

A Distributed System Simulation Modelling Approach

 M. Nikolaidou D. Anagnostopoulos

 Department of Informatics - University of Athens Department of Geography –Harokopio University
 Panepistimiopolis 15771, Athens, Greece 70 El. Venizelou Str, 17671 Athens, Greece
 tel.: (+) 302107275614 tel.: (+) 302109549171
 fax: (+) 302107275214 fax: (+) 302109514759
 email: mara@di.uoa.gr email: dimosthe@hua.gr

Keywords

Distributed Systems, Distributed Application Modelling, Distributed System Simulation, Performance

Εvaluation

Abstract

The employment of network-based technologies, such as the WWW and middleware platforms, significantly

increased the complexity of distributed application, as well as the Quality of Service requirements for the

underlying network. Distributed application modelling is nowadays far more demanding than network

modelling, where numerous solutions are already employed in commercial tools. We introduce a simulation

modelling approach for distributed systems, giving emphasis to distributed applications. The proposed scheme

enables the in-depth description of application functionality, the accurate estimation of network load and the

extension of existing application models to support further customisation. It supports widely employed

architectural models, such as the client-server model and its variations, and is based on multi-layer

decomposition. Application functionality is described using predefined operations, which can be further

decomposed into simpler ones, ultimately resulting into elementary actions corresponding to primitive network

operations, such as transfer and processing. Even if realisation of this scheme proves to be time demanding,

individual application modelling is performed with consistency and considerably lower overhead. The

distributed system simulation environment built to realise the proposed modelling scheme and a case study

indicating key features of the overall approach are also presented.

1. Introduction

The outburst in network technology gave rise to different types of applications operating in a network

environment. Most of them are based on multi-tiered client-server models [1], and are generally called

distributed applications. Distributed applications extend to multiple sites and operate on multi-platform

networks. Distributed applications and the network infrastructure form a distributed system [2]. Most

commercial information systems, such as banking and flight control systems, e-mail and WWW applications,

distant learning environments and workflow management systems, fall in this category. Development of

middleware standards [3], such as CORBA that allows the interaction between heterogeneous, autonomous

applications, and of programming languages, such as Java that provides native distributed programming

support, have established a well-defined framework for distributed application development.

Simulation modelling has been widely acknowledged as an efficient technique for performance evaluation.

Numerous methodological and practical approaches for distributed system simulation have appeared in the

literature. In most cases [4, 5, 6], application performance exploitation is closely depended on the network

infrastructure. Thus, applications running on a network environment are viewed as network traffic generators

and application operation mechanisms are not emphasised. Investigation of the Quality of Service (QoS)

provided by the network to determine whether application requirements are efficiently supported has also been

the objective of simulation studies [7], where applications are usually represented using analytical models. In

these cases, distributed application operation is not emphasised due to the significance of networking issues.

When orientation is towards evaluating an aggregate distributed architecture, system components are

analytically described and component-specific models are employed. Distributed system modelling is mostly

based on the client-server model. However, both client and server functionality is usually represented at an

abstract layer and, due to the number and complexity of potential component combinations, behavioural

characteristics of individual models are roughly modelled [8, 9]. In-depth performance evaluation approaches

have also been provided, especially for customised applications, where load generation is modelled at a low

 1

layer mostly using mathematical models [10, 11, 12], thus not promoting the reusability of simulation models.

In [13] and [14], UML is used to model distributed system functionality, while mathematical modelling,

specifically queuing networks, is adopted to estimate application performance. Use of UML sequence diagrams

[15] facilitates the description of client-server architectures, process triggering and information exchange.

However, the detailed description of process functionality is not facilitated. When examining the operation of

distributed applications [6,7,9,10,12,13], object-oriented modelling techniques are usually adopted. Application

operation is directly mapped at the elementary action layer as a series of discrete requests for processing,

network transfer, etc., using predefined, elementary actions. We consider that such approaches lack efficiency

and wide applicability, as:

1. The outcome of application decomposition is rather empirical when not supported by a consistent

mechanism transforming operations into elementary actions through intermediate layers.

2. Intermediate layers are required to support application decomposition in terms of the various standards and

architectural models, such multi-tiered client-server models.

3. Determining application load through an empirical analysis does not permit an accurate estimation.

4. Extendibility and applicability to support variations of the architectural models and customised

implementations are - generally - not supported.

