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Abstract

Faster than real time simulation concepts are nowadays applied in multidisciplinary areas.

Interaction between the real world and the simulation model is performed in real time, so that

information obtained from each system is used to enhance our knowledge of the other. Even if

such capabilities prove to be useful for real time applications, dealing with the requirements

imposed is only accomplished through extending the traditional simulation methodology.

Since model execution is performed faster than real world time, experimentation is considered

as the most critical phase. A methodological approach towards an experimentation framework

for interacting in real time with the actual system is introduced and analyzed in terms of its

functionality, the activities it incorporates and the restrictions imposed. Realization of this

methodological framework is also discussed through a simulation example.

1. Introduction

Real time simulation was introduced more than two decades ago and is widely adopted in

many domains, as training and process control1. Simulation of real time systems requires a



model that is accurate enough to accomplish the simulation objective and is computationally

efficient2. In most cases, the term real time, as it relates to simulation, denotes that

advancement of simulation time must occur in the real world time (i.e. not faster or slower).

This issue is critical, since the model represents an actual dynamic process as it occurs. Real

time simulation enables a more realistic representation of the system being studied, as

opposed to both mathematical analysis and conventional simulation and also permits both

quantitative and qualitative evaluation.

Based on the above, faster than real time simulation denotes that advancement of simulation

time occurs faster than real world time. Making models run faster is the modeler's

responsibility and certainly not a trivial task, since real time systems often have hard

requirements for interacting with the human operator or other agents. A significant

disadvantage is that timing problems are recognized during or even after testing. Researchers

have thus pointed out that timing requirements should be addressed in the design phase3.

Towards this direction, two activities of the architectural design are defined: the logical

architectural design and the physical architectural design. The latter embraces the non-

functional requirements and forms the basis for asserting that these will be met once the

detailed design and implementation have taken place. Appropriate scheduling paradigms are

often integrated to handle non-functional (e.g. timing) requirements3.

Towards meeting this objective, OOPM/RT is a multimodeling methodology based on the

idea of selecting the appropriate model among multiple model types through trading structural

information for faster runtime, while minimizing the loss of behavioral information2,4. A set of

multiple methods is generated through abstraction techniques and the optimal abstraction

degree is selected to compose a model for the real time simulation. The selected optimal

model guarantees delivering simulation results by the given amount of time. The Design-to-



Time method is an alternative method suggesting the use of a single model type and multiple

methods generated through approximation techniques5.

When successfully dealing with the real time requirements, simulation provides improved

capabilities in the direction of reaching conclusions for the system future state. Nevertheless,

even though faster than real time simulation is used extensively for high interactive

applications6, there is no generic framework for such experiments. Towards this direction, a

methodological approach has been introduced by the authors7.

In this approach, faster than real time simulation is used to denote the enhanced simulation

process where model evolution occurs faster than the real world, thus enabling information,

originating as output of the experimentation phase and, moreover, from the actual system

itself, to be used to improve the effectiveness of the simulation experiment.

The bi-directional information exchange between the model and the actual system is depicted

in figure 1. The left information flow is the conventional one, while the other is the one

established to obtain information about the actual system evolution. This figure is often

extended to include the human operator participating in real time experiments, as a closed

man-in-the-loop system. This is not a necessity, however, since control tasks are often

performed in an automated way, without the operator intervening.

Even though information exchange between the model and the actual system can only occur in

discrete time points, this does not exclude systems evolving in continuous time. Either

discrete or continuous systems can be studied through a common methodology.

Introducing faster than real time simulation in the current context was motivated by the

existence of numerous systems that cannot be fully specified during an initial, single

specification stage. Due to their dynamic nature, any initial knowledge about them is modified



according to the conditions of their real evolution. The basic idea is making such systems

serve as an information source, instead of adopting doubtful statistical distributions, when

representing the conditions of their evolution.

The term non-predetermined is thus used to denote actual systems that may be unpredictably

reformed during their evolution. In most cases, reformations occur due to interventions caused

by external operators. Non-predetermined systems cannot be specified during the single

modeling phase, since reformations have a strong impact on the key characteristics of the

actual system, as its structure and input data. Two main types are thus considered: structure

and input data reformations. Structure reformations involve the system components and the

coupling relation between them, while input data reformations involve the critical system

operation parameters subjected to modifications.

When attempting to predict the behavior of such systems, traditional simulation modeling

cannot provide reliable results, since incorporating into the model any occurring reformations

is not possible. The faster than real time approach provides a concise framework towards this

direction. Important methodological aspects are discussed in the following, while emphasis is

given to experimentation, as the simulation phase facing critical requirements imposed by the

real time dimension.

