
Evaluating Software Architecture in a Model-based
Approach for Enterprise Information System Design

Anargyros Tsadimas, Mara Nikolaidou, Dimosthenis Anagnostopoulos
Department of Informatics & Telematics, Harokopio University of Athens

70 El. Venizelou Str, 176 71 Athens, Greece
{tsadimas, mara, dimosthe}@hua.gr

ABSTRACT
Enterprise information system architecture design is the pro-
cess of defining and optimizing its structure (both software
and hardware) to effectively support provided functionality.
System architects are combining software and hardware vi-
tal components, usually defined by other stakeholders, and
are dealing with both functional and non functional require-
ments. Alternative architecture solution evaluation is usu-
ally a part of the design process, aiming to determine if the
defined requirements are satisfied. A model-based approach,
constituted of discrete views, each of which facilitates a dis-
crete design task, has been proposed, while Systems Mod-
eling Language (SysML) has been adopted for the model
representation. In this paper, emphasis is given on the Eval-
uation View, aiming at the exploration of alternative soft-
ware and hardware combination scenarios proposed in other
views. The view facilitates the management of simulation
experiments and results and the verification of predefined re-
quirements. A case study, where the proposed model-based
design approach has been applied is also discussed.

Categories and Subject Descriptors
H.1 [Information Systems Applications]: Models and
Principles; D.2.1 [Software Engineering]: Requirements/
Specifications

Keywords
Enterprise Information Systems, Model-based Engineering,
Architecture Design and Evaluation

1. INTRODUCTION
Enterprise Information Systems (EIS) are large-scale, com-

posite systems, consisting of software and hardware com-
ponents, which should be defectively combined to ensure
system efficient operation. EIS Architecture design consists
of the definition and optimization of a system architecture
comprised of software and hardware components, ensuring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SHARK ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-967-1/10/05 ...$10.00.

that all software components are identified and properly al-
located and that hardware components are properly com-
bined to support the efficient operation of software compo-
nents and provide the desired performance. It is usually
performed by system architects and is characterized as a
complex process [1]. It is evident that the identification
of functional requirements, e.g. EIS components and their
capabilities [2], are not enough to ensure EIS efficient opera-
tion. Non-functional requirements, e.g the conditions under
which EIS components should operate [2], should also be
taken into account. Visualization helps system architects
to understand and utilize the architectural design decisions
[10]. In practice, EIS Architecture design focuses on the ef-
ficient integration of EIS vital components already defined
by other stakeholders than system architects [12].

There are a lot of EIS engineering methodologies in the
literature [5]. A model-based approach for the design of EIS
architecture is about elevating system models to a central
and governing role in the design of the system. In such
a case, design is to be accomplished by developing models
of increasing detail ([5], [7]). In [12], the concept of con-
ducting model-based EIS Architecture design was explored,
based on a modular central model, consisting of discrete
sub-views serving discrete design tasks. The proposed EIS
Architecture Design model facilitates the description of both
functional and non functional requirements and the design
decisions related to them according to different perspectives
often influenced by different EIS stakeholders. Each of the
perspectives results to an independent sub-view serving a
discrete design task. Non-functional requirements (NFRs)
(for example performance requirements) play a significant
role during EIS Architecture design [6], since they depict the
conditions under which specific system components should
operate, leading to alternative design decisions, thus they
were grouped in a discrete view. EIS Architecture model-
based design was performed using Systems Modeling Lan-
guage (SysML) [14] and a corresponding SysML profile was
defined.

Since EIS Architecture design is a complex process, pro-
posed architecture scenarios should be evaluated [8] and
properly adjusted, to achieve an acceptable solution. In
the model-based approach proposed in [12], solution eval-
uation is treated as an independent activity, not integrated
within the central model serving design tasks. Thus, the sys-
tem designer is not supported by the central system model
with information to make any EIS (software or hardware)
redesign or requirement readjustment decisions. In this pa-
per, we propose the extension of the EIS Architecture Design

model to incorporate EIS Architecture solution evaluations
and perform requirement verification, as these tasks are of-
ten performed by the system designer to reach an acceptable
design solution. Furthermore, solution evaluation results are
part of the knowledge utilized by the designer to make re-
design decisions. Thus, they be incorporated in the system
design model and become available during EIS Architecture
design process. An additional sub-view, called Evaluation
View, which facilitates the definition of solution evaluation
scenarios, the maintenance of evaluation results and the ver-
ification of requirements, is integrated in EIS Architecture
design model to help the designer to make redesign or re-
quirement readjustment decision if needed.

The rest of the paper is organized as follows: Section 2
explains the main concepts of model-based EIS architecture
design identifying basic tasks and corresponding views, fo-
cusing on system evaluation. In section 3 the corresponding
model constituting EIS Architecture Evaluation view is an-
alytically presented. In section 5 a case study, where the
proposed model-based design approach has been applied fo-
cusing on the Evaluation View, is briefly discussed. Conclu-
sions and future work reside in section 6.