We argue that a generic modelling scheme should be established in order to facilitate the uniform

representation of different types of applications (i.e. elementary, such as FTP, and complex, such as distributed

databases) and the interaction between applications and the underlying network. We propose a modelling

framework for distributed system entities, emphasising the in-depth description of application operation

mechanisms. Network modelling is not discussed, as traditional approaches have provided effective solutions

[16]. The scheme introduced promotes accuracy in distributed application description using a multi-layer

action hierarchy. Actions indicate autonomous operations describing a specific service and are further

 2

decomposed into simpler ones, ultimately resulting in elementary actions. The proposed elementary actions are

similar to the ones described in [10], [12] and [13]. The modelling scheme supports the client-server model and

its variations and can be further extended to support other architectural models. The proposed application

modelling approach is independent of simulation implementation and can be easily incorporated into existing

simulation environments.

Based on the proposed scheme, a simulation environment, namely Distributed System Simulator (DSS), was

also constructed for the evaluation of distributed application performance. DSS enables the exploitation of

various types of distributed applications, including user-defined ones, as well as of the network infrastructure.

Object-oriented modelling and component preconstruction is employed. Both network and application entity

models reside in model libraries. Performance issues in DSS operation were also addressed to ensure that the

duration of simulation experiments remain within acceptable boundaries.

The rest of the paper is organised as followed: in Section 2, we address modelling issues, emphasising the

description of distributed applications. In Section 3, the components of Distributed System Simulator are

presented. Simulation model extension and validation issues are discussed in Section 4. A case study where

DSS is used for performance evaluation of a distributed banking system is presented in Section 5, while

conclusions reside in Section 6.

2. Distributed System Modelling

Distributed systems are modelled as a combination of two types of entities: distributed application and network

infrastructure entities. Both are described in terms of their elementary components [17]. The modelling scheme

introduced for the representation of typical distributed architectures is depicted in Figure 1, as a decomposition

diagram. Distributed applications are described in terms of processes (clients and servers), files and user

profiles. Processes and files are elemental. Files are accessed only through servers of a specific type (File

Servers). User behaviour is modelled through User Profiles. The network infrastructure consists of nodes,

 3

either processing (depicting workstations and processor pools) or relay (depicting active communication

device, such as routers), storage devices and communication links. Distributed architecture modelling is based

on the workstation-server and the processor-pool models, both of which are widely acceptable [2]. Client

processes are executed on workstations, while server processes are executed on dedicated servers or processor

pools.

Distributed
System

Distributed
Applications

Network
Infrastructure

NetworkInternetwork

Process

User Profile

File

Processing
NodeRelay Node

Communication
Channel

Relay Node

Communication
Channel

consists of

data transfer

Figure 1. Distributed System Decomposition Scheme

2.1. Distributed Application Modelling

As discussed in [2], numerous architectural solutions may be employed for the design of distributed

applications, regarding the functionality provided by clients and servers and the replication scheme. In most

contemporary systems, distributed application operation is based on the client-server model. According to two-

 4

tiered client-server model, application functionality is merely embedded in the clients, while servers deal with

data manipulation and consistency issues [1]. After the explosion of the WWW, this model was no more viable,

as a. functionality was embedded in Web Servers to minimise communication delay, and b. the aggregate

functionality was dispatched into more than one layer with the presence of intermediate layers between clients

and servers (middleware) in order to offer common services to clients. This is widely known as the three-tiered

client-server model. In the proposed application-modelling scheme, multi-tiered client-server model variations

are supported. Two types of processes can be defined: clients, which are invoked by users, and servers, which

are invoked by other processes. Specific interfaces must be defined for each process, acting as the process

activation mechanisms. The operation scenario corresponding to the invocation of each interface must also be

defined, comprising the actions occurring upon process activation.

Actions are described by qualitative and quantitative parameters, such as the involved processes and the

amount of data sent and received. The actions included within the operation scenario are executed sequentially,

that is, each action is executed when the previous one is completed. The operation scenario also supports the

requirement for parallel action execution through specifying groups of actions that obtain the same sequence

number, which indicates their execution priority.

The proposed modelling scheme supports the following basic actions for application description – note that

these are not the elementary actions:

• Processing: indicating data processing

• Request: indicating invocation of a server process

• Write: indicating data storage

• Read: indicating data retrieval

• Transfer: indicating data transfer between processes

• Synchronise: indicating replica synchronisation

 5

Each process is executed on a processing node. Processing action indicates invocation of the corresponding

node processing unit. Server processes can be invoked by other processes, both clients and servers. Request

action indicates invocation of a server process and is characterised by the name of the server process, the

invoked interface and the amount of data sent and received. It also invokes network services, as request and

reply messages must be transferred between the invoking and the invoked process. DSS currently supports

RPC, RMI and HTTP protocols.

Storing data is performed through File Servers. Two actions are provided for data storing, namely read and

write, which are characterised by the file server invoked and the amount of data stored and retrieved,

respectively. Temporary data can also be stored in local disks, resulting in the invocation of the corresponding

node storage element. File Server process supports two interfaces, read and write, corresponding to the

aforementioned actions. Transfer action is used to indicate data transfer between processes.