2. Simulation Methodology

The perception we have for the traditional simulation process is depicted in figure 2.

In this process, when modeling is completed, the model is subjected to modification only

depending on the output analysis results and this causes a feedback to the model construction

phase. However, system specifications are never modified while experimenting with the



model. In real time experiments, on the other hand, any reformations occurring during

experimentation must be handled as modifications to the original system specifications, as

indicated with the dotted line. System specification should therefore be an iterative process

and output analysis must be performed in real time and also be iterative, since it is not only

invoked when experimentation is terminated.

Real time interaction with the system being studied imposes an increased degree of

complexity. The introduced faster than real time methodology extends the traditional

simulation phases to incorporate additional tasks and includes two new phases. The

methodology thus consists of the following individual phases:

• Modeling

• Experimentation

• Remodeling

• Plan Scheduling

The invocation mechanism for the four phases is depicted in figure 3.

2.1 Modeling Phase

As the initial simulation phase, modeling includes system specification and model

construction and is considered to be time consuming. There are no main differences compared

to the traditional approach, except from the requirement for automated model generation.

Acquiring generation capabilities is not crucial for the initial model construction activity,

since modeling precedes experimentation and is not performed in real time. However, the

techniques used determine the efficiency of model modification tasks performed in real time.



The experimentation framework introduced is not associated with a specific modeling

formalism. However, remodeling requirements impose the use of modular models to handle

structural reformations. Modular models often have a hierarchical structure according to

which components are coupled together to form larger models. The formalism in which

models are expressed should therefore make recursive structuring possible8. Coupling concept

combined with the object oriented paradigm enables late binding, an essential feature for

accomplishing remodeling without recompilation. A hierarchical, modular formalism

supporting object orientation, as DEVS-Scheme9, can therefore serve as a theoretical basis for

model specification, since it has already been extended to meet the requirements of real time

simulation10,11.

In this sense, remodeling requirements are handled through object-oriented modeling and use

of preconstructed model components, which are organized in object hierarchies and reside in

model libraries. Preconstruction of primitive and composite models is enabled for all higher

level entities corresponding to the accepted primitive entity combinations. Preconstruction is

expected to extend to the level where structural reformations may be encountered.

Component preconstruction also enables automated model generation. Whenever additional

primitive models are constructed and inserted in object hierarchies, the corresponding

composite models can be simultaneously derived so that their availability is ensured.

2.2 Experimentation Phase

Experimentation is the main phase in the proposed simulation framework. It implements key

features of the extended functionality and, thus, acquires an increased degree of complexity. It

also includes a part of output analysis phase. The dominant factor when performing



experimentation is handling of real time and achieving faster than real time model evolution.

Experimentation includes a number of activities discussed in section 3.

2.3 Remodeling Phase

Invocation of this phase depends on the outcome of experimentation. As discussed in the

following, there are two cases in which remodeling is invoked. In the first, reformations

occurred to the actual system must be incorporated into the model. In the second, deviations

detected during output analysis between the evolution of the system and the model impose

serious doubts for the reliability of the model, thus leading to remodeling. To conclude,

remodeling is viewed as an iteration of the original modeling phase, aiming at restoring

consistency between the actual system and the model.

Remodeling is executed in real time and includes fewer steps than the original phase since

modeling decisions are already taken and model components are implemented. It is important

to note that experimentation may resume its operation only after remodeling is completed and

that a warm up period is needed whenever remodeling is performed.

2.4 Plan Scheduling Phase

Plan scheduling concepts are already introduced and used in diverse domains12. In this case,

plan scheduling denotes the activities of the last simulation phase, which is invoked only when

specific conditions of the real time experiment are satisfied. Plan scheduling implements

specific aspects of the traditional output analysis and decision making process and does not

coincide with the generic output analysis framework. Since it only takes advantage of

simulation predictions under specific circumstances, if simulation predictions were to be used

in an alternative way, plan scheduling could be as well substituted by an appropriate activity.



In this context, simulation results obtained are used to generate and choose the most efficient

plan for the current situation. Plan scheduling is responsible for evaluating the current and

predicted states and proposing an appropriate plan, aiming at leading the actual system to an

acceptable state. Even though plans may be proposed and scheduled, their execution is

performed externally to the simulation environment. In this way, any reformations caused can

be handled appropriately, as external reformations to the actual system. Thus, a simulation

environment built on the basis of the introduced guidelines only contributes to the control

process of the actual system.

3. Experimentation

When experimenting in real time, the model and the actual system evolve concurrently. The

state of the actual system always relates to the current real time point. In the general case, the

state of the model, as denoted by simulation time, may correspond to a previous, future or the

current state of the actual system. As expected, in faster than real time simulation, the model

refers only to future time points.

