

A UML2.0 PROFILE FOR DEVS:
PROVIDING CODE GENERATION CAPABILITIES FOR SIMULATION

Mara Nikolaidou, Vassilis Dalakas, George-Dimitrios Kapos, Loreta Mitsi, Dimosthenis Anagnostopoulos

{mara, vdalakas, gdkapos, mitsi, dimosthe@hua.gr}

Harokopio University of Athens
70 El. Venizelou Str, 17671

Athens, GREECE.

Abstract
DEVS (discrete event system specification) is a popular method
for specifying discrete event simulation models. Though there are
a number of simulators for DEVS, they usually do not provide an
easy-to-use graphical interface, while, even if they do, it is simula-
tor-specific. Thus, even if the modeler specifies the same model
using DEVS, he/she has to create it from scratch for every discrete
simulator. On the other hand, UML is a standard modeling lan-
guage providing graphical representation of models and code
generation capabilities. In this paper, we discuss our effort to
combine UML with DEVS to build simulation models, promoting
software engineering methods in the simulation world. Such an
endeavor should facilitate a standard method to define DEVS
models and promote interoperability between DEVS simulators.
The first step towards this, is the formal definition of the DEVS
UML 2.0 profile proposed in this paper.

Keywords: Software Engineering, Simulation Models,
DEVS, UML.

1 INTRODUCTION

Discrete event simulation is a popular method to conduct
simulation experiments. DEVS (Discrete Event System
Specification) is a standard method for specifying simula-
tion models (Zeigler, Praehofer, and Kim 2000) Though,
DEVS models and the code needed to be written by the sys-
tem modeler for DEVS simulators, such as DEVSim++
(Kim, Ham, and Kim 1993), are two discrete entities.
DEVS simulators do not usually provide an easy-to-use
graphical interface, while, even if they do, it is simulator-
specific. Thus, even if the modeler specifies the same
model using DEVS, he/she has to create it from scratch for
every discrete simulator.
 Unified Modeling Language (UML) (OMG 2004) is
considered as the most popular methodology for software
modeling, thus a fundamental skill for software engineers.
There is an effort to combine UML with DEVS. A mapping
between DEVS models and UML state charts has been in-
troduced in (Schulz, Ewing, and Rozenblit 2000), while in
(Hong and Kim 2004), the representation of atomic DEVS
models using UML sequence diagrams is proposed. Most
of these efforts, focus on mathematical proofs, that map-
ping DEVS to UML is possible (Zinoviev 2005). In (Feng

2004), an attempt has been undertaken to develop DCharts
as a graphics language for DEVS models. DCharts is a
UML-like language that does not follow any UML stan-
dard. The formal method, proposed by OMG to extend or to
restrict UML models, is the definition of a UML profile
(OMG 2004), emphasizing the use of UML to describe a
specific “world”, as the DEVS formalism. Since UML 2.0
profiles are based on formal UML extension mechanisms,
can be implemented in any standard UML modelling tool
providing automated code generation for DEVS simulators.

In the following, we propose a UML 2.0 profile sup-
porting the description of DEVS simulation models. Our
aim is a) to offer a graphical, standardised environment for
the definition of DEVS models using the proposed profile
and b) if the profile is embedded in a UML modelling tool,
to be able to generate code for DEVS simulators. The gen-
erated code should correspond to DEVS model definitions
forwarded to DEVS simulators.

The paper is structured as follows: A brief description
of DEVS formalism and simulation tools is provided in sec-
tion 2. The scope of DEVS UML 2.0 profile and related
implementation issues are presented in section 3. Coupled
DEVS model and atomic DEVS model description are fo-
cused in section 4 and section 5 respectively. Conclusions
and future work reside in section 6.