2. MODEL-BASED DESIGN OF EIS ARCHI-
TECTURE

2.1 EIS Architecture Design Tasks
According to [12], the basic tasks identified during any EIS

design activity, are Requirement definition, Solution synthe-
sis, Solution evaluation and Solution re-adjustment. Based
on predefined requirements, the system designer build a so-
lution on system synthesis. In order to decide if a solution
is acceptable, evaluation is used. Until an accepted solution
is reached, re-adjustments are performed.

In the case of EIS architecture design, solution synthesis
encompasses Functionality, Topology and Network Infras-
tructure definitions [12]. Functionality Definition focuses
on software architecture design, Topology Definition on soft-
ware allocation process and Network Infrastructure Defini-
tion on hardware architecture design. Non Functional Re-
quirement (NFR) Definition should also be independently
treated, since the conditions, under which the system should
operate, play a significant role in design decisions. For each
of these definitions, a corresponding EIS Architecture View
has been defined. Furthermore, EIS Architecture Evalua-
tion should be performed. In order to evaluate the designed
solution, non functional requirements definition is used, fo-
cusing on system performance and availability requirements
essential for EIS architecture design. Then, solution evalu-
ation is performed and evaluation results are used to check
whether non functional requirements are satisfied. If not,
then EIS Architecture readjustment is performed until an
acceptable EIS architecture synthesis is identified. To man-
age the evaluation process and maintain evaluation results
a discrete EIS Architecture View is defined. EIS Architec-
ture design tasks and corresponding views are presented in
Figure 1.

It is evident that all aforementioned tasks are interrelated,
since non of them can be completed independently, while in
most cases tasks are performed in parallel, and often repeat-
edly by the system architect in order to reach an EIS archi-
tecture satisfying both functional (identified during Func-

tionality Definition and partly during Topology and Net-
work Infrastructure Definition) and non functional require-
ments (identified during NFR Definition). NFR Definition
is performed in parallel with Functionality, Topology and
Network Infrastructure Definition. Developing requirements
and architectural artifacts in parallel has already been ad-
dressed in the literature [13]. After an EIS architecture has
been defined, it should be evaluated, most commonly using
simulation. Solution evaluation will determine whether the
proposed solution is satisfying all functional and non func-
tional requirements, or the system designer should improve
the proposed architecture or readjust requirements by re-
peating definition tasks. Adopting a model-based approach
for EIS Architecture design should provide the system ar-
chitect with a common system model to support all design
tasks and enable him/her to perform each design task in
an independent fashion taking into account the restrictions
imposed by other tasks.

As defined in [12], the system architect is provided with
a common system model, called EIS Architecture Design
model, to perform architecture design tasks. This model
facilitates the definition and both functional and non func-
tional EIS requirements and the synthesis of a system ar-
chitecture combining them. Functional requirements and
corresponding design decisions are described using comple-
mentary EIS Architecture views focusing on different aspects
of system design, namely, Functional View, Topology View,
Network Infrastructure View and NFR View. In practice,
each of these views serves the corresponding task identified
above. In this manner, the system architect is enabled to re-
alize the affect of specific design decisions (for example the
allocation of software to hardware resource) to non func-
tional requirements imposed to them (for example perfor-
mance) and vise-versa. All non functional requirements are
aggregated in NFR view, while each of them is also included
in the corresponding diagram that satisfies it, as depicted in
figure 1. Using NFR view, the system designer is enabled
to explore non functional requirements relationships, while,
using other views, the relationship between non functional
requirements and design decisions is explored [15].

Such an approach allows for the progressive and indepen-
dent execution of EIS architecture composition tasks in par-
allel, while the impact of design decisions adopted in each
of them to the other ones is expressed in terms of non func-
tional requirements grouped in NFR view. Solution eval-
uation is treated as a discrete independent step, while the
EIS architecture design model does not provide the system
designer with any information regarding system redesign or
requirement readjustment decisions. Thus, we argue that
each of the basic design tasks, including solution evaluation,
should be described through a discrete view. The integra-
tion of the Evaluation View within EIS Architecture De-
sign model facilitates the definition of solution evaluation
scenarios and the integration of evaluation results into the
common model in order to help the designer to redesign
software/hardware architecture or to relax imposed require-
ments if needed. In this paper, we focus on the description
of the Evaluation View and the way it might help the system
designer during EIS Architecture design. The way Evalua-
tion view is integrated within EIS Architecture Design model
is depicted in figure 1. Interrelations between all views com-
prising EIS Architecture Design model are also identified in
this figure. The entities defined in the Evaluation View are

Figure 1: EIS Architecture Views and Corresponding Design Tasks

used to evaluate the EIS architecture as defined in Func-
tional and Network Infrastructure Views in order to verify
the non functional requirements defined in NFR View.