These concepts are presented in figure 4. Evolution of both systems is depicted on the two

horizontal axons. Real time points are noted as ti, where i is an index denoting the sequence of

time points (e.g. if k < m then tk precedes tm). The state of the system in point ti is noted as Ri.

The state of the model is noted as Si.

When at time point ti the model refers to the system state at time point tj (simulation time is

equal to tj) we use the notation Si � Rj. As expected, the condition for performing real time

simulation is Si � Rj, i = j, as in case (b) in figure 4, and the condition for faster than real time

simulation is Si � Rj, i < j, as in case (a).



Experimentation includes the following main activities: monitoring, auditing and decision

making.

3.1 Monitoring

This activity is necessary for implementing the bi-directional information exchange that

enables the reliability of simulation results. Monitoring (i.e. observation of both systems

evolution) is performed continuously in order to obtain model data and real observations.

There are two key issues that need to be resolved: which data are collected and when these are

obtained.

Dealing with these issues depends on the system under monitoring. When referring to the

actual system, only data denoting its current state can be obtained at any point tn. This includes

data denoting that reformations have occurred to the actual system. Monitoring activity is

responsible for indicating and expressing reformations through appropriate measures.

This does not apply to model monitoring, since simulation time refers to future points.

Monitoring activity is responsible for collecting data describing the preceding and the current

model states, as indicated by simulation time. These are used to perform the necessary

comparisons between the corresponding states (i.e. referring to the same real time points) of

the system and the model. Model data must thus be collected when the corresponding system

states are predicted.

In figure 5, for instance, if actual system data are obtained at time point tn, simulation data

should have been obtained when this specific state was predicted, at time point tx. Thus, when

Sx � Rn, x < n, system are model data are collected in real time points tn and tx, respectively.



Monitoring data are expressed in the form of appropriate monitoring variables, which are

commonly defined for both the model and the system. Comparisons between corresponding

states are thus made in terms of monitoring variable values. The case where values of specific

measures cannot be directly obtained from the system can be handled through the use of

alternative variables expressing measures closely related to the required ones and also through

appropriately forming the comparison algorithm between the corresponding states of the two

systems.

Determining the time points where real system data are obtained must be accomplished before

the experiment initiates, since model monitoring should be aware of them in advance.

Monitoring decisions are therefore expressed as part of control parameters, which must be

forwarded to the simulation environment prior to real time experimentation.

3.2 Auditing

Auditing is the main experimentation activity, which examines model data and real

observations in order to determine:

a)  Whether faster than real time experimentation conditions are satisfied

b)  Whether the model represents efficiently the actual system

c)  If any measures should be taken

As a term, auditing is introduced in order to emphasize on the comparison process between

the corresponding states of the system and the model. Monitoring, which in this paper refers

only to observation process, could as well be used to denote the concepts of auditing.

When performing faster than real time simulation, certain conditions must be satisfied:

simulation time should ad hoc advance faster than the real world time and monitoring data



must be available when auditing is initiated. In this case, consequent states of model and

system evolution, as recorded during monitoring, are analyzed and compared. Monitoring data

depict both systems evolution within specific time intervals. Due to the requirement for

comparing data referring exactly to the same time points, these intervals should be

predetermined and common for both systems. Since this interval is also common for

monitoring and auditing activities, the term auditing interval is introduced to denote it.

This is not the only alternative, however, since it is also possible to obtain data describing the

evolution of both systems for shorter periods of time, that is, to have a shorter monitoring

interval than auditing interval. This could be the case when requesting more than one

experimental data set for a single auditing interval. The opposite case (i.e. having a shorter

auditing interval) is obviously not possible. Nevertheless, in the general case, these two

intervals are considered to be identical.

In figure 5, the auditing interval is of the form (tn+i, tn+i+1]. In addition, we have that Sx � Rn,

x < n and Sn � Ry, n < y. Based on the above, auditing is performed right after an auditing

interval has elapsed (e.g. at time points tn-1, tn and tn+1). Each time auditing initiates, a single

comparison is made between the corresponding states of both systems, as for time point tn,

where Sx is compared to Rn.

Analysis and comparison between the corresponding states result in either of three possible

scenarios, as illustrated in figure 3.

1. The actual system has been reformed during the last time interval: All simulation results

referring to future system states are discarded. Since indicated reformations must be

incorporated into the simulation model, remodeling should be performed to restore



consistency between the system and the model. When remodeling is completed,

experimentation resumes.