Replication of processes and data is a common practice to enhance performance in distributed applications.

While process replication is easy to implement, data replication is more complex and is accomplished through

allocating data replicas and defining a synchronisation policy. For the latter, we need to determine the process

responsible for the synchronisation (the invoking process or a process replica), timing issues (i.e. if

synchronisation is performed whenever a change occurs or periodically, at pre-specified time points) and the

synchronisation algorithm.

DSS supports the definition of both process replicas, which may operate on different nodes, and data replicas,

stored at different file servers. Although it does not provide constructs for the automated embedding of specific

synchronisation policies in the simulation model, it enables the “low-level” description of the synchronisation

policy through elementary actions. Specifically, it describes the logical connection between replicated

processes and data during process definition and provides the synchronise action for the specification of the

synchronisation policy. This action corresponds to the invocation of the synchronise interface, which must be

supported by all process replicas. The corresponding operation scenario is user-defined. Synchronise action

 6

parameters include the process replicas that must be synchronised and the amount of data transferred. User

behaviour is modelled through User Profiles. Each profile includes user requests to the client interfaces that

may be invoked by the user. Execution parameters, such as the execution probability, are also specified for

each profile. User profiles are associated only with processing nodes.

Manager

Profile
Teller

Profile

File Server

read
write

Teller Client

Operation Scenarios

Closing Interface

read (1,FS,Appl_File,
Appl_File_Size)
process(2, Appl_File_Size+6004)
…………….
request (5, LocalDB,insert,
[Amount, Account],Record,10)

Deposit Interface
(IN Account, Amount)

Local DB Server

insert

…………….
…………….
write(3, FS,DBFile200)
synchronize (4, CentralDB,
[insert,[Amount, Account],20])
……………..

(IN Account, Amount) Central DB Server

synchronise

Operation Scenarios

Operation Scenarios

Operation Scenarios

Figure 2. Distributed Application Description Example

In Figure 2, an example of the processes involved in a distributed banking system is presented. Tellers are

represented through Teller Profile, which activates Teller Client by invoking the Deposit Interface. The teller

manager, represented by Manager Profile, can also activate Teller Client by invoking Closing Interface.

Deposit interface corresponds to a deposit in a client account and is invoked with two parameters, account and

amount. Deposit operation scenario includes actions, such as read (indicating program download) and request

 7

(indicating program activation) activating the corresponding operation scenarios of Local Database and File

Server. The first parameter of each action indicates its execution sequence.

As Local Database is a replica of Central Database, synchronise action is used for data synchronisation

between the local branch and the main system. When data is stored in Local Database, Central Database is

also updated. As the synchronisation algorithm is application-specific, the corresponding operation scenario is

user-defined. Server process activation is performed through read, write, request and synchronise actions.

Processes are modelled as composite objects with static properties, such as the process type, and dynamic

properties, such as lists of interfaces and operation scenarios. Each operation scenario is a composite object,

which includes a list of actions. DSS user can store specific instances of processes, such as the DB Server, for

potential reuse. Such issues are discussed in Section 3.

The actions used to define operation scenarios are either elementary or higher-layer actions. In the latter case,

they can be decomposed into elementary ones. For instance, write is expressed through process and request

actions activating a File Server. All actions are ultimately expressed through the three elementary ones, namely

processing, network and diskIO, each indicating invocation of the corresponding infrastructure component [17].

Action decomposition is accomplished through intermediate steps. The action decomposition scheme is

presented in Figure 3.

It acquires the following features:

1. Maintaining consistency, as all high-layer actions are decomposed in terms of specific intermediate ones.

Avoiding an empirical approach also contributes to the accurate estimation of application requirements

from the network and processing resources.

2. Uniform representation of applications based on the widely used architectural models, as intermediate

actions conforming to these models are preconstructed.

3. Extendibility and automation of the decomposition process are supported through a rule-based mechanism.

 8

Layer
2

Layer
1

Layer
0

Write SynchroniseRead

Transfer

Request

Send
Request Reply

ProcessingDiskIONetwork

Activate
Operation
Scenario

Figure 3. Action Decomposition Scheme

Dotted-border rectangles represent intermediate actions and black-border rectangles represent application

actions used when defining operation scenarios. Grey rectangles represent elementary actions. Note that even

though processing is an elementary action, it may be used in the definition of operation scenarios. This diagram

can be further extended to include user-defined, domain-oriented actions, conforming to specific architectural

models, as discussed in Section 3. However, alteration or creation of elementary actions is not allowed.

