Model-based Enterprise Information System
Architecture Design using SysML

Mara Nikolaidou, Anargyros Tsadimas, Dimosthenis Anagnostopoulos

Department of Informatics & Telematics, Harokopio University of Athens
70 El. Venizelou Str, 176 71 Athens, Greece

{mara, tsadi nmas,

Abstract—A model-based approach for the design of enterprise
information system architecture is proposed in this paper. It
facilitates the progressive refinement of system architecture based
on a well-defined model and the systematic manipulation of in-
formation exchange with other methodologies addressing related
engineering activities (for example software design). The Systems
Modeling Language (SysML) is used for the representation of the
proposed system model. The SysML profile, constructed for that
purpose, is presented. The experience obtained when applying
the proposed SysML profile in the renovation of a large-scale
enterprise information system is also briefly discussed.

I. INTRODUCTION

Enterprise Information Systems (EIS) are large-scale, com-
posite systems, consisting of heterogeneous components often
built in an autonomous fashion. Enterprise information system
engineering relates to the efficient construction of the EIS and
is characterized by extensive complexity, since the integration
of different components and also strategies, methods and tools
used to construct them, is necessary to define EIS structure
and behavior. Many different stakeholders may be involved in
this process, each of which focuses on certain concerns and
considers them at a multiple level of detail [11]. Enterprise
Architecture (EA) frameworks ([13],[16]) are considered as
an attempt to integrate strategies, processes, methods, models
and tools toward EIS engineering [1]. Most of them have
adopted the notion of separating concerns by establishing
different viewpoints, each depicting the concerns of a specific
stakeholder (e.g. user, designer, implementer, etc.). However,
in practice, methods and tools applied by a specific stakeholder
are supported by different system models, which in many
cases are not compatible or even not known to others used
by stakeholders with a different viewpoint.

Model-based EIS engineering can be defined as the process
of specifying, designing, integrating, validating and operating
an Enterprise Information System based on the development
of a central model, extended in different levels of increasing
detail [8]. The central EIS model can be defined as a collection
of views and corresponding viewpoints serving specific stake-
holders. In [14], the concept of using Zachman framework [17]
as the basis for establishing a central EIS model for model-
based EIS engineering was introduced. Zachman framework
provides a holistic model of enterprise information infras-
tructure, focusing on 6 different perspectives serving discrete
primary engineering activities according to Zachman matrix

di nost he}@uvua. gr

row rationale and 6 different aspects according to Zachman
matrix column rationale. A plethora of methodologies and
formalisms exist ([5],[9],[7]), each applicable to some subset
of Zachman matrix cells, while respective system models are
defined. Thus, it considered as the most suitable as the basis to
construct the central EIS model. Rules governing the Zachman
framework, as defined in [17], are applied during model-based
EIS engineering as well. Each row may serve a model-based
implementation of a discrete primary engineering activity,
as defined in [12], addressing the needs of corresponding
stakeholders [14].

According to the combination of Zachman’s perspectives
and aspects, model-based EIS engineering central model con-
sists of 36 EIS sub-models. For example, RUP methodology
[7] could be employed for application design within Function
Design model corresponding to System Function cell. Since
each model is treated autonomously, it should contain all
necessary information to perform the respective tasks. There-
fore, both internal entities, focusing on the specific model and
external entities facilitating the integration with others, corre-
sponding to other cells, construct each EIS sub-model. Each
model gathers information from all the cells of the same row
(participating in the same engineering activity) and the cells
of the same column above and beneath it, while it also may
pass information to them. Upper and lower cells participate
in the progressive refinement of enterprise requirements for
the specific aspect. In [14] we have proposed basic guidelines
on a) how to identify the Zachman cell corresponding to a
specific EIS engineering activity or specific methodology and
b) to construct the corresponding EIS sub-model.

In this paper, we discuss a model-based approach for the
design of EIS architecture based on the proposed guidelines.
EIS architecture design is the process of defining and optimiz-
ing the architecture of the information system (both hardware
and software) and exploring performance requirements, ensur-
ing that all software components are identified and properly
allocated and that hardware resources can provide the desired
performance. It is usually performed by system architects.
Determining system architecture is a complex process [3],
which in essence focuses on the integration of EIS components
(for example EIS software and data, EIS access points) already
defined by other stakeholders than system architects. Since
Zachman’s system model row deals with design engineering

activities, EIS architecture design should be handled within
this row. Furthermore, architecture design is related to the
network aspect of the system, as defined within Zachman
framework. Thus, EIS Architecture Design View is handled
within Zachman System Network cell. The proposed EIS
sub-model should provide for the progressive refinement of
EIS architecture based on a well-defined model constituting
EIS Architecture Design Model that serves all architecture
design tasks and information exchange with other method-
ologies addressing related EIS design issues (for example
software design) corresponding to other Zachman cells. This
is considered as a crucial issue, since in most cases the lack
of proper information exchange between information system
architecture design and software design methodologies results
in poor system performance [10].

Systems Modeling Language (SysML) [4] may be used for
the model-based design of EIS Architecture, since it supports
the concepts of requirements and resource allocation, which
are vital to depict EIS Architecture Design tasks, and is sup-
ported by most popular modeling tools. The rest of the paper is
organized as follows: Section Il explains the main concepts of
model-based EIS architecture design identifying basic tasks
and corresponding views. In section Ill, the corresponding
SysML profile is analytically presented. In section 1V, the
way SysML profile is implemented and a small example
are briefly discussed. The experience obtained when applying
the proposed SysML profile in the renovation of a large-
scale enterprise information system, indicating its potential, is
commented in section V. Conclusions and future work reside
in section VI.