2. Deviations are detected between the evolution of the actual system and the simulation

model: Deviations can emerge due to the stochastic nature of simulation when comparing

corresponding states of the two systems, even when reformations have not occurred. When

deviations are detected, it is obvious that the previous modeling attempt has failed and

remodeling should be performed. When remodeling is completed, experimentation

resumes.

3. Simulation results obtained are considered to be reliable: This can only be accomplished

when the current and previous comparisons between data from the two systems prove that

simulation predictions do not deviate from the actual system evolution. Predictions are

therefore considered to be reliable and simulation results are to be further analyzed. This

task strongly depends on the application domain. Our orientation is not limited to gaining

knowledge for the future system states, but extends to controlling the system behavior

through intervening to the conditions the system is subjected to in the near future.

Evaluation is therefore performed to determine whether the predicted states are acceptable

on the basis of predetermined criteria. The term acceptable is used to denote that future

states do not deviate from what is expected under normal conditions. In this case, no

intervenes are needed. If the predicted states are not acceptable, measures should be taken

and alternative plans are thus examined. Plan scheduling activity is invoked, while

experimentation resumes.

Indication of reformations and deviations is accomplished on the basis of appropriate

monitoring variables. To correspond to the above scenarios, monitoring variables should



denote the system components, the coupling relation between components, critical system

parameters and statistical measures representative of the system behavior. It is also required to

have pre-determine how close values of model variables should be to the corresponding ones

of the system. For this task, comparison methods between real observations and model data

can be used, as the confidence interval or the inspection approach13.

Inspection of whether faster than real time experimentation conditions are satisfied precedes

the above comparisons, since it takes place right after the auditing interval has elapsed, and

ensures that the experiment advances as expected. In case that simulation time is less than real

time, as in case (c) in figure 4, simulation results are discarded. If this is a single occurrence,

the experiment can advance to the next auditing interval; otherwise, prediction cannot be

achieved. Evidently, achieving faster than real time simulation in only a limited number of

auditing intervals cannot ensure the reliability of predictions.

Having considered this possibility, it is useful to describe the terminating conditions for a

simulation experiment conducted according to the methodology introduced. When remodeling

or plan scheduling phase are invoked, the experiment is not terminated. In the first case,

experimentation pauses until remodeling is completed; in the second, experimentation

continues without considering the outcome of this phase. The experiment is terminated,

however, when the actual system operation is terminated or when faster than real time

simulation cannot be achieved. Common pre-specified stopping conditions, as the length of

the simulation experiment which, in this case, is expressed in real or simulation time, can also

be used.



3.3 Decision making

Decision making is the last experimentation activity, which is invoked when auditing is

completed. Its purpose is to carry out the decisions taken during experimentation. Thus, if

conditions of scenario (1) or scenario (2) are satisfied, remodeling phase is invoked.

Otherwise, depending on the outcome of simulation results evaluation, decision making can

either invoke plan scheduling, when the predicted states are not acceptable, or just terminate.

In the latter case, monitoring of both systems evolution is re-initiated.

The flow of control for the proposed simulation methodology is depicted in figure 6.

4. Potential Offered

Faster than real time experimentation enhances considerably the potential of the traditional

simulation process. It also enables new application areas to emerge, as in dynamic process

control and training, where efficient solutions cannot always be given through traditional

simulation. The potential offered through the proposed methodology is briefly summarized in

the following:

1. Ensuring the consistency between the simulation model and the actual system: System

identification can be accomplished when performing monitoring and remodeling, starting

from an initial, probably inaccurate model.

2. Increased interactivity: Real time simulation is based on the continuous interaction between

the real and simulation world where the human operator may also participate, as a closed

man-in-the-loop system. Training, as well as other relevant applications, is thus supported.



3. Ensuring the validity of the model: An automated model validation process is implemented

when monitoring and remodeling the initial system representation for a number of

consecutive time intervals.

The ultimate purpose of faster than real time simulation is to ensure the reliability of

predictions for the future system state. This is accomplished on the basis of the knowledge we

obtain up to the current time point for the system behavior when simulation predictions are

confirmed for a number of consecutive intervals, assuming that no further reformations will

occur in the near future.

Nevertheless, if faster than real-time simulation fails (i.e. simulation time is less than world

time), the proposed framework can still be used for system identification and model

validation, since the model can be adapted to the current system state, but not towards

extracting predictions for the near future.

5. Simulation Example

In this section, we present a prototype faster than real time application for computer

networks14. This application domain is used since it enables dealing with both structure and

input data reformations, according to the simulation approach introduced, and also data

exchange between the system under study and the model. However, since it is questionable

whether faster than real time simulation can be achieved for all network types, the actual

network under study is a 10BaseT local network, which is relatively slow.