The supported actions are categorised into 3 layers. The lowest layer includes only elementary actions and the

highest only actions built upon existing ones. User-defined actions are also placed at this layer. Each action can

be decomposed into others of the same or lower layers. During action decomposition, all parameters of the

invoked action must be determined. As an example, request action decomposition is presented in Figure 4. As

indicated in the figure, the request action, e.g. the invocation of another process, is performed using a simple

request-reply protocol (step1). Instead a request-reply-acknowledge protocol could be modelled by customising

the reply action functionality to also include an acknowledgement from the calling process. In this case, the

reply action would be decomposed to an additional network action (step 2). This, however, would not be visible

 9

to the entities using the request action contributing to the flexibility and modularity of the action

decomposition mechanism.

request(Seq, Calling_Process, Called_Process, Interface, Param_List, ReqSize, ReplySize)

send_request(Calling_Process, Called_Process, ReqSize)
reply(Called_Process, Calling_Process, ReplySize)

activate_operation_scenario(Called_Process, Interface, Param_List)

network(Calling_Process, Called_Process, ReqSize)
network(Called_Process, Calling_Process, ReplySize)

activate_operation_scenario(Called_Process, Interface, Param_List)

Step 1:
Request is decomposed into three
intermediate actions according to figure 3

Step 2:
Actions are further analysed into two network actions
corresponding to the request/reply protocol used for
communicating with the server process

The activate_operation_scenario action leads to the activation of Called_Process operation scenario
corresponding to Interface interface and may result in the activation of other process scenarios.

Figure 4. Request Action Decomposition

2.2. Network Modelling

Despite the fact that network infrastructure is obviously a task of significant complexity, network modelling is

only briefly discussed as relevant solutions are widely employed [16]. DSS modelling scheme complies with

the following requirements: uniformity in the representation of entities of the same type, such as

communication protocols, compatibility with the application modelling scheme and automated construction of

the network aggregate model.

Network infrastructure is considered as a collection of individual networks and internetworks that exchange

messages through relay nodes (note that networks are here distinguished from internetworks and refer only to

local networks). Both network types consist of nodes and communication links. Networks include processing

 10

and relay nodes, while internetworks only include relay nodes. Protocol suites are represented through the

communication element entity, which consists of two parts, the peer communication element and the routing

communication element. The first corresponds to peer-to-peer protocols (OSI layers 4-7) and the latter to

routing protocols (OSI layers 2 and 3). The protocols of the peer communication element have to be common

for all processes of the same distributed application.

The communication element is modelled on the basis of a layered scheme, close to the OSI/RM. The layering

scheme enables embedding of protocols and inter-protocol communication in the communication element

model through assigning them to either one or multiple layers. It also provides the capability to either support

specific layers or not and to model protocols corresponding to more than one layer (protocol suites) or more

than one protocol corresponding to a single layer, as in the case of TCP and UDP. In this way, uniform

modelling of protocols and protocol suites providing the same functionality (e.g. TCP/IP and ATM) is

supported.

Processing node entity represents devices with processing capabilities (workstations, servers, etc). It consists of

the processing and the communication elements, and an optional component, the storage element. When a

processing node includes a storage element, a File Server process may operate on this node. Relay node entity

represents switching and routing devices. Routing devices are modelled as a pair of relay nodes, each being a

member of one of the interconnected networks. The addition of a new routing device to the network

infrastructure thus corresponds to the addition of two relay node models in the aggregate model, while the

addition of a protocol to a router or a switch device is handled through the use of the extended relay node

model.

3. Simulation Environment

Distributed System Simulator (DSS) development started as a common project with the development of

distributed system architecture design tool, called IDIS [18]. IDIS is a knowledge-based system that reaches an

 11

optimum solution by composing alternative distributed architectures using exhaustive search algorithms. DSS

environment was incorporated within IDIS architecture for the experimental performance evaluation of each

proposed solution, resulting either the acceptance of the proposed architecture or the re-activation of IDIS

search engine. As specific distributed system components may appear to be problematic, appropriate design

decisions (e.g. relocation of applications) are employed prior to the initiation of the next experimental

evaluation. Since the requirements for network and application modelling as well as model management

increased considerably, DSS evolved into a standalone environment. DSS employs object-oriented and

process-oriented simulation and its current version is implemented using MODSIM III [19] for modelling

purposes and Java for all other modules. As presented in Figure 5, DSS consists of a graphical user interface

(GUI), model construction and manipulation modules and a model base.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

User External
Invocation

Graphical User
Interface

Compatibility
Rule Base

Model
Base

Model
Generator

Model
Manager

Simulation
Program

DSS

Figure 5. Distributed System Simulator Components

Model specifications, defining the system under study, and experimentation parameters are provided through

GUI. Model Generator constructs the simulation program, using component models residing in Model Base.