2.2 EIS Architecture Synthesis
The allocation relation between Functional and Topology

Views indicates that entities defined in Functional View and
more specifically application modules, data entities and users
modeled as roles are allocated in system access points, called
sites, defined in the Topology View. The allocation of mod-
ules, roles and data entities to sites corresponds to software
architecture design. The allocation relation between Topol-
ogy and Network Infrastructure Views indicates that each
site defined in the Topology Views is served by a network
defined in Network Infrastructure View. When a site is al-
located to a network, functional view entities allocated to
each site must be specifically allocated to network nodes
belonging to each network.

NFR View consists of all non functional requirements that
should be satisfied by entities belonging in the three afore-
mentioned views. These requirements are progressively de-
fined during model-based EIS Architecture design. Perfor-
mance requirements are emphasized, since they are essential
in EIS architecture design. They are further decomposed to
behavior, load and utilization. Utilization requirements are
associated with Network Infrastructure view and regard the
proportion of network infrastructure resources used by ap-
plications during normal operation or extreme conditions.
Behavior requirements deal with service behavior and are
time-related (e.g. response times). They affect Functional
view. Two of them are defined, namely responseTime, indi-
cating the time interval within which a service should com-
plete its execution, and roleBehavior, indicating activation
patterns for roles defined within Functional view. Load re-
quirements concern the load imposed to other EIS resources

by EIS components allocated to them. Load requirements
are defined in all views. Most of them are derived require-
ments, where their attributes are calculated using attributes
of other load requirements. Four different load requirements
are defined, namely serviceQoS and moduleQoS used in
Functional View, traffic related to sites in Topology View
and load related to Nodes and Networks in Network Infras-
tructure View. An analytical description of NFR view can
be found in [15].

The entities participating in Functional, Topology, Net-
work Infrastructure and NFR views and the way they are
interrelated are summarized in figure 2. NFR view entities
are not grouped separately simply for representation rea-
sons.

3. EIS ARCHITECTURE EVALUATION
In order to effectively define EIS Architecture, the system

architect should ensure that non-functional requirements are
fulfilled. Evaluation View is used to evaluate such require-
ments, as system performance, of different EIS Architecture
configurations, as defined by the system architect in Func-
tional and Network Infrastructure views. In practice, it is
used to determine whether the proposed architecture meets
specifications placed by non functional requirements. Since
EIS Architecture design process may require to evaluate and
properly adjust the proposed architecture more than once,
Evaluation View consists of multiple test cases used to eval-
uate alternative solutions. Since simulation is used for ar-
chitecture evaluations, these test cases are called simulation
experiments. A Simulation Experiment is a set of conditions
or variables which will be tested to ensure requirements are
met. As indicated in figure 1, a simulation experiment is con-
ducted to evaluate design decisions depicted in Functional
and Network Infrastructure View, while its results are used
to verify requirements defined in NFR View. When conflicts

Functional View

 Network Infrastructure ViewTopology View

Service Description

Composite Network

Atomic Network

Composite Site

responseTime req

roleBehavior Req

availability req

moduleQoS req

serviceQoS req

constraint req Workstation

Application

Data Entity

traffic req

uilization req

Atomic Site

Network

Service

Initiate

Module

Invoke

load req

Server

Role

Node

Site

Allocation

Allocation

satisfy

satisfy

-target1 -incoming -source-outgoing

-target-incoming

Allocation

Allocation

satisfy

Allocation

satisfy

satisfy

1

1

Allocation

satisfy
satisfy

satisfy

satisfy

satisfy

-source

-outgoing

satisfy

Allocation

satisfy

Figure 2: EIS Architecture Synthesis Model

roleBehavior Req

Network

constraint req

sim-Module

sim-Role

Network Device

moduleQoS req

responseTime req

uilization req

Service

sim-External WAN

sim-Node

Module

sim-LAN

serviceQoS req load req

Role

Workstation

Server

sim-Service

sim-Net Device

allocation

evaluates

verifies

evaluates

evaluates

link

verifies

verifies

evaluates

connection

verifies

verifies

verifies
verifies

evaluates

evaluates

evaluates

PTP connection

evaluates

verifies

initiation

verifies

verifies

Figure 3: EIS Architecture Evaluation Model

are discovered, changes are made to the system configuration
by the system architect (e.g. Functional, Topology, Network
Infrastructure or even NFR view) and a new simulation ex-
periment is initiate by system architect until a satisfiable
solution is reached.

The entities participating in a simulation experiment and
the way they are interrelated to each other and entities be-
longing to other views are depicted in figure 3.