Since networks can be viewed as variable structure systems, dealing with structure

modifications during the simulation experiment imposes that modular models are used15.

Modular models have a hierarchical structure according to which components are coupled



together to form larger models. Remodeling requirements (especially the one for dynamic

binding) are handled through object-oriented modeling and use of preconstructed model

components, which are organized in object hierarchies. Since preconstructed models

correspond to all network entities, the overall set of acceptable entity combinations must be

supported. Preconstruction of primitive and composite models is thus required for the higher

level entities corresponding to the accepted combinations and extends to the level where

structure modifications may be encountered (nodes and applications). Component

preconstruction also enables automated model generation. In this way, if additional models of

an entity were to be provided (e.g. protocol models) composite models making use of them

would be directly formed.

Network models are composite and consist of primitive and composite models, as nodes,

communication protocols and applications. An example composition scheme for a network

with four processing nodes and their corresponding applications is abstractly depicted in

figure 7. This figure includes two types of links: composition and in_out, indicating the

network components and the coupling relation between them, respectively. Interconnection

between applications is also depicted.

Common examples where remodeling is caused are when a significant application initiates or

terminates, an active node crashes or a processing node is activated. In these cases, structure,

input data or even both reformation types are likely to occur. Auditing is executed when the

preceding interval is completed and exploits monitoring variables from both systems to

conclude for potential reformations or deviations.

Assuming that node2 in figure 7 is no longer active, monitoring data are cross-examined to

indicate the specific node and applications affected. Auditing indicates that node2 and



applications appl21, appl22, appl12, appl41 are no longer active and concludes that structure

reformations have occurred during the preceding interval.  Remodeling is thus invoked, which

removes and disposes the corresponding components from the model composition tree. When

all required modifications are accomplished, the model is once more subjected to

experimentation, starting from the current real time point.

In case that other reformations impose the integration of additional components, as when

another node is activated, the appropriate models are directly imported from model libraries,

initialized and coupled to the existing components. Remodeling may also be caused due to

input data reformations when critical parameters, as communication protocol parameters and

the data unit generation rate of an application, are modified.  Finally, deviations between the

model and the network, expressed through appropriate statistical measures, as the end-to-end

delay, may also lead to remodeling, even when reformations have not occurred. In all above

cases, the network model is modified without recompilation or the human operator

intervening, in minimum time.

Even though remodeling tasks are not trivial, this time overhead must be minimized to ensure

that faster than real time simulation is achieved in the next auditing interval. Attention should

also be given to resetting the simulation clock back to the current real time point, since

experimentation is re-initiated from this point. Except from resetting the clock and the event

list, since previously scheduled events must be disposed, model entities should also be no

longer associated with future time points.

Efficient integration of new models within the aggregate network model relies on ensuring

their availability. Automated model generation contributes to this through enabling the

creation of all composite models for the lately constructed primitive models. An example is



presented in figure 8 for modeling the protocol stack of network nodes, where a new protocol

model (100BaseT) is provided. Hierarchical layering is used. The model hierarchy on the right

side of the figure is directly formed through applying a set of rules determining the higher

layer models to be built, based on the corresponding protocol compatibility rules.

When simulation predictions for the near future are reliable, plan scheduling is responsible for

evaluating the predicted network states and proposing an appropriate plan so that critical

measures (e.g. delay and throughput) remain within acceptable limits. Execution of proposed

actions is performed externally from the simulation environment so that any reformations

encountered will be appropriately handled. Operating on the basis of these guidelines, the

simulation environment contributes - but does not intervene - to network management and

performance evaluation.

6. Conclusions

The proposed faster than real time methodology establishes directions for conducting

experiments within a well-described framework. This methodology enables the enrollment of

simulation experiment evolution in real time and provides the means for enhancing the

effectiveness of the decision making process through reaching reliable conclusions for the

near future and ensuring the validity of the model. The issue of making models run faster than

real time was not considered in this paper; there are other research activities, however,

oriented towards this objective.

To exercise faster than real time simulation, certain requirements must be met. These include

making the model run faster than the real world, monitoring the appropriate system behavioral

characteristics and minimizing the time required for auditing and remodeling.

Parameterization of the simulation environment according to the specific application domain



details is also significant for the experiment effectiveness due to the inherent complexity of

auditing activity. The concepts of the proposed methodology are not yet expressed through a

well-defined modeling formalism, which would be especially useful for remodeling, in order

to provide a complete specification of how the various reformation types are handled. Current

and future research of the authors is focused on these open issues.
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Figure 1: Information exchange between the simulation model and the real world
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Figure 8: Automated model generation for protocol stack modeling
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