Models, either atomic or composite, are implemented as objects and are organised in object hierarchies. As

completeness and validity of specifications must be pre-ensured, this is accomplished by the Compatibility Rule

 12

Base, which includes a representation of all models residing in Model Base and a set of compatibility rules.

Model Manager is invoked during the model extension process.

Line connections indicate module invocation and data access. When experiments are completed, results are

subjected to output analysis with the following objectives: a. determining whether distributed applications

operate efficiently, and b. determining whether network infrastructure supports the requirements imposed by

distributed applications. When co-operating with an architecture design tool, simulation output analysis either

approves the proposed solution or suggests that alternative architectures should be examined.

4. Model Extension and Validation

Object-oriented simulation modelling was employed for implementation purposes, enabling an almost natural

representation of multi-entity systems and an in-depth description of individual entities. In simulation

modelling, modularity often results in a hierarchical structure, according to which components are coupled

together to form larger models [20]. When referring both to elementary (e.g. process) and composite entities

(e.g. network node), hierarchical layering enables the construction of more complex models through extending

the behaviour of existing objects and ensures that models of a single entity, organised in a single class

hierarchy, are accessed through a common interface, using polymorphism [20]. We use preconstructed models

corresponding to the potential distributed system components, including composite entities. Implementation of

this scheme proves to be notably time- consuming when not supported by automated generation and

manipulation capabilities, such as the ones provided by DSS. However, it promotes model availability and

reduces the time required when composing customised models.

Extending distributed application constructs is a strong requirement for the modelling scheme, noted as a pitfall

of current simulation tools. The proposed scheme facilitates extending application component (e.g. action)

functionality, which is required for the description of custom applications, as well as for storing specific

component instances (e.g. DB server) for possible reuse. Similar capabilities are provided for network

 13

components, such as network protocols. Model extension focuses on application modelling to deal with the

varied functionality of emerging applications. Model extension is performed through the invocation of Model

Manager and Compatibility Rule Base. Processes, actions and communication protocols are the most common

entities for which new model components need to be provided. Model Base is extended using hierarchical

layering, ensuring that models of a single entity are accessed through a common interface [21]. The object-

oriented framework described in [21] for computer network modelling facilitates the definition of composite

network entity models (e.g. Ethernet Network Node) as ancestors of abstract ones (e.g. Network Node). A

similar approach was adopted for extending DSS object structures. Using the example presented in paragraph

2.1, a new insert action model is constructed as a descendant of the abstract application action model and a DB

process model as a descendant of BE process model (Figure 6).

To ensure the validity of the modelling scheme, specific restrictions apply when extending object hierarchies.

User-defined action models are either of intermediate or application type. Existing actions cannot be altered.

When creating a process model, interfaces and operation scenarios must be fully defined. Although a new

operation scenario (e.g. insert) can be stored within a new process model (e.g. DB process), the operation

scenario model cannot be extended, as the addition of new scenarios not belonging to a specific process is not

supported. While describing an application, the user may temporarily store an existing operation scenario, as

well as other entity instances, within Compatibility Rule Base.

 14

Process

User_Profile

Operation
Scenario

Action Parameter

activates

Interface

Application
Action

User_
Request

Application
Action

Action

Elementary
Action

Intermediate
Action

Processing

Network

Write Read

Transfer DiskIO

Object Hierarchies

Object Interaction Model

Request

Synchronise

Send
Request

Activate
Operation
Scenario

Reply
DB

insert

BE_Process FE_Process

FS

Process

has_ais_a

Figure 6. Distributed Application Modelling Scheme

When defining a new action, the user declares its parameters and actions, while GUI ensures that all actions are

properly invoked. To give an example, the code fragment generated when constructing write action is presented

in Figure 7, where write is constructed as a descendant of application action, resulting in the activation of a

request action. Its additional parameters are stored as object properties, while the refinement of specific

properties as the CalledProcess parameters is also feasible. Only the init method needs to be modified. User-

defined actions are added in Model Base in a similar way. The init method is explicitly constructed for all user-

defined actions, as they support different input parameters included in the Param input list, corresponding to

the different descriptions stored in the consist_of property. As only the method implementation part is modified

in the action hierarchy, polymorphism is ensured. As activate method is identical throughout the overall action

hierarchy, there is no need to override it when defining new actions.