A simulation experiment should evaluate network topol-
ogy and network elements. Sim-Node entity is used for the
evaluation of workstation and server elements from Network
Infrastructure view. An atomic network is represented as
sim-LAN and a composite network as sim-external-WAN.
Interrelations between network simulation entities have a
direct mapping to interrelations of corresponding entities in
Network Infrastructure view. Roles and Modules defined in
Functional View are allocated to nodes in Network Infras-
tructure View. Since allocation decisions are part of the
EIS Architecture, these entities should also be represented
within a simulation experiment by sim-Role and sim-Module

responseTime

-responseTime

sim-Service

in:processing
in:storage
in:network
out:responseTime

Service

-processing
-storage
-network

From Evaluation
View

From Functional
View

From NFR View

satisfies

evaluates

verifies

Figure 4: Sim-Service entity description

entities. Furthermore, the sim-Service entity is included cor-
responding to a service defined in Functional View, since it
contains the necessary information for the execution of spe-
cific services grouped within a module.

Each simulation experiment entity is created in order to
evaluate a specific EIS Architecture entity. Thus, non func-
tional requirements related to the entity that the system
designer wishes to verify, should also be related to the sim-
ulation entity. A simulation experiment entity can only be
related to requirements that the corresponding design en-
tity should satisfy. For example, a Service has to satisfy a
responseTime Requirement indicating maximum execution
time. This requirement must be verified by sim-Service en-
tity. Figure 4 represents this example.

Simulation entities have input and output attributes. In-
put attributes correspond to attributes describing correspond-
ing design entity. Output attributes indicate simulation re-
sults. To verify a requirement, the system designer should
compare output attributes to corresponding requirement at-
tributes, to check if there is a conflict. As indicated in fig-
ure 4 for example, sim-Service has as input attributes the
amounts of processed, stored or transferred information that
a service requires during its execution. These attributes
are inherited from Service entity belonging to Functional
view. Moreover, sim-Service has as output attribute the
average responseTime, which is computed when the simula-
tion experiment is executed. ResponseTime attribute of sim-
Service is compared to responseTime requirement that this
Service has to satisfy. If a conflict has been identified, the
system designer should alter the system design (e.g. mod-
ify the network architecture or the requirement itself) using
Functional and NFR views and conduct a new experiment.

It is important to enable the system designer to maintain
all performed simulation experiments in order to reach an
acceptable solution, since they are part of the information
used to make design decisions. Even if a acceptable solution
is reached, information contained within simulation exper-
iments may be used to pursue alternative solutions. This
is facilitated by the fact that output attributes are directly
compared to corresponding NFR attributes.

The system designer may choose to evaluate the whole
EIS architecture or a part of it. Conditions, under which
the EIS architecture is evaluated, are defined by behavior
requirements associated to sim-Roles, since they are used
to represent different behavior of the same role, e.g. when
a user initiate services, with what probability and how fre-
quent.

Figure 5: Implementation schema

4. SYSML PROFILE IMPLEMENTATION
Although SysML is the preferred modeling language for

system engineering, an extension is necessary in order to de-
scribe EIS architecture, using the proposed views and model
elements. Stereotype mechanism is used for this purpose
and a profile, called EIS Profile, has been implemented as
an extension of SysML profile. In EIS profile, each view
is depicted using a discrete diagram. Block definition Di-
agrams are used for all views, except of NFR view, where
SysML requirement diagram was heavily extended [15].

The profile is implemented as a plugin to MagicDraw mod-
eling tool [11], which provides full SysML support. A Magic-
Draw plugin, implemented in Java, according to MagicDraw
open API, has been defined in order to provide the desired
functionality and support the model constraints. As shown
in figure 5, the designer defines Functional, Topology, Net-
work Infrastructure and NFR views within the design en-
vironment (i.e. MagicDraw Tool). Simulation experiments
in the Evaluation view, are automatically created based on
the content of Network Infrastructure and Functional views.
They should be executed using a simulation tool. Entities
included in the simulation experiment diagram and their
input attributes are used to properly initialize simulation,
while simulation results are passed to simulation experiment
diagram (each one to the corresponding simulation entity)
in order to verify the requirements.

The bidirectional information exchange between the pro-
file implemented in MagicDraw tool and the simulation en-
vironment are currently under implementation. Data ex-
change between the UML modeling tool and the simulation
tool is possible through XML files based on the XMI stan-
dard [16].

5. CASE STUDY
In the following we discuss the case of renovating a legacy

information system supporting a large-scale public organi-
zation. The organization supports more than 350 intercon-
nected regional offices and its main purpose is to provide
services to the public. Regional offices are technologically
supported by a central IT Center responsible for IT diffu-
sion and management. More than 15.000 employees work
in the organization having on-line access to the legacy sys-
tem, while there are more than 300 different services pro-
vided to the public. Regional offices are divided into three
categories according to their size, structure and personnel
(large, medium and small). Each category is treaded differ-

ently in terms of network infrastructure requirements. All
of them have the same structure consisting of seven differ-
ent departments reflecting independent operation, while all
departments provide services to the citizens.