2 DEVS REVIEW

The DEVS formalism is a conceptual framework consisting
of mathematical sets to describe the structure and behavior
of a model. Simulation models are specified in a modular
and hierarchical form. Two types of models are defined:
atomic models (behavioural representation), from which
larger ones are built and describe basic model functionality,
and coupled models (structural representation) expressing
how basic models are connected in a hierarchical form.
An atomic model consists of inputs, outputs, state variables
and functions. Each model is described as:
• set of input ports for receiving external events
• set of output ports for sending external events
• set of state variables and parameters
• internal transition function, which specifies the next

state to which the system will transit

• external transition function, which specifies the next
system state when an input is received (the next state is
computed on the basis of the present state, the elapsed
time, and the content of the external input event)

• output function, which generates an external output just
before an internal transition occurs

• time advance function, which controls the timing of in-
ternal transitions

A coupled DEVS model contains the following informa-
tion:
• set of components
• set of input and output ports
• external coupling, which connects the input/output ports

of the coupled model to one or more input/output ports
of the components

• internal coupling, which connects output ports of the
components to input ports of other components – when
an output is generated by a component it may be sent to
the input ports of designated components (in addition to
being sent to an output port of the coupled model).

DEVS simulators facilitate system modellers to generate
simulation code in one-to-one correspondence with DEVS
formalism. The code imported in DEVS simulators consists
of DEVS entity declarations (structural and behavioural).
DEVS simulators support object-oriented simulation, thus
the system modeller defines DEVS models as a set of
classes and methods in an object-oriented language, as C++
or Java (Kim 1998). In such a case, all DEVS model enti-
ties are defined as ancestors of a predefined class hierarchy
provided in DEVS libraries (figure 1).

CAtomic

CCoupled

Integer

String

Float

CM odel

CM essage

CValue

CObject

Figure 1: DEVS Simulator Class Hierarchy

CObject is the root of DEVS hierarchy and all the other
classes derive from it. CModel defines the construction
needed for DEVS modeling. This is specified into: CA-
tomic and CCoupled. Input and output ports are defined as
corresponding attributes. In the atomic model, states are de-
scribed as combinations of state variable values, thus state
variables are defined as attributes of CAtomic class. CMes-
sage manages transmissions of events between models, de-
fining the method for sending output events and receiving
input events. CValue class is the basic class for all data type
classes. Coupled model class supports methods for defining
ports and the coupling between them. Atomic model class,
besides methods for handling structural information, for ex-

ample ports or state variables, also includes methods for the
description of system behavior. The implementation of
methods for handling structural information is provided in
DEVS libraries. The modeler has to specify the implemen-
tation of methods corresponding to internal transition, ex-
ternal transition and output functions, namely InTransFn,
ExtTransFn and OutputFn, which are model-related and
thus can not be predefined. In most cases, system modeler
has to write himself object-oriented code in C++ or Java
using DEVS libraries.

3 DEVS UML 2.0 PROFILE

Although DEVS simulators support well-defined simula-
tion modeling formalisms, they lack of a standardized,
easy-to-use interface facilitating system modelers to define
simulation models, independently of their internal charac-
teristics and implementation language. On the other hand,
UML provides graphical representation of models regard-
less of their implementation and automated code generation
in most common object-oriented languages, as C++ and
Java. Thus, it may support a standardized, easy-to-use,
graphical environment for defining DEVS models, that can
be consequently executed in existing DEVS Simulators. In
such a case, the modeler could describe DEVS model using
a popular UML modeling tool, generate the corresponding
code in C++ or Java and execute the model in a DEVS
simulator. This has no effect in the Simulator, while code
generated by the UML modeling tool would serve as a
skeleton for the definition of classes and methods corre-
sponding to the model. Class definition can be fully gener-
ated, while the same applies to most method implementa-
tions corresponding to DEVS function. Only application-
specific functionality, unrelated to simulation process, for
example statistics computation, would be filled by system
modeler. Furthermore, the modeler defines his/her model
independently of simulation implementation. The same
model can be used to generate code for different simulators
built using the same or different programming languages.