 15

Code generation is performed by Model Manager, which establishes the coupling relation between these

components. The extension process comprises the following steps:

1. Ensuring validity and compatibility with existing models.

2. Inserting component models in the Model Base.

3. Updating Compatibility Rule Base.

{Object Definition} {Object Implementation}
ApplicationActionObj=
OBJECT(ActionObj)
 CalledProcess:ProcessObj;
 CallingProcess:ProcessObj;
 Number_Consist_Of:INTEGER;
 Consist_Of:ARRAY_OF_ActionObj_TYPE;
OVERRIDE
 ASK METHOD Init
 (IN Param:ARRAY_OF_STRING_TYPE);
 WAITFOR METHOD Activate;
END OBJECT;

RequestObj=
OBJECT(ApplicationActionObj)
 Seq:INTEGER;
 Interface:InterfaceObj;
 Int_Par_List:ARRAY_OF_STRING_TYPE;
 ReqSize:INTEGER;
 ReplySize:INTEGER;
OVERRIDE
 ASK METHOD Init
 (IN Param:ARRAY_OF_STRING_TYPE);
END OBJECT;

WriteObj=
OBJECT(ApplicationActionObj)
 File:FileObj;
 DataSize:INTEGER;
OVERRIDE
 ASK METHOD Init
 IN Param:ARRAY_OF_STRING_TYPE); (
END OBJECT;

OBJECT ApplicationActionObj;
…
WAITFOR METHOD Activate;
BEGIN
 FOR i:=1 TO Number_Consist_Of
 WAIT FOR Consist_OF[i] TO Activate;
 END WAIT;
 END FOR;
END METHOD;
END OBJECT;

OBJECT(RequestObj);
…
END OBJECT;

OBJECT WriteObj;
ASK METHOD Init(IN Param:ARRAY_OF_STRING_TYPE);
VAR a_RequestObj:RequestObj;
 Interf_Param:ARRAY_OF_STRING_TYPE;
BEGIN
 Seq:=STRTOINT(Param[1]);
 CalledProcess:=STRTO_ProcessObj_PTR(Param[2]);
 CallingProcess:= STRTO_ProcessObj_PTR(Param[3]);
 File:=STRTO_FileObj_PTR(Param[4]);
 DataSize:=STRTOINT(Param[5]);

 NEW(Interface);
 Int_Par_List[1]:=File_PTR_TO_STR(File);
 Int_Par_List[2]:=INTTOSTR(DataSize);
 ASK Interface TO Init("write",Int_Par_List);
 ReqSize:=DataSize+100;
 ReplySize:=100;
/* fill consist_of list */
 Number_Consist_Of:=1;
 NEW(Consist_Of,1..Number_Consist_Of);
 NEW(a_RequestObj);
 Consist_Of[1]:=a_RequestObj;
 NEW(Interf_Param,1..6);
 Interf_Param[1]:=STRTOINT(Seq);
 Interf_Param[2]:=Process_PTR_TO_STR(CalledProcess);
 Interf_Param[3]:=Process_PTR_TO_STR(CallingProcess);
 Interf_Param[4]:=Interf_PTR_TO_STR(Interface);
 Interf_Param[5]:=STRTOINT(ReqSize);
 Interf_Param[6]:=STRTOINT(ReplySize);
 ASK Consist_Of[1] To Init(Interf_Param);
END METHOD;
END OBJECT;

Figure 7. Write Action Code Generation

 16

The overall process is depicted in Figure 8. Model validity can only be supported when input specifications are

thoroughly examined. Validation is carried out through rule-based mechanisms. When Model Library is

extended, the Compatibility Rule Base is updated with the additional model structures and their relations with

the existing models.

��
��
��
��
��
��
��
��
��
��
��
��
��
��

User

Graphical User
Interface

Compatibility
Rule Base

Base

Model
Manager

model
description

model
code

model
updates

Model

Figure 8. Model Extension Process

5. Case Study

Distributed System Simulator was used for evaluating the performance of a distributed banking system. Except

from headquarters, the bank maintains 64 branches. The banking system supports 24 discrete transactions,

which are mostly initiated by tellers, and are grouped in four categories. The average amount of

transactions/day/branch is 500, while the maximum amount of transactions in specific branches is over 1000.

The required response time is 15-20 sec for all transactions. Network infrastructure could be modelled and

evaluated using various commercial simulation tools. However, due to the increased number of customised

applications, each one involving a relatively high number of actions, and the need to accurately estimate the

network load generated, direct mapping of application description into low-level primitives was not feasible.

 17

The banking system architecture is based on a three-tiered client-server model. A central database is installed in

headquarters, where all transactions are executed, while transaction logs are maintained in local databases at

the branches. The central database supports 33 stored procedures corresponding to the different execution steps

of the 24 transactions. Transactions are co-ordinated by a transaction monitoring system, which is also installed

in headquarters. Digital RDB database management system and ACMS transaction monitoring system are used.

