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Abstract--Using simulation to support reaching 
conclusions for real-time processes imposes that models 
are thoroughly validated. This paper discusses widely 
adopted techniques for testing the validity of simulation 
results against real observations and proposes a more 
effective comparison technique for the case where a 
single system data set and multiple model data sets are 
available. To apply this technique, we consider the 
system data set as a discrete signal and use M-fold 
decimation, fulfilling the essential requirements imposed 
according to signal processing theory. Experimental 
results are also presented to exhibit the applicability and 
effectiveness of the proposed technique.  
 
Keywords: modelling and simulation, validation, real-
time simulation, comparison techniques 

I INTRODUCTION 

When simulation reaches conclusions for systems 
behavior in real time, it is known as real-time 
simulation. The term real time, as it relates to 
simulation, denotes that advancement of simulation 
time must occur in the real world time (i.e. not faster 
or slower). In faster-than-real-time simulation (FRTS), 
results are delivered earlier than real-time. In this case, 
we are capable of using system observations and 
model results to both test model validity and, in case 
of a valid model, reach predictions for the system 
future states. The quality of predictions can be ensured 
based on validation tasks involving only past and the 
current time points [1]. 
 
System and model state evolution in real time is 
depicted in figure 1. Real time points are noted as ti. 
The states of the system and the model at point ti are 
noted as Ri and Si, respectively.  When at time point tx 
the model predicts the system state at tn (simulation 
time is equal to tn), we use the notation Sim(tx)= tn. 
Auditing is performed at tn-1, tn, tn+1 and, thus, 
compares states Sx and Rn at time point tn. If model 
validity is consecutively ensured within a number of 

consecutive auditing intervals [tn-2, tn-1], [tn-1, tn], 
…, it is likely that simulation predictions are also 
valid. Thus, plan scheduling is invoked to take 
advantage of predictions and experimentation 
resumes. 
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Figure 1: Experimentation in FRTS  
 

A substantial issue is that time-dynamic system may 
be subjected to changes (or reformations) at any time 
point. Reformations involve the main features of a 
system, as its structure and operation parameters. 
Structure reformations also involve the coupling 
relationship between model components. We thus 
distinguish structure and operation parameter 
reformation types. To deal with them, the model must 
be subjected to dynamic remodeling, i.e. in real-time, 
without recompilation. Numerous model validation 
types and techniques have been discussed in the 
literature [2]. Both conceptual model validation and 
computerized model verification should be pre-
assured, as only preconstructed models can be used 
when modifying a composite model in real time. 
Operational validity is concerned with determining 
that the model output behavior has the accuracy 
required for the intended purpose over the domain of 
its intended applicability [3]. This is where most of the 
validation testing and evaluation must take place in 



FRTS. Comparing model results and real-time process 
observations, the following features must be provided: 
 
1. Validation must be a real-time, computationally 

efficient procedure. 
2. Conditions causing the model to be remodeled 

must be explicit. Each remodeling condition 
involves one or many comparisons between 
specific - primitive or statistical - variables, 
denoted as monitoring variables. The number of 
monitoring variables corresponding to each single 
condition depends on the current system 
configuration. For instance, comparing a single-
queue, multi-teller system with its G/G/s model 
representation may involve the average service 
time of each server. As the number of servers (s) 
may be modified (e.g. when a teller is removed), 
the number of monitoring variables corresponding 
to this specific condition may also be modified.  

3. A single comparison method is appropriate for 
each specific monitoring variable comparison. For 
single-valued variables (e.g. operation 
parameters), a comparison between model and 
system values is required. Multi-valued statistical 
results are compared using other approaches, such 
as the inspection approach, confidence intervals 
and hypothesis tests [4]. The acceptable deviation 
ranges (or comparison parameters) must also be 
determined for each monitoring variable 
comparison.  

 
Furthermore, in FRTS, it is most probable that, due to 
the limited time interval within which system and 
model data are collected, only a single data set will be 
available for the system. The same does not stand for 
simulation, as it may run considerable faster than the 
system, enabling multiple (n) replications to deliver n 
corresponding data sets within the auditing interval.  