In order to be able to use any standard UML modelling
tool for defining DEVS models, a formal method to extend
UML semantics for DEVS formalism must be used. This is
accomplished by the definition of DEVS UML 2.0 profile
(OMG 2004), which is properly loaded in any standard
UML 2.0 modelling tool. Within the profile, all discrete
DEVS entities should be described in an object-oriented
fashion, while common DEVS simulator class hierarchy, as
presented in figure 1, should also be taken into account.
DEVS UML 2.0 profile must provide for the description of
all the entities included in figure 1. Alternative UML dia-
grams are used depicting different aspects of atomic and
coupled DEVS models. DEVS model entities are defined as
stereotypes of UML 2.0 entities with additional attributes,
while constraints are used to restrict UML semantics to
DEVS formalism. An except of the stereotypes defined, is
presented in figure 2.

 The proposed DEVS UML 2.0 profile is implemented
using Magic Draw modelling tool (Magic draw, 2007),
which fully supports UML 2.0 and provides a Java API.
Figures depicting UML diagrams in the rest of the paper are
snapshots of the environment. As indicated in figure 3, the
tool facilitates the definition of DEVS Profile stereotypes in
a standard fashion (left part of the figure), the customiza-
tion of menus to include DEVS specific diagrams (see cor-
responding tool bar) and the definition of constraints using
OCL (OMG 2003) and Java. The definition of all DEVS
constraints using OCL is not trivial and, thus, it was
avoided. Some of DEVS constraints are implemented using
OCL and other (the more complicated ones) using the pro-
vided Java API. The API was also used for the implementa-
tion of advanced capabilities, such as the automated genera-
tion of states in the Internal Transition and Output Function
Diagram (sections 5.1.3 and 5.1.4). Code skeleton genera-
tion for C++ DEVS simulators is currently under develop-
ment, while Java code will be produced as well.

Fig. 2: Except of DEVS stereotypes

4 COUPLED DEVS MODEL

In the context of coupled DEVS, emphasis is given on the
component models (atomic or coupled), their interconnec-
tions through connection points, called ports, and composi-
tional capability. Thus, UML diagrams that depict structural
composition and dependencies of distinct elements, such as
class, object, communication or component diagrams, could
be used for DEVS CM representation.
 UML 2.0 component diagrams provide the means to
naturally describe system composition. In UML 2.0 com-
ponent diagrams, components may be connected or decom-
posed into other components. Also, they have ports used as
the end-points of inter-component connections. Ports facili-
tating sending or receiving messages and are associated to
interfaces indicating whether each port produces (output) or
requests (input) data. Figure 3 depicts an example of defin-
ing a coupled DEVS model using a UML 2.0 Component
Diagram. Both atomic and coupled DEVS models, compos-

ing the models, are represented as stereotypes of the UML
component element, namely DEVS AM and DEVS CM.
Each stereotype has additional DEVS specific attributes
corresponding to the ones describing DEVS entities de-
picted in Classical DEVS Model (figure 2). Constraints are
defined to depict the relationships between DEVS entities
(as depicted in figure 2) and restrict UML component dia-
gram functionality to effectively correspond to DEVS for-
malism. All stereotypes defined for coupled DEVS model
reside in table 1 (Appendix A).

In component diagrams, ports can be defined for each
component, related to two different types of interfaces de-
termining whether the port requires input or produces out-
put. The same applies to DEVS CM and DEVS AM as well
(DEVS port stereotypes). As indicated in figure 3:
• Input ports of the external coupled DEVS model (Teller

Queue) connect to input ports of the contained DEVS
component stereotypes (External DEVS input port
stereotype of port UML entity). Similarly, output ports
of the external coupled DEVS model connect to output
ports of the contained components (External DEVS out-
put port stereotype of port UML entity). External input
(output) ports of the external DEVS CM both realize
and use (use and realize) the same interface in order to
propagate messages into (out of) the external model.

• All other connections (between internal DEVS models,
either DEVS CM or DEVS AM) are made using the in-
terfaces specified between two connected ports, defining
the messages that may be sent. DEVS input ports are de-
fined as stereotypes of ports realizing the respective in-
terfaces (circle symbol), while DEVS output ports are
defined as stereotypes of ports using them (arc symbol).
Standard UML notation of interface entity is adopted in
this case.