Existing system architecture is based on client-server model.
All application logic is programmed within the client plat-
form, while data are distributed in local database servers
located in each regional office. A central database is sup-
ported in the IT Center for data synchronization and lookup
purposes. Client programs access the local database to store
data, while they access the central database mostly for lookup
purposes. Local data are asynchronously replicated in the
central database using a transaction management system
(TMS). The IT Center and all regional offices participate in
a private TCP/IP network to facilitate efficient data repli-
cation.

To enhance the level of service provided by the organiza-
tion, over the last decade an e-government portal was es-
tablished. The main target of the portal is to provide easy
access to citizens twenty four hours per day, seven days per
week and to minimize the need for citizen’s presence in re-
gional offices. The portal facilitates on-line transactional
services and ensures on-line access to the databases of the
legacy information system, serving almost one third of re-
quests processed by the legacy system on a daily basis.

Since hardware supporting the legacy system was obso-
lete, the IT Center obtained the necessary funds to replace
it. Though, since almost one third of the citizens request
are serviced through the portal, it was decided to explore
the renovation of the legacy information system by adopt-
ing modern technological trends, such server-based comput-
ing and thin clients to minimize maintenance cost. Hard-
ware consolidation in the IT Center was considered instead
of supporting local servers in regional offices, as well as
changes in the database architecture by supporting one cen-
tral database to avoid synchronization. Legacy system ar-
chitecture modification should be considered without any
changes to existing application code. The proposed model-
based EIS Architecture design approach was applied to ex-
plore alternative architectures and their implications to the
network infrastructure. One of the main objectives of legacy
system architecture re-design was to enhance application
performance without rewriting the applications themselves.

Since performance play a significant role, it was suggested
to apply the proposed SysML profile, to explore related de-
sign decisions and evaluate them. System architect has to
explore two different database architecture scenarios: the
first one was to simply to move the local databases to servers
in the IT Center, without intervening with database archi-
tecture and the other is to eliminate local databases and
establish one central database, changing the database archi-
tecture resulting in minor applications code modifications.

Functional View describes software architecture of legacy
system. Seven independent applications are supported, each
one perceived as a different module, while a total of 300 on-
line services are provided by them. According to legacy
application design, each application reflects the operation
of a specific department of regional office. Since application
functionality is well-known, the identification of software ar-
chitecture and performance requirements was perceived as a
trivial task. To obtain this information the system designer
had to communicate with application maintenance person-
nel in the corresponding department of the IT Center. RUP

<<Behaviour-Req>>
<<requirement>>

sROo-b1

activationDistributionFunction = Poisson

endTime = 1400

Id = "sROo-b1"

numberOfOccurences = "10"

startTime = 700

Text = " Average Day Role Behavior"

<<Behaviour-Req>>
<<requirement>>

sROo-b2

activationDistributionFunction = Poisson

endTime = 1400

Id = "sROo-b2"

numberOfOccurences = "30"

startTime = 1200

Text = "High Load Role Behavior "

<<Server-Module>>

oracle R.O.

<<Service>>

<<Service>>

<<Client-Module>>

application-A

<<Service>>

appA-s1

<<Service-QoS-Req>>
<<requirement>>

appA-s1-t-r

{Id = "appA-s1-t-r" ,

Text = " ",

Type = traffic ,

value = "3"}

<<ResponseTime-Req>>
<<requirement>>

appA-s1-RT

Id = "appA-s1-rt"

Text = " "

Value = "10 sec"

<<Server-Module>>

oracle Central

<<Service>>

<<Server-Module>>

tuxido R.O.