Based on the above, we conclude that the following 
requirements must be met:  

1. Any remodeling condition involves one or many 
monitoring variables, which are not used by any 
other condition. 

2. Each monitoring variable corresponds to a single 
comparison method, i.e. we consider that there is 
a single, case-specific, optimal comparison 
technique for each monitoring variable, not for all 
variables of the same condition.  

3. There is a given set of comparison methods, each 
being appropriate for specific comparison 
characteristics.  

4. A single system data set and n model data sets are 
available for comparison. 

 
In this paper, we discuss model validation issues in 
FRTS, in terms of comparison techniques between 

system observations and models results. As low 
effectiveness is indicated using well-known 
techniques for comparing system and model data in 
the context of FRTS, we introduce a technique for 
improving effectiveness, based on the available model 
and system data. This technique can be applied on a 
single set of IID system observations, using M-fold 
decimation for producing m sets of system 
observations, after verifying that each of the m data 
sets can be used to substitute the original data set. 
Potential applications of this technique are not 
restricted to FRTS, as there are many cases where a 
limited amount of system data is available due to the 
nature of the system under study.   

The paper is organized as follows: in Section II, model 
validation is discussed, accomplished through 
monitoring variable comparison. In Section III, we 
describe the M-fold decimation-based technique for 
the effective comparison of a single system data set 
with multiple model data sets, while experimental 
results are presented in Section IV.  

II MODEL VALIDATION  

Considering that model validation is accomplished 
using k monitoring variables (MV1-MVk), k 
comparisons need to be made. Monitoring variable 
values for the system and the model are respectively 
denoted as MV1.r and MV1.s. Each comparison is 
accomplished using a single comparison technique 
considered as more appropriate for the specific data.  
 
In general, we consider three comparison techniques 
as most appropriate for accomplishing comparisons 
between model and system data: 
 
1. System - model values comparison, for single-

valued variables. 
2. Inspection approach, for statistical variables with 

one system observation data set and n model data 
sets [4]. 

3. Confidence-interval approach, for statistical 
variables with m system observation data sets and 
n model data sets) [4].  

 
In system-model comparison, the confidence-interval 
approach is more effective than a hypothesis test, as 
the hypothesis that system and model performance 
measures are equal will be false in almost all cases. 
Moreover, confidence-interval comparison provides 
more information, i.e. it gives an indication of the 
magnitude by which the system differs from the model 
[4]. A reliable approximate solution in order to form a 
confidence interval for the difference in the two 
expectations (from the system and the model) is to use 
the approach proposed by Welch [5]. This approach is 
used for comparing two systems with unequal and 



unknown variances, called the Behrens-Fisher 
problem, when the Xij’s are normally distributed [5]. 
This classical approach is considered as more 
appropriate for building a confidence interval based 
on a different number of independent data sets, as it 
enables m to be different than n, but imposes that 
system data sets are independent from the 
corresponding model data sets [4].  
 
In the following, we discuss system-model data 
comparison for the three above cases (comparison 
techniques). In all cases, comparison parameters 
define the acceptable deviation range (dr) for each 
comparison, so that, when model value deviation from 
the corresponding system value exceeds the 
predetermined range, invalidity is detected. However, 
the meaning of this range may be different for each 
comparison technique. Each deviation range depends 
on the nature of the experiment (i.e. how close should 
model states be to system states) and the specific 
method used to compare system observations and 
model data.  
 
In cases (1) and (2), deviation range determines the 
lower and upper endpoints of the interval  
[l(MVi.r), u(MVi.r)] and the model is considered as 
valid when: 

MVi .s∈ [l(MVi.r), u(MVi.r)], 
l(MVi.r)= MVi.r(1-dr), u(MVi.r)= MVi.r(1+dr) 

For single-valued variables, system and model 
variables (MVi.s, MVi.r) are directly obtained. For 
statistical variables with one system observation data 
set and n model data sets, a single value is derived for 
each data set, thus 

MVi.s = sum (MVi1.s, MVi2.s, …, MVin.s)/n, 
where MVij.s is the statistical sample obtained from 
replication j when n replications are made.  
 