Fig. 3: Coupled DEVS Model

Figure 3 depicts a simple example of a coupled DEVS
model. Two Teller Queue model is defined as the coupling
of atomic (such as teller) and coupled (such as Service Re-
porter) models. Coupling is described by the definition of
the correspondence among input and output ports of the
components and the coupled model. Queue receives a cus-
tomer from Two Teller Queue input port to its customer in
port. Teller atomic model serves the received customers
from Queue atomic model. It waits for a customer in idle
state. Upon receiving a customer in the input port “cus-
tomer in, Teller changes its status to busy state and in-
creases customer variable. Service time is an exponentially
distributed random variable. When the service is finished, it
sends customer to the output port service info out and send
idle message to Queue informing its state. Component dia-
grams can not accommodate the description of such func-
tionality, thus a more complex representation of Atomic
Model was sought.

5 ATOMIC DEVS MODEL

Defining an atomic DEVS model is divided in two parts:
• Static characteristics definition, such as states, input

and output ports and messages.
• Behaviour definition in response to input messages or

time advancement.
The diversity of atomic DEVS models leads to the integra-
tion of more than one UML diagrams for their definition
Component diagrams are used for defining static character-
istics (in/out ports) and integrating all other UML diagrams
(External View), while a variety of diagrams are related to
the corresponding component diagram, to represent atomic
model behavior. The diagrams proposed for atomic model
description are discussed in the following.

5.1.1 External View

The external view of an atomic DEVS models is defined
using a component diagram, in a way similar to coupled
DEVS models. For each component stereotype (External
DEVS AM), used to depict an atomic model, two subdia-
grams must be defined: A composite structure diagram fa-
cilitating state definition and a state diagram facilitating the
definition of internal and output function. Both are dis-
cussed in the following. For each input port (external DEVS
input port), an external function must be defined. This is
accomplished through an activity diagram related to each
input port.

5.1.2 State Definition

Composite structure diagrams are used for defining atomic
DEVS set of states. This is done indirectly through the
definition of state variables and their state distinguishing
values. State variables are defined as stereotypes of UML
2.0 part entity (state variable), while state distinguishing

values are defined as stereotypes of UML 2.0 property en-
tity. Since state variables are of certain type, 4 different
value stereotypes (integer value, float value, string value,
range value) of property entity are defined. As shown in
figure 8, state variables are represented as parts using solid
line rectangles. Each state variable is associated with one
or more values represented as properties using dashed line
rectangles. As values, one should define the values or value
range of each state variable that may lead to different model
states (state distinguishing values). Corresponding stereo-
types reside in table 2. State variables and values are asso-
ciated using one of the following associations: Initial, =, >,
<, ≥, ≤, ∈. There must be exactly one Initial association for
every state variable. On the other hand, the “state determin-
ing” associations are as many as the cases where the value
(or value range) of the respective state variable determines
a distinct occasion in internal state transition. When the
value of a state variable does not determine such an occa-
sion, then no such association and property exist. As parts
and properties must be contained in a UML 2.0 class entity,
state variables and values must be contained in a State
Definition entity (stereotype of UML 2.0 class entity)

Fig. 4: State Definition Model

Using this diagram, discrete model states can be defined by
combing discrete values of all the state variables defined in
it. Thus, the computed discrete model states can be auto-
matically inserted in the state diagram, corresponding to In-
ternal Transition and Output functions, discussed in the fol-
lowing paragraph. Two state variables are defined for the
teller model. As show in the figure, only status state vari-
able actively participates is discrete state definition, since
for customerCount only an initial value is defined. Thus,
two discrete states are expected to participate in the Int-
Trans/Out state diagram.

5.1.3 Internal Transition and Output Function
Definition

State diagrams are used for the definition of the internal
transition function. DEVS states are computed based on
State Definition diagram and automatically inserted in the
diagram. The modeller specifies internal transitions by in-
serting simple transitions between states. The initial state is
determined by the initial values of each state variable. It

was decided to include Output Function within the diagram
rather than define a discrete one for each output port, since
output generation is strictly related to internal state transi-
tion. Corresponding stereotypes reside in table 3. The
InTrans/Out diagram for Teller atomic model is depicted in
figure 5. There are two discrete states computed. The initial
state is defined based on the initial value of status variable.
One internal transition is defined accommodated with the
definition of two outputs. For each one of them the output
port and corresponding output value is defined.