<<Service>>

<<Client-Module>>

application-B

<<Service>>

appB-s1

<<Server-Module>>

tuxido Central

<<Service>>

<<Client-Module>>

application-C

<<Service>>

<<Role>>

small R.O. officer
<<Service-QoS-Req>>

<<requirement>>

appA-s1-s-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-p-r

<<Module-QoS-Req>>
<<requirement>>

appA-s-r

<<Module-QoS-Req>>
<<requirement>>

appA-t-r
<<Module-QoS-Req>>

<<requirement>>

appA-p-r

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Invoke>>

<<Initiate>>

{percentage = "30" }

<<Initiate>>{percentage = "20" }

<<Initiate>>

{percentage = "50" }

<<satisfy>>

<<satisfy>>

<<satisfy>>

<<satisfy>>
<<satisfy>>

Figure 6: Functional View example

methodology ([9], [4]) was used for software development,
thus application description models were developed within
Rational Rose platform. Application description (e.g. ap-
plications, modules and services) as well as data structures
were manually extracted from corresponding Rational Rose
[3] files. Though the process was not automated, the pro-
vision of Functional View meta-model, enabled the system
architect to easily obtain the necessary information. Unfor-
tunately, the identification of service performance require-
ments was not a straightforward procedure, since software
maintenance personnel was not able to accurate provide ei-
ther response time or service QoS information. Response
time requirements were finally defined by system architects,
while service QoS information were obtain after monitor-
ing application functionally during working hours by sys-
tem administration personnel in the current version of the
system. Service QoS requirement accurate definition was
essential for the effective exploration of application perfor-
mance based on alternative architecture scenarios. In fig-
ure 6, a fraction of the Functional View is presented, where
an officer working in a small regional office initiates three
services belonging to two different modules (applications).
Officers in small regional office may use all the application
supported by the legacy system to serve citizens. As shown
in the figure, this role satisfies two role behavior require-
ments. One of them refers to average day behavior and the
other for a heavy load behavior (which usually is between
12pm-14pm). Using these requirements it is possible to test
system performance under different conditions (workloads).
Services satisfy response time requirements (the service exe-
cution time, including the invocation of other services). Ser-
vices and corresponding modules, in order to be executed,
require network, processing power and storage resources, de-
picted as NFRs For example appA-s1 satisfies appA-s1-t-r,

appA-s1-p-r and appA-s1-s-r.
Topology view depicts the structure of regional offices.

According to regional office category (large, medium and
small) there is a difference in the number of officers em-
ployed in them. In large regional offices, each officer serves
in a specific department and has access to the corresponding
application. More than a hundred officers work in a large
regional office. Small offices employ less than 15 officers,
having access to all applications. Medium regional offices
employ around 60 officers, while the operation of specific
department is merged into bigger ones. Thus, some officers
have access to more than one applications. A fraction of the
corresponding Topology view is depicted in figure 7. Soft-
ware and role allocations are depicted in the figure. Traffic
requirements satisfied by every site are computed and pre-
sented in the diagram. A server room is established in all
regional offices. For each atomic site, all modules running
in it are presented. The same is applied for the roles, which
are presented as usage allocations.

Network Infrastructure View represents existing net-
work topology and is complementary to Topology View. For
each network, the corresponding site is associated through
structure allocations. As seen in figure 7 at medium-RO-
network the corresponding site is apparently medium-RO-
building. But there is not a one-to-one allocation between
network and sites. For example in medium-RO-network
there are two LANs and in medium-RO-building there are
four departments. Constraint requirements are used to de-
pict existing infrastructure restrictions. Each regional of-
fice is connected with IT Datacenter through point-to-point
(PTP) connections (figure 7). Networks are either composite
(which means that they consist of other networks) or atomic.
Every network is related to a constraint requirement, which
describes the existing speed of the network and a load re-

<<Composite-Site>>

IT Central building

<<Atomic-Site>>

customer service area

<<Server-Module>>

tuxido Central

<<Server-Module>>

tuxido R.O.

<<Server-Module>>

oracle Central

<<Server-Module>>

oracle R.O.

<<Client-Module>>

application-E

<<Client-Module>>

application-C

<<Client-Module>>

application-A

<<Client-Module>>

application-D

<<Client-Module>>

application-B

<<Client-Module>>

application-G

<<Client-Module>>

application-F

<<Composite-Site>>

small R.O. building

<<Role>>

small R.O. officer

<<Atomic-Site>>

datacenter room

<<Traffic-Req>>
<<requirement>>

sRO-csa-tr

<<Traffic-Req>>
<<requirement>>

IT-tr

<<Traffic-Req>>
<<requirement>>

IT-admin-tr

<<Traffic-Req>>
<<requirement>>

sRO-srv-tr

<<Traffic-Req>>
<<requirement>>

sRO-tr

<<Traffic-Req>>
<<requirement>>

IT-DC-tr

<<Atomic-Site>>

s server room

<<Atomic-Site>>

admin Dpt

<<Usage Allocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<satisfy>>

<<satisfy>>

<<SoftwareAllocation>>

<<satisfy>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

Figure 7: Topology Example - Top Level View

<<Workstation>>

customer service area -ws

{quantity = 10}

<<Constraint-Req>>
<<requirement>>

s-RO-csa-con

Text = " Storage

capacity req for

w/s"

type = size

value = "10000"

<<Server-Module>>

oracle R.O.