The overall network is TCP/IP based. Light client applications are running on user workstations. Client data are

stored locally, at the branch file server. When a transaction is executed, the corresponding forms are invoked,

which have an average size of 3K. ACMS is invoked up to four times for the execution of the corresponding

stored procedure. Before completing each transaction, a log is stored in the local database.

The following server processes were modelled: File Server at headquarters and local branches, CentralDB,

LocalDB and ACMS. Since LocalDB represents logging, only a simple insert interface had to be implemented

for recording the log. CentralDB is accessed through the 33 stored procedures, which are implemented and

stored in the database. For each stored procedure, a single interface had to be implemented. As system

performance was mainly determined by the interaction of the different system modules, not by the internal

database mechanisms, we decided to establish a common representation for all stored procedures. A new action

called call_stored_procedure_step was created and inserted in the action hierarchy with the following

parameters: preprocessing, data_accessed and postprocessing. Data_accessed parameter indicates the amount

of data accessed at each step, while preprocessing and postprocessing indicate the amount of data that need to

be processed before and after accessing the data base, expressed as a fraction of the accessed data size. Using

this action, the description of stored procedures was significantly simplified. Each stored procedure consists of

one to five steps. The call_stored_procedure_step action is implemented as an interface of the CentralDB

process in a way similar to read/write and includes the activation of processing, read and write actions. ACMS

is modelled as a server process providing the interface call_ACMS (procedure, inputdata, outputdata,

processing), which activates the corresponding stored procedure.

 18

Client applications involve the invocation and processing of forms, the activation of stored procedures through

ACMS and log recording. Log recording is represented through properly invoking the insert interface of

LocalDB, while stored procedure activation is accomplished through the invocation of the call_ACMS interface

of ACMS. Form_access (FS, form_name, processing) was added in the action hierarchy to depict accessing,

activating and processing of a form. Using combinations of the three aforementioned actions, it was possible to

describe applications in a simplified and uniform manner. Applications were categorised in four groups, each

controlled by a different type of user, as indicated in Figure 9. As a single user does not execute applications of

the same group simultaneously, we modelled each group as a client process supporting one interface for each

specific application. Users are modelled as profiles initiating the corresponding client application.

CIS Client

GLGFE Client

FDREX Client

File
Server

DEPFE Client

trx32600
ACMS

..............

.............

call_acms

request(Seq, CentralDB,
[sp,input,output,
processing],input, output)

(in sp, input, output,
processing)

check_balance

Central DB

add_balance

call_stored_procedure_step(...)
call_stored_procedure_step(...)

Profile
Teller

trx31600
form_access(LocalFS, account_interface ,9)
request(acms, call_acms, [check_balance, 1565,
50, 12], 1565+200, 50)
request(acms, call_acms, [add_balance, 1521,
50, 16], 1521+200, 50)
request(localdb,insert, [1024, 50],1024,50)

Local DB

insert

Figure 9. Banking System Transaction Modelling

The representation of transaction trx31600 corresponding to Cash Deposit using the aforementioned user-

defined actions is depicted in Figure 9. The steps included in this transaction correspond to the access and

activation of the appropriate form, the activation of the Database Server through the ACMS interface and the

 19

update of the local database. The representation of the Cash Deposit transaction results in the invocation of 256

elementary actions used for the description of all involved processes. Thus, it would be difficult to represent it

directly using elementary actions. Although the description of all supported transaction results to the invocation

of a large amount of elementary actions, varying from 196 to 512, no more than 10 application actions are used

for the representation of client and server processes.

The capability to extend action hierarchy was important to ensure the detailed application description. If only

predefined actions could be used, the same description would have to be repeatedly given for all transactions.

The modelling scheme also facilitated application description at the level of abstraction required by different

groups of users. While the system was under deployment, DSS contributed to determining potential weak

points and estimating the response time of client transactions. As the main activity of all transactions relates to

the invocation of the central database through ACMS, special attention was given to the system performance at

headquarters. DSS indicated two drawbacks: first, the processing power of the hardware supporting the Central

Database was not adequate to execute client transactions within the predefined response time. After thorough

data analysis, the bank was forced to upgrade the hardware platform. Second, load estimation indicated that the

throughput of specific leased lines, interconnecting branches with headquarters, should be increased.

6. Conclusions

Exploring the behaviour of distributed systems is not a trivial task due to the complexity encountered in both

network and application modelling. Emphasising the description of distributed applications was the objective

of the modelling scheme introduced. Application modelling extends to the operation and interaction

mechanisms and conforms to the various forms of the client-server model. As distributed system architectures

are configurable, the modelling scheme introduced is generic enough to allow the description of diverse

applications, while different levels of detail are also supported. As distributed system description results in

 20

complex models, considerable effort was put in constructing and organising the preconstructed DS component

models to ensure their efficient manipulation.