Fig. 5: Teller Internal Transition and Output Function

5.1.4 External transition function

The external transition function of Customer In input port
of Teller model is depicted in figure 6.

Fig. 6: Teller external transition function

For each input port of the atomic DEVS model, an external
transition function must be defined. This is accomplished
using an activity sub-diagrams associated with each input
port of the atomic DEVS model external view. Two kinds
of activities are included in the diagram: a) DEVS state ac-
tivity indicating state variable modification which results in
state transitions and b) application specific activity corre-
sponding to application specific code (for example statistics
computation). Corresponding stereotypes of the UML 2.0
activity entity are defined. A DEVS state activity consists of
DEVS actions (stereotype of UML 2.0 action entity). Each

action defines the modification of a specific state variable.
Each DEVS ExtTrans, defined as a stereotype of UML ac-
tivity diagram, must start with a decision node indicating
the conditions leading to a specific state transition. Condi-
tions represented as DEVS Input Control Flow (stereotype
of UML 2.0 control flow entity) consists of combinations of
state variable and message values, where message entity
facilitates the communication between model ports. Stereo-
types defined for external transition function definition re-
side in table 4.

6 CONCLUSIONS – FUTURE WORK

We proposed the use of UML as a standardized, easy-to-
use, graphical method to define DEVS simulation models,
that can be consequently executed in existing DEVS Simu-
lators. The first step towards this endeavor, is the formal
definition of the proposed DEVS UML 2.0 profile and its
implementation in Magic Draw tool. Standard profile defi-
nition options and the Java API provided were used for the
profile implementation. Code skeleton automated genera-
tion for DEVSim++ and DEVSJava is currently under im-
plementation.

ACKNOWLEDGMENTS

This research was supported in part by Pythagoras program
(MIS 89198) co-funded by the Greek Government (25%)
and the European Union (75%).

REFERENCES
Feng, H. 2004, February. Dcharts, a formalism for modeling and

simulation based design of reactive software systems. Master
Thesis, McGill University.

Hong, S.-Y., and T. G. Kim. 2004, July. Embedding UML subset
into object-oriented DEVS modeling process. In Proceedings of
SCSC 2004, 161–166. San Jose, CA.

Kim, T. G. 1998. DEVSim++ © User’s manual. C++ based simu-
lation with hierarchical modular DEVS models.

Kim, Y. C., K. S. Ham, and T. G. Kim. 1993. Object-oriented
memory management in devsim++. In WSC ’93: Proceedings of
the 25th conference on Winter simulation, 670–673. New York,
NY, USA: ACM Press.

Magic Draw 2007, http://www.magicdraw.com/
OMG 2003, October. UML 2.0 OCL Specification. Available

online via http://www.omg.org/docs/ptc/03-10-14.pdf
OMG 2004, August. OMG Unified Modeling Language: Super-

structure, version 2. Available online via
http://www.omg.org/docs/formal/05-07-04.pdf

Schulz, S., T. C. Ewing, and J. W. Rozenblit. 2000, April. Dis-
crete event system specification (DEVS) and statemate state-
charts equivalence for embedded systems modeling. In Proceed-
ings of 7th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, 308–316.

Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of model-
ing and simulation. 2nd ed. Academic Press.

Zinoviev, D. 2005, April. Mapping DEVS models onto UML
models. In Proceedings of the 2005 DEVS Integrative M&S
Symposium, SpringSim05, 101–106. San Diego, CA.

Appendix A: DEVS UML 2.0 Profile Definition

Table 1: DEVS Model Stereotypes
DEVS Stereotype UML Entity Attributes Constraints

External DEVS CM External
Component

InPorts
OutPorts

- Each component diagram contains exactly one external component. Inside the external compo-
nent, only elements of the stereotypes defined in this table are allowed.
- The values of InPorts and OutPorts are automatically computed based on the diagram.