<<Server-Module>>

tuxido R.O.
<<Role>>

small R.O. officer

<<Client-Module>>

application-A

<<Client-Module>>

application-C<<Client-Module>>

application-B

<<Load-Req>>
<<requirement>>

s-RO-csa-lod

<<Availability-Req>>
<<requirement>>

s-RO-ls-a

<<Utilization-Req>>
<<requirement>>

s-RO-ls-u

<<Server>>

local server

{quantity = 1}

<<Load-Req>>
<<requirement>>

s-RO-ls-lod

<<SoftwareAllocation>>

<<satisfy>>

<<satisfy>>

<<Usage Allocation>>

<<SoftwareAllocation>>

<<satisfy>>

<<SoftwareAllocation>>

<<SoftwareAllocation>>

<<satisfy>>
<<SoftwareAllocation>>

<<satisfy>>

Figure 8: Network Infrastructure Example - Small
regional office

quirement, which describes “how much traffic” do the ap-
plications that belong to that network require. Moreover, a
utilization requirement is satisfied by the point-to-point con-
nection between regional offices and the Datacenter. Even-
tually, the designer in order to define the connection speed
between two networks, load requirements of the networks
and utilization of the network connection must be taken into
account. Load requirements depend on the server distribu-
tion, meaning that if the servers are distributed across the
local offices, the load will be higher whereas if the applica-
tions are web-based, load will be less. For a network of a
higher hierarchy, load requirement is computed (is derived
by) the load requirements of the lower lever networks. In
order to calculate PTP connection utilization two parame-
ters have to be defined: the network load and the network
connection speed.

NFR View: Requirements are related to entities of Func-
tional, Topology and Network Infrastructure views using
SysML satisfy relationship and entities of Evaluation view
using SysML verify relationship. NFR view is the diagram
where all requirements are grouped and requirement associ-
ations are depicted, so as to facilitate the designer to check
the dependencies between them. The impact of design deci-
sion made within one view to others related to it, is depicted
through the relations of the corresponding requirements, de-

<<ResponseTime-Req>>
<<requirement>>

appA-s1-RT

<<Service-QoS-Req>>
<<requirement>>

appA-s1-s-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-p-r

<<Service-QoS-Req>>
<<requirement>>

appA-s1-t-r

<<Module-QoS-Req>>
<<requirement>>

appA-s-r

<<Module-QoS-Req>>
<<requirement>>

appA-t-r

<<Module-QoS-Req>>
<<requirement>>

appA-p-r

<<Behaviour-Req>>
<<requirement>>

sROo-b1

<<Constraint-Req>>
<<requirement>>

s-RO-con

<<Behaviour-Req>>
<<requirement>>

sROo-b2

<<Utilization-Req>>
<<requirement>>

sRO-DC-util

<<Load-Req>>
<<requirement>>

s-RO-lod

<<Traffic-Req>>
<<requirement>>

sRO-tr

<<Traffic-Req>>
<<requirement>>

sRO-csa-tr

<<Traffic-Req>>
<<requirement>>

sRO-srv-tr

<<satisfy>>
<<satisfy>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

relates to

relates to

<<deriveReqt>>

<<satisfy>>

<<deriveReqt>><<deriveReqt>> <<deriveReqt>>

Figure 9: NFR View Example

fined in NFR diagram.
Figure 9 presents an portion of NFR View correspond-

ing to a small regional office. As depicted in the figure,
load requirements as s-RO-load depicted at the top left of
the figure is a derived one, computed actually from service-
QoS requirements, such as appA-s1-t-r which is depicted
at the bottom of the figure. A satisfy relationship may
also be defined between requirements, as appA-s1-t-r ser-
viceQoS requirement which should satisfy the corresponding
service response time defined in appA-s1-RT requirement.
Load requirement s-RO-load, constraint requirement s-RO-
con (which refers to the existing network speed) and utiliza-
tion requirement sRO-DC-util are related to each other in
a way so as to be equilibrated. The system designer should
be aware of this.

The above views deal with the design of the applications,
network topology and requirement definitions. In order to
evaluate the defined architecture, a simulation study is nec-
essary to test the performance in order to determine if the
imposed requirements are satisfied.

Evaluation View is represented by a Block Definition
diagram, where Simulation Experiments are depicted as in-
dependent Blocks further decomposed using discrete Block
diagrams. Each simulation experiment is based on the Net-
work Infrastructure view. Corresponding diagram entities
are automatically created based on Network Infrastructure
view, as there is a one-to-one relationship between them.
Thus, each simulation experiment is represented as a hierar-
chy of block diagrams, where atomic networks are described
using a discrete diagram. Simulation experiment diagrams
are used to initialize the executable model of the simulation
engine that co-operates with the design tool.