The proposed application modelling approach can be easily incorporated into existing simulation environments

to facilitate the more accurate application description. However, in order to accommodate the customisation

and extension of process and action models, automated code generation capabilities should be supported and

this feature is rarely provided by existing network simulation tools. The proposed distributed system modelling

scheme is independent of simulation implementation and can be ported to any simulation implementation

environment accommodating object-oriented models.

References

[1] J. Shedletsky, J. Rofrano, “Application Reference Designs for Distributed Systems”, IBM System Journal,

vol. 32, no 4, IBM Corp., 1993.

[2] G.F. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems - Concepts and Design, Third Edition,

Addison Wesley Publishing Company, 2000.

[3] D. Serain, Middleware, Springer-Verlag London, Great Britain, 1999.

[4] B. Cahoon, K.S. McKinley, Z. Lu, “Evaluating the Performance of Distributed Architectures for

Information Retrieval Using a Variety of Workloads”, ACM Transactions on Information Systems, vol.

18, no 1, ACM Computer Press, 2000.

[5] Liu Zhen, Nicolas Niclausse, César Jalpa-Villanueva, “Traffic model and performance evaluation of Web

servers”, Performance Evaluation, vol. 46, no 2-3, Elsevier Press, 2001.

[6] S. Dumas, G. Gardarin, “A Workbench for predicting the performances of distributed object

architectures”, in Proceedings of WSC98, SCS, 1998.

[7] V. D. Khoroshevsky, “Modelling of Large-scale Distributed Computer Systems”, in Proceedings of

IMACS World Congress, IMACS, 1999,

 21

[8] Das Olivia, C. Murray Woodside, “Evaluating layered distributed software systems with fault-tolerant

features”, Performance Evaluation, vol. 45, no 1, Elsevier Press, 2001.

[9] M. Matsushita, M. Ashita, et. al., “Distributed Process Management System based on Object-Centred

Process Modeling”, Lecture Notes on Computer Science 0302-9743, No 1368, Springer Verlag, 1998.

[10] E. Ginters, Y. Merkuryev, A. Spungis, “Simulation of Client-Server Distributed Data Processing

Systems”, in Proceedings of ESM’96, SCS, 1996.

[11] J. Cruz, K. Park, “Towards performance-driven system support for distributed computing in clustered

environments”, Journal of Parallel and Distributed Computing, vol. 59, no 2, Springer Verlag, 1999.

[12] S. Ramesh, H.G. Perros, “A multi-layer client-server queuing network model with non-hierarchical

synchronous and asynchronous messages”, Performance Evaluation, vol. 45, no 4, Elsevier Press, 2001.

[13] R. Mirandola, V. Cortellessa, “UML Based Performance Modeling in Distributed Systems”, in

Proceedings of UML2000, Lecture Notes in Computer Science 1939, Springer-Verlag, 2000.

[14] P. Kaehkipuro, “UML-Based Performance Modeling Framework for Component-Based Distributed

Systems”, in Proceedings of Performance Engineering 2001, Lecture Notes in Computer Science 2047,

Springer-Verlag, 2001.

[15] Object Management Group (OMG), The UML Reference Manual, http:\www.omg.org\uml

[16] A.M.Law and M. G. McComas, “Simulation Software of Communications Networks: The State of the

Art”, IEEE Communications Magazine, vol. 4, no 3, IEEE Computer Press, 1994.

[17] J. Kramer, “Configuration Programming – A Framework for the Development of Distributed Systems”, in

Proceedings of IEEE International Conference on Computer Systems and Software Engineering, IEEE

Computer Press, 1990.

[18] M. Nikolaidou, D. Lelis, et. al., “A Discipline Approach towards the Design of Distributed Systems”, IEE

Distributed System Engineering Journal, vol. 2, no 2, IOP Press, 1995.

[19] CACI Products Company, MODSIM III The Language of Object-Oriented Programming - Reference

Manual, San Diego, 1999.

 22

[20] B.P. Zeigler, “Object-Oriented Simulation With Hierarchical, Modular Models”, copyright by Author,

1995 (originally published by Academic Press, 1990).

[21] D. Anagnostopoulos, M. Nikolaidou, “An Object-Oriented Modelling Approach for Dynamic Computer

Network Simulation”, International Journal of Modelling and Simulation, vol. 21, no 4, ACTA Press,

2001.

 23

	Keywords
	Abstract
	1.Introduction
	2. Distributed System Modelling
	2.1. Distributed Application Modelling
	3. Simulation Environment
	4. Model Extension and Validation
	5. Case Study
	6. Conclusions
	References