In the third case, where statistical variables with m 
system observation data sets and n model data sets are 
available, we build a confidence interval based on a 
different number of independent data sets [5]. 
Applying the Welch approach, 
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The following interval is an approximate 100(1-a) 
percent confidence interval for MVi.r-MVi.s  
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Evidently, in case (3), the deviation range defines the 
value a, which means that we wish the confidence 
interval to cover MVi.r-MVi.s with probability 1-a. 
Suppose the upper and lower endpoints of the interval 
are marked as u(a) and l(a), respectively. If 0 ∉ [l(a), 
u(a)], the difference between MVi.r and MVi.s is 
statistically significant at level a and we consider the 
model to be invalid.  

III M-FOLD DECIMATION-BASED TECHNIQUE 

As previously discussed, confidence-interval-based 
comparison for statistical variables is more effective 
than other comparison techniques. The problem in 
FRTS is that only a single observation data set is 
available from the system, while n data sets may be 
produced by simulation. We thus examine how it is 
possible to produce m independent data sets from a 
single original data set.  
 
Considering that MVi.r is calculated from a sequence 
of system values x1, x2, …, xn, where x(n) is a 
stochastic process and n is an integer value. Having 
this single sequence x(n) from the system, we consider 
it as a discrete signal and use well-established 
methods from digital signal processing to obtain a 
number of sequences that retain the statistical features 
of the initial sequence. A basic operation in multirate 
digital signal processing is decimation. The M-fold 
decimator takes an input sequence x(n) and produces 
the output sequence  

xM(n) = x(Mn) 
where M is an integer [6]. Only these samples from 
x(n) that occur at time equal to multiples of M are 
retained by the decimator. Figure 2 demonstrates this 
idea for M=2. As is mathematically substantiated, 
decimation results in aliasing, unless x(n) is 
bandlimited in a certain way.  In general, it may not be 
possible to recover x(n) from xM(n) because of loss in 
information. To retain the initial statistical features of 
a sequence x(n) using a sequence xM(n), we need to be 
able to reconstruct x(n) from xM(n). To achieve this, as 
discussed in [6], M must satisfy the condition  

|ω| < π/M    (1), 
To calculate |ω|, we have to use the Discrete Time 
Fourier Transformation (DTFT) on x(n) [7]  
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Condition (1) must be fulfilled due to decimation 
causing an expansion to the Fourier transform X(ejω) 
of the input signal x(n). Thus, when a signal is being 
decimated by a factor M, the stretched version of 
X(ejω) can in general overlap with its shifted replicas 
[6]. If this happens, we cannot recover x(n) from the 
decimated signal xM(n). The overlap effect is called 
aliasing. To avoid aliasing, it is widely adopted that 
x(n) must be a bandlimited signal to the region |ω| < 
π/M.  

 
Figure 2: M-fold decimation (M=2) 

 
In order to find the appropriate frequency ωmax to 
bandlimit our signal spectrum to the range |ω| < ωmax 
without a significant loss of information, we estimate 
the power spectral density (PSD) of the signal x(n) 
using Welch’s method [8]. With such a representation, 
the Fourier coefficients determine the distribution of 
power at the various discrete frequency components. 
The range of ω is [0, π] for real x(n). Using the 
condition PSD(ω) > l% PSDmax we obtain the 
frequency range where the PSD is larger than l% of its 
maximum value. Depending on the choice of l, the 
maximum frequency in this range is ωmax(l), i.e. the 
last frequency inside the range [0, π] having a 
significant contribution in x(n). Thus, omitting the 
frequencies above ωmax, the spectrum X(ejω) of the 
initial signal x(n) is bandlimited to the range where |ω| 
< ωmax. However, there is an error factor depending on 
the choice of the coefficient l. The smaller the value of 
l, the smaller is the error.  
 
