latter assists the accurate
estimation of behavioral characteristics of the
corresponding business process.

The BPM application provides a graphical user

interface for the creation and manipulation of business
process models, expressed in terms of Petri Net
elements. Although the internal representation of
entities is also based on Petri Nets, an XPDL interface
has also been developed for interoperability purposes.
XPDL (XML Process Definition Language) is the
standard format for defining business processes,
proposed by the Workflow Management Coalition
(WfMC). Thus, the application could share BPM
definitions with other applications supporting XPDL. A
XPDL document defines business processes mainly by
specifying the activities of the business process, the
activity transitions (from one activity to another), and
the participants that perform the activities.

By incorporating the MPN BPM application in

the HERMES framework we expect to enable
collaborative BPM so that distant users of MPN and
other BPM applications may collaboratively create
business process definitions given that:
a) though different, the applications support the

collaboration protocol, which is based on the
common format for BPM definitions (XPDL)

b) the applications have a collaboration-
communication module capable of communicating
with the web service-based CMS

4.2 A Collaboration Protocol for BPM

The collaboration protocol we defined for

business process modeling using the CPSL is shown in
Table 3. The actions defined in this protocol are based
on XPDL and all deal with the manipulation of XPDL
elements. These are XML tagged elements that describe
various aspects of business processes. Due to the large
variety of XPDL elements, the protocol does not define
actions for specific elements, but it rather abstractly
deals with any element, as long as it is defined in the
XML schema definition for XPDL. This shows the
ability of the framework to adjust the level of detail,
according to user requirements. For the purpose of the
example we preferred a simple collaboration protocol,
instead of a detailed, complicated one.

The first action (AddXPDLElement) is for the

addition of an XPDL element in the business process
definition. The XPDL element could be a participant,
an activity, a transition, or other business process
elements. This is a free action (does not need
confirmation by other participants) and requires the
specification of the position and the element to be
added. Editing of existing elements can be performed
with the second action (EditXPDLElement). The
element to be replaced and the new element must be
specified, while the confirmation by the initiator of the
collaboration is required. Finally, the third action
(RemoveXPDLElement) allows users to remove an
element they have specified provided that confirmation
by the majority of participants has been granted.

Table 3. Collaboration Protocol for BPM.

<COLLABORATION_PROTOCOL id=”BPM-XPDL”
 description=”A collaboration protocol for BPM
 applications, based on XPDL”>
 <ACTIONS>
 <ACTION name=”AddXPDLElement”>
 <PARAMETERS>
 <PARAM name=”where” type=”XPATH” />
 <PARAM name=”what” type=”ELEMENT”
 from=
 ”http://www.wfmc.org/standards/docs/xpdl.xsd”/>
 </PARAMETERS>
 <MODE type=”FREE” />
 </ACTION>
 <ACTION name=”EditXPDLElement”>
 <PARAMETERS>
 <PARAM name=”what” type=”XPATH”/>
 <PARAM name=”new” type=”ELEMENT”
 from=
 ”http://www.wfmc.org/standards/docs/xpdl.xsd”/>
 </PARAMETERS>
 <MODE type=”INITIATOR_CONFIRM” />
 </ACTION>
 <ACTION name=”RemoveXPDLElement”>
 <PARAMETERS>
 <PARAM name=”what” type=”XPATH”
 from=
 ”http://www.wfmc.org/standards/docs/xpdl.xsd”/>
 </PARAMETERS>
 <MODE type=”MAJORITY_CONFIRM” />
 </ACTION>
 </ACTIONS>
</COLLABORATION_PROTOCOL>

4.3 Collaborative BPM with HERMES

In this section we present how our MPN BPM

application was adapted in order to fit in the HERMES
framework and enable collaborative BPM. The original
architectural layout of the application is depicted in
Figure 4 (A). The user interface allows users to model
business processes in terms of graphically represented
Petri Nets. These are processed and stored in the
application core with the appropriate data structures.
The XPDL interpreter translates XPDL documents to
Petri Nets and vice versa. It has been developed to
achieve interoperability with other BPM applications.

Figure 4 (B) shows the architecture of the

application after it has been modified for use in the

HERMES framework. Two major modifications are
made:
a) User interface functionality is extended to handle

messages and required user input regarding
collaboration and consistency.

b) The collaboration module is incorporated and
practically becomes a wrapper of the application
core.

Figure 4. MPN BPM application, single-user (A) and

adapted for HERMES (B).

The collaboration module is capable of

communicating with the CMS. It receives messages
from the user interface and performs combined
forwarding to the application core and the CMS. The
messages forwarded to the CMS are transformed into
collaboration protocol-dependent actions. Since the
protocol is based on XPDL, the XPDL interpreter is
used for this purpose. Similarly, when it receives
messages from the CMS, it interprets them and
forwards necessary message to the user interface and
the application core. The XPDL interpreter is used here
also. Therefore, the extended version of the application
fits in the HERMES framework and allows
collaborative BPM. The communication is made in
terms of the XPDL-based collaboration protocol,
allowing collaboration with other BPM applications as
well.