DEVS CM Component - Every DEVS CM is associated with an external DEVS CM diagram.
DEVS AM Component - Every DEVS AM is associated with an external DEVS AM diagram.

DEVS input port Port - The port must be related to a DEVS CM or a DEVS AM and must implement the InOut interface.
- The InOut interface implementation of the DEVS input port must be related to an InOut interface
usage of a DEVS CM or DEVS AM or an external DEVS input port.

DEVS output port Port - The port must be related to a DEVS CM or a DEVS AM and must use the InOut interface.
- The InOut interface usage of the DEVS output port must be related to an InOut interface of a
DEVS CM or DEVS AM or an external DEVS output port.

External DEVS CM
input port

Port - The port must be related to an external DEVS CM and must also use and implement the InOut
interface.
- The used interface of the external DEVS input port must be related to the InOut interface imple-
mented by a DEVS CM or a DEVS AM.

External DEVS CM
output port

Port - The port must be related to an external DEVS CM and must also use and implement the InOut
interface.
- The implemented interface of the external DEVS output port must be related the InOut interface
used by a DEVS CM or a DEVS AM.

Table 2: State Definition Stereotypes
DEVS Stereotype UML Entity Attributes Constraints

State Definition Class - The class may only contain stereotypes of parts, properties and associations defined in this table.
State Variable Part Type - The part must be related to exactly one Initial association.

- The part may be related to ∈, =, >, <, ≥, ≤ associations.
Integer, Float, String

Value
Property Value - Must be associated with a State Variable Part with Integer type through an Initial association

and/or a =, >, <, ≥, ≤ association.
Integer, Float Range

Value
Property SValue

EValue
- Must be associated with a State Variable Part with Integer type through a ∈ association.

Initial Association - Associates a state variable with any property stereotype.
∈ Association - Associates a state variable with a range value stereotype.

=, >, <, ≥, ≤ Association - Associates a state variable with any property except rang value.

Table 3: State Transition Stereotypes
DEVS Stereotype UMLEntity Attributes Constraints
DEVS InTrans/Out State diagram The diagram contains only stereotypes defined in this table.

 The diagram can not be defined if there is no corresponsing state definition diagram
DEVS State State Description - The state description is a combination of the state variable values (properties) specified in the state

definition diagram. Variables that do not have a specific value are equated to the keyword ANY.
DEVS InTrans State transition -Only one transition may start from any single state node
DEVS OutFn DEVS InTrans - The effect of the transition may contain one or more invocations of the method

send(<port>,<value>) followed by semicolon. <port> is the name of an output port of the DEVS AM
already define in External view.

Table 4: External Transition Description Stereotypes
DEVS Stereotype UML Entity Attributes Constraints
DEVS ExtTrans Activity diagram - The diagram contains only of stereotypes defined in this table.

- The diagram is associated to an External DEVS Input node stereotype of an external DEVS CA
component diagram

DEVS Input
Decision Node

Decision Node - Receives control flow from the initial node.
- Only DEVS Input Control Flow originate from this decision node.

DEVS Input Control
Flow

Control Flow - Starts from DEVS Input Decision Node and ends at a DEVS State Action or DEVS Application
Action.
- Has a guard condition that is a logical expression built from conditions on state variable values
and message received value (the ANY keyword may be used).

DEVS State Activity Activity - Contains only sequential DEVS State Actions.
DEVS State Action Action - Describes the modification of a state variable value.

- Propagates control flow to another DEVS State Action, to a DEVS Application Action, or to the
final node.

Application Activity Activity - Receives control flow from a DEVS State Activity

	1 INTRODUCTION
	2 DEVS REVIEW
	3 DEVS UML 2.0 PROFILE
	4 COUPLED DEVS MODEL
	5 ATOMIC DEVS MODEL
	5.1.1 External View
	5.1.2 State Deﬁnition
	5.1.3 Internal Transition and Output Function Definition
	5.1.4 External transition function

	6 CONCLUSIONS – FUTURE WORK