Bandlimiting the signal is achieved through a digital 
filter, i.e. a filter that takes one sequence of numbers 
(the input signal) and produces a new sequence of 
numbers (the filtered output signal). We apply a 
simple low-pass filter, i.e. one that does not affects 
low frequencies and rejects high frequencies. The gain 
of the ideal low-pass filter is equal to 1 for frequencies 
between 0 Hz and the cutoff frequency fc Hz, and 0 for 
all higher frequencies (ωmax = 2πfc) [9]. The transfer 
function Η(ejω) of this lowpass filter is depicted in 
figure 3. The output spectrum is produced by 
multiplying the input spectrum obtained from the PSD 
of x(n) by the transfer function. The output signal is 

then bandlimited to |ω| < ωmax containing the amount 
of information included in [0, PSD(ωmax)]. 

H(ejω)
1

ωmax π ω0
 

Figure 3: Digital filter 
 
Having ensured condition (1), it is possible to obtain 
xM(n) that preserves the statistical features of x(n), 
through M-fold decimation. It is evident that signals 
xk(n), 1 ≤ k ≤ M, also preserve the statistical features 
of x(n), using a lower degree of decimation. 
Decimation signals can be produced using a digital 
filter bank which splits the signal x(n) into M 
sequences xk(n), 1 ≤ k ≤ M, typically called subband 
signals [6].  
 
The proposed technique for deriving m (M=m) system 
observations data sets from the original data set x(n) 
comprises the following steps, depicted in figure 4: 
 
1) Calculate the power spectral density (PSD) of the 

data set. Calculate the maximum frequency 
contribution ωmax where the PSD is greater than at 
least l% of PSDmax.  

2) Calculate the maximum M using condition (1) to 
avoid aliasing. 

3) Construct M sequences xk(n), 1 ≤ k ≤ M, retaining 
the statistical features of the original sequence 
x(n), using M-fold decimation. 
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PSD H(ejω) Μ
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Figure 4: Producing m xk(n) sequences from x(n) 

IV APPLYING THE M-FOLD DECIMATION-
BASED TECHNIQUE 

We present an example involving model result - 
system observation comparison using a simple 
manufacturing system as the application domain 
(figure 5) to illustrate the effectiveness of the 
proposed technique. This system assembles parts and 
constructs an assembled product. Time duration equal 
to di is required for this process, where di follow the 
normal distribution. 
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Figure 5: Simple manufacturing system 

 
The objective of FRTS is to reach reliable conclusions 
for the system performance in the near future and to 
ensure model validity taking into consideration the 
current system state and performance. To achieve this, 
we compare the average delay (avgdelay) in the 
system and the simulation model at the end of 
sequential auditing intervals. Within each auditing 
interval, a single data set is available from the system 
(system observations) while n data sets are derived 
from the corresponding simulation replications. We 
assume that system data are IID. We thus consider a 
single monitoring variable MV1 for performing 
comparisons between system and model data, using a 
90% confidence interval (1-a=90%) as follows: 

 
mvid mvname comparison type comparison 

parameters 
MV1 avgd 1 system data set/  

n model data sets  
0.1 

(a=10%) 
 

To determine model validity using avgdelay as a 
measure of performance, it is possible to compare 
system and model values using a hypothesis test or, 
more efficiently, using an acceptable deviation range 
(dr) for the difference between estimations from the 
model and the system, e.g. dr=10%, as follows 

MV1.r=(d1+ d2+… +dr)/r 
MV1.s= avgd1.s +avgd2.s+…+ avgdn.s 

avgdi.s=( di1+ di2+… +disi
)/ si 

assuming that r system observations are available and 
that n replications are made, where each replication i 
produces a single average delay (avgdi.s) from si 
output samples. In the simple approach using an 
acceptable deviation range for testing model validity, 
the model is considered as valid when 