The portion of the Simulation Experiment diagram cor-
responding to the atomic network of figure 8 is depicted in
figure 10. Each simulation entity, as local server, is described
by input attributes that are computed from the attributes
of the corresponding entity of Network Infrastructure View.
The values of output attributes are automatically compared
to the related requirement attributes and a proper indica-
tion (color deviation) is provided to the system designer to
indicate which NFRs are not satisfied. It is his/her respon-

<<Sim-Node>>

custom service area w/s <<Sim-Node>>

local server

references

input:NumberofDisks
input:ProcPower
input:DiskCapacity
input:StorageSpeed
input:NumberofProcessors
output:maxStorageLoad
output:maxProcessingLoad
output:ProcessingUtilization
output:StorageUtilization

<<Sim-Module>>

application-A

<<Sim-Service>>

appA-s1

<<ResponseTime-Req>>
<<requirement>>

appA-s1-RT

Id = "appA-s1-rt"

Text = " "

Value = "10 sec"

<<Sim-Role>>

small R.O. Officer

<<Load-Req>>
<<requirement>>

s-RO-csa-lod

<<Availability-Req>>
<<requirement>>

s-RO-ls-a

<<Constraint-Req>>
<<requirement>>

s-RO-csa-con

<<Sim-Module>>

application-B

<<Sim-Module>>

application-C

<<Utilization-Req>>
<<requirement>>

s-RO-ls-u

<<Sim-Module>>

tuxido R.O.

<<Sim-Module>>

oracle R.O.

<<verify>>

<<verify>>

<<verify>>

<<verify>>

<<verify>>

Figure 10: Evaluation View - Simulation Experi-
ment Example

sibility to modify the network infrastructure, for example
server characteristics, or redesign the applications logic or
to adopt a requirement relaxation.

The existence of the Evaluation View helps the system
designer to better realize the affect of his/her redesign deci-
sions. The system designers in this specific case, appreciated
the fact that all the information related to requirement ver-
ification was presented in a single view. They also found
useful that all different experiments results were maintained
and could be used when making modification in architecture
design. All of them also suggested that the system could
propose suggestions on system architecture modifications to
satisfy imposed requirements.

6. CONCLUSION & FUTURE WORK
Based on a proposed model-based approach for EIS Ar-

chitecture design, we focused on solution evaluation task.
In practice, EIS Architecture design is usually performed
by properly integrating EIS components already defined by
other stakeholders in an efficient manner. Furthermore, pro-
posed architecture solutions should be evaluated and prop-
erly adjusted. The provision of a well-defined model to per-
form all design tasks, including system evaluation, assists
the system designer when adjusting system architecture, by
integrating alternative scenarios evaluations in the model.
Focusing on non functional requirements and their verifica-
tion using Evaluation view enhances the system designer’s
perception of the way specific design decisions may affect
others.

SysML modeling language efficiently supported model-
based EIS Architecture design, as it provided the means to
accurately depict EIS architecture and resource allocations.
The proposed SysML profile is currently tested using other
case studies as well. Furthermore, we are exploring the in-
tegration of EIS Architecture simulation environment and
the SysML profile defined in MagicDraw tool. Information
exchange between the simulation environment and SysML
profile is currently under implementation.

7. REFERENCES
[1] INCOSE Handbook SE Process Model. INCOSE,

September 2003. http://g2sebok.incose.org/.

[2] A. Aurum and C. Wohlin. Engineering and Managing
Software Requirements. Springer, 2005.

[3] D. Brown, J. Densmore, and S. J. Vaughan-Nichols.
Web services, 2002. IBM Rational Edge.

[4] M. Cantor. Rational Unified Process for Systems
Engineering, RUP SE Version 2.0, IBM Rational
Software white paper. IBM Corporation, May 2003.

[5] J. A. Estefan. Survey of Model-based Systems
Engineering (MBSE) Methodologies. INCOSE MBSE
Focus Group, May 2007.

[6] C.-W. Ho, L. Williams, and B. Robinson. Examining
the relationships between performance requirements
and ”not a problem” defect reports. In RE ’08:
Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference, pages 135–144,
Washington, DC, USA, 2008. IEEE Computer Society.

[7] IEEE. IEEE System and Software Engineering -
Architectural Description: Std 42010. Technical
report, May 2009.

[8] M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira.
An uml-based approach for validation of software
architecture descriptions. In TEAA, pages 158–171,
2006.

[9] P. Kruchten. Rational Unified Process: an
Introduction. Addison-Wesley, Reading/MA, 1998.

[10] L. Lee and P. Kruchten. Visualizing software
architectural design decisions. In ECSA, pages
359–362, 2008.

[11] MagicDraw UML. http://www.magicdraw.com/.

[12] M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and
D. Anagnostopoulos. Employing Zachman Enterprise
Architecture Framework to systematically perform
Model-Based System Engineering Activities. In
HICSS, pages 1–10, 2009.

[13] K. Pohl and E. Sikora. Supporting the Co-Design of
Requirements and Architectural Artifacts. In 15th
IEEE International Requirements Engineering
Conference (RE’07), pages 258–261, India Habitat
Center, New Delhi, 2007.

[14] Systems Modeling Language (SYSML) Specification.
Version 1.0. O. M. G. Inc, September 2007.

[15] A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos.
Handling non-functional requirements in information
system architecture design. In ICSEA, pages 59–64,
2009.

[16] XML Metadata Interchange (XMI), v2.1.1, 2007.
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm.