We conclude that applications with layered

architectures and interfaces to domain standards may
easily become collaboration enabled for the HERMES
framework, after small scale modifications.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented HERMES, a

web service-based generic CSCW infrastructure for
collaboration aware applications. The infrastructure
may be used in several application domains, as it is
capable of dynamically incorporating collaboration
protocols that define different collaboration contexts.
Collaboration protocols are defined using a
Collaboration Protocol Specification Language (CPSL).
The collaboration management system is implemented
as a set of cooperating web services and thus
communication is based on web service operation
invocations. The resources are replicated among
participant sites in the format used by each application,
as collaboration is conceived in an action-centric rather

than a resource-centric manner. The transformation of
an existing single-user application to a collaborative
application using HERMES was also presented.

This approach offers several advantages that

are summarized here. First, the use of collaboration
protocols increases the genericity and extensibility of
the HERMES platform, allowing its adoption in
multiple application domains. Second, collaboration
between different applications of the same domain is
empowered by the action-based handling of
collaboration using standards. Different representation
structures and architectural styles do not prohibit
collaboration. Third, the use of web services in the
collaboration management system induces the benefits
of this technology (open and standards-based
communication, loose coupling, composability,
interoperability) in our approach. Finally, the simple
architecture of the HERMES infrastructure and the
loose binding between components simplifies the
procedure of incorporating the infrastructure in existing
applications.

Although HERMES provides a series of

advantages and promising features there are still several
issues to be studied and exploited. Performance and
scalability evaluation are currently explored. Secure
collaboration is another feature planned to support.
There are cases where constant, real-time collaboration
between participants is not required and a batch
synchronization procedure once in a time period would
suffice. The exploitation of such characteristics will
reduce unnecessary load. Finally, as research on web
services evolves, several aspects of HERMES system
will avail from the new, value-added web service
features, such as quality of service.

ACKNOWLDGMENTS

This work has been partially funded by the

Special Account for Research (ELKE) of the University
of Athens, under contract number 70/4/5829.

6 REFERENCES

[1] Chandrasekaran, S., Miller, J. A., Silver, G.,

Arpinar, I. B., and Sheth, A. P. Composition,
Performance Analysis and Simulation of Web
Services Electronic Markets. The International
Journal of Electronic Commerce and Business
Media, 2003.

[2] Cortes, M., and Mishra, P. DCWPL: A
Programming Language for Describing
Collaborative Work. In Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, November 1996, pp. 21-29

[3] Edwards, K. Policies and Roles in Collaborative
Applications. In Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, November 1996, pp. 11-20

[4] Furuta, and R., Stotts, D. Interpreted Collaboration
Protocols and their use in Groupware Prototyping.
In Proceedings of the ACM Conference on
Computer Supported Cooperative Work, October
1994, pp. 121-131

[5] Hill, R., Brinck, T., Rohall, S., Patterson, J., and
Wilner, W. The Rendezvous Architecture and
Language for Constructing Multiuser Applications.
In ACM Transactions on Computer-Human
Interaction, Vol. 1, No. 2, June 1994, pp. 81-125

[6] Kaplan, S., Tolone, W., Bogia, D., and Bignoli, C.
Flexible, Active Support for Collaborative Work
with ConversationBuilder. In Proceedings of the
ACM Conference on Computer Supported
Cooperative Work, December 1992, pp. 378-385

[7] Li, D., and Li, R. Transparent Sharing and
Interoperation of Heterogeneous Single-User
Applications. In Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, November 2002, pp. 246-255

[8] Li D., and Muntz R. COCA: Collaborative Objects
Coordination Architecture. In Proceedings of the
ACM Conference on Computer Supported
Cooperative Work, November 1998, pp. 179-188

[9] Marsic, I. An Architecture for Heterogeneous
Groupware Applications. In Proceedings of the
23rd International Conference on Software
Engineering, May 2001, pp. 475-484

[10] Marsic, I. DISCIPLE: A Famework for Multimodal
Collaboration in Heterogeneous Environments. In
ACM Computing Surveys, June 1999, Article No. 4

[11] Roseman, M., and Greenberg, S. Building Flexible
Groupware through Open Protocols. In
Proceedings of the Conference on Organizational
Computing Systems, December 1993, pp. 279-288

[12] Sheth, A., Cardoso, J., Miller, J. A., Kochut, K. J.,
Kang, M. QoS for Service-Oriented Middleware.
In Proceedings of the 6th World Multiconference
on Systemics, Cybernetics and Informatics
(SCI'02), Vol. 8, July 2002, pp. 528-534

[13] SOAP, http://www.w3.org/TR/SOAP
[14] Trevor, J., Rodden, and T., Smith, G. Out of this

world: an extensible session architecture for
heterogeneous electronic landscapes. In
Proceedings of the ACM Conference on Computer
Supported Cooperative Work, November 1998, pp.
119-128

[15] Tsalgatidou, A., Louridas, P., Fesakis, and G.,
Schizas, T. Multilevel Petri Nets for Modeling and
Simulating Organizational Dynamic Behavior. In
Simulation & Gaming Journal, Special issue on the
dynamic modeling of Information Systems,
December 1996, pp. 484-506

[16] Tsalgatidou, and A., Pilioura, T. An Overview of
Standards and Related Technology in Web
Services. In International Journal of Distributed
and Parallel Databases, Special Issue on E-
Services, 12(2), Kluwer, September 2002, pp. 135-
162