MV1.s∈[MV1.r (1-dr), MV1.r(1+dr)] 
We apply the above technique for achieving a more 
effective comparison between system and model data, 
enabling m independent data sets to be derived from 
the original IID system data set. Considering the 
original sequence d(r)= d1,d2,… ,dr, we derive the 
power spectral density (PSD) of this spectrum and 
then calculate the maximum frequency contribution 
ωmax where the PSD is greater than at least l% of 
PSDmax. The maximum M is accordingly calculated to 
avoid aliasing. Then, m sequences dk(r) are 

constructed using M-fold decimation, all sequences 
retaining the statistical features of the original 
sequence d(r). Obtaining m system observation data 
sets (M=m) and n model data sets, we build a 100(1-
a%) confidence interval for MV1.r-MV1.s based on a 
different number of independent data sets. We first 
calculate MV .r, MV .s, S ( MV .r), S ( MV .s)1 1 1 1

2 2  and 

Then, we construct the confidence interval 
[l(a), u(a)], for a=10%. If 0 ∉ [l(a), u(a)], the 
difference between MV1.r and MV1.s is statistically 
significant at level a. 

and f . 

 

Figure 6: System-model initial data sets 
 
We executed a number of experiments with the above 
sample manufacturing system. System observation 
data d(r) and 10 (n=10) model data sets y1(r), y2(r), …, 
y10(r), are depicted in figure 6 for µ=10 and σ2=2.0. In 
this figure, the model is an accurate representation of 
the system. 

 

 
Figure 7: Power Spectral Density 

 



Using a value of 0.001 (0.1%) for l parameter, the 
power spectral density of d(r) and ωmax are depicted in 
Figure 7. In this case, M is equal to 128. Decimated 
system sequences dk(r) for various values of k are 
depicted in figure 8.  

 

 
Figure 8: Decimated system data sequences 

 
Constructing a 100(1-a)% confidence interval for 
MV1.r-MV1.s, results from different experiments are 
depicted in Table 1. To reach results, we use various 
system service characteristics and different model 
representations for the system, i.e. different 
parameters for the distribution of service times, as 
well as various values for l parameter.  
 

Table 1: Comparison parameters and results 
system  model  parameters confidence 

interval 
µ/σ2 µ/σ2 l 1-a M l(a) u(a) 
10/2 10/2 10-3 90% 128 0.0495 0.0961 

10/0.05 10/0.005 5*10-7 90% 42 -0.0007 0.0005 
10/0.05 10/0.001 5*10-7 90% 42 -0.0007 0.0004 
1000/1 1000/1 2*10-3 90% 128 -0.027 -0.0023 
1000/1 1000/1 10-7 90% 32 -0.0235 0.0007 
1000/1 1000/1 2*10-8 90% 16 -0.0221 0.0039 
1000/1 1100/100 2*10-3 90% 128 -101.60 -98.63 
1000/1 1100/100 10-7 90% 32 -101.61 -98.64 
 
Experiments were conducted using a single system 
data set and n=10 model data sets, each consisting of 
10,000 samples. Executing the steps of the above 
technique is an automated process, which was realized 

using Matlab, imposed only a low time overhead. In 
the case of FRTS, performance was critical. Based on 
the above results, the following conclusions were 
reached:  
 
1) Confidence interval endpoints for identical 

system-model representation were extremely 
close, as expected, even though 0 was not always 
included in the confidence interval, as in the first 
row of Table 1. However, this effect is negligible 
for intervals with such limited width [4]. 

2) In all cases where different model representations 
were tested against the real system, confidence 
intervals clearly indicated this deviation, also 
providing an indication of the magnitude by 
which the model deviates from the system.  

3) Low values for l (10-8 to 10-3) were actually used, 
resulting in a practically negligible information 
loss in the original system data. 

4) Lower values for l resulted in the calculation of 
lower values for M (i.e. lower decimation 
capabilities were provided for lower information 
loss). 

5) Model validation was computationally efficient 
when applying the proposed technique. 
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