Il. EIS ARCHITECTURE DESIGN MODEL

The basic tasks identified during EIS architecture design are
[14]:

1) Functionality Definition, consisting software architec-
ture description. In practice, Functionality Definition
consists of the description of functional requirements
(e.g. application and data architecture, user behavior and
application requirements).

2) Topology Definition, consisting of the description of
system access points. It facilitates user, application and
data allocation.

3) Network Infrastructure Definition, consisting of the de-
scription of platform-independent distributed infrastruc-
ture (e.g. network architecture and hardware configu-
ration) and the association of software components to
network nodes (resource allocation).

4) Non Functional Requirement (NFR) Definition, consist-
ing of the description of non-functional requirements,
focusing on system performance and availability require-
ments essential for EIS architecture design.

5) EIS architecture evaluation.

It is evident that all aforementioned tasks are interrelated,
since non of them can be completed independently, while in
most cases tasks are performed in parallel, and often repeat-
edly by the system architect in order to reach an EIS architec-

Network Inftastructure
View

evaluate allocate

satisfy

verify satisfy
Evaluation View NFR View

Topology View

satisfy

evaluate allocate

Functional View

Fig. 1. EIS Architecture Design Model

ture satisfying both functional (identified during Functionality
Definition and partly during Topology and Network Infrastruc-
ture Definition) and non-functional requirements (identified
during NFR Definition). NFR Definition is performed in par-
allel with Functionality, Topology and Network Infrastructure
Definition. Developing requirements and architectural artifacts
in parallel has already been addressed in the literature [15].
After an EIS architecture has been defined, it should be
evaluated, most commonly using simulation. Solution eval-
uation will determine whether a) the proposed solution is
satisfying all functional and non-functional requirements, or b)
the system designer should improve the proposed architecture
or readjust requirements by repeating definition tasks. Thus,
EIS architecture evaluation is treated as a discrete independent
step, while the corresponding model should provide system
designer with any information regarding system redesign or
requirement readjustment decisions.

The EIS Architecture Design model consists of discrete
views, each of which is used to perform a specific design
task, including solution evaluation. It facilitates concurrent
execution of the five aforementioned tasks, while it promotes
interoperability between them by strictly defining relations
between corresponding views. Basic SysML concepts have
been taken into consideration when defining the model.

Functional requirements and corresponding design decisions
are described using complementary EIS Architecture views
focusing on different aspects of system design, namely, Func-
tional View, Topology View and Network Infrastructure View.
In practice, each of these views serves the corresponding task
identified above.

Using NFR view, the system designer is enabled to explore
non-functional requirements relationships, while, using other
views, the relationship between non-functional requirements
and design decisions is explored [18]. Such an approach
allows for the progressive and independent execution of EIS
architecture composition tasks in parallel, while the impact of
design decisions adopted in each of them to the other ones is
expressed in terms of non-functional requirements grouped in
NFR view. In this manner, the system architect is enabled to
realize the affect of specific design decisions (for example the
allocation of software to hardware resource) to non-functional
requirements imposed to them (for example performance) and
vise-versa.

The integration of the Evaluation View within EIS Ar-
chitecture Design model facilitates the definition of solution
evaluation scenarios and the integration of evaluation results
into the common model in order to help the designer to make
redesign or requirement readjustment decision if needed. It is
comprised of evaluation scenarios. Each scenario represents an
EIS Architecture configuration evaluated by the system archi-
tect and is based on the combination of entities belonging in
Network Infrastructure View and Functional View. Scenarios
are usually evaluated using Simulation. Evaluation results are
also included in evaluation scenarios to facilitate the system
architect to verify related non-functional requirements defined
in NFR view. When conflicts are discovered, changes are
made to the system configuration by the system architect (e.g.
Functional, Topology, Network Infrastructure or even NFR
view) and a new evaluation scenario is initiate by system
architect until a satisfiable solution is reached.

Each view is treated as a discrete system component, while
the relations between them are defined, using basic SysML
relation types. All views comprising EIS Architecture Design
model and the relations between them are depicted in the figure
1. In all aforementioned views, EIS corresponding aspects
are described as a hierarchy of system components. In each
view, both internal and external entities are defined. External
entities depict information exchange with other stakeholders,
for example the software architect. Corresponding external
entity properties of Functional, Topology and Network In-
frastructure Views depict the functional requirements used
by the system architect to design EIS architecture. External
entities of NFR view depict the NFRs derived from upper level
requirements. External entities also indicate the requirements
or constraints imposed by EIS architecture design decisions to
other engineering activities. Only internal entities participate
in the Evaluation View.

External entities indicate the information imported or ex-
ported from/to models serving other engineering activities,
than EIS architecture design. Applying the methodology pro-
posed in [14], each EIS engineering activity may be mapped
into a specific Zachman cell, while the Zachman matrix itself
provides basic rules for information exchange. The EIS model
corresponding to a specific cell gathers information from all
the cells of the same row (participating in the same engineering
activity) and the cells of the same column above and beneath
it, while it also may pass information to them. Upper and lower
cells participate in the progressive refinement of enterprise
requirements for the specific aspect. EIS view integration and
inter-view consistency is accomplished by creating mappings
between external entities of respective models. EIS Architec-
ture Design model should provide for the exchange of informa-
tion with model-based methodologies targeting design issues
(Zachman system row), for example, data design, software
design or design requirements, while it also contributes to
the refinement of EIS structure (Zachman network column)
by enabling the transformation of the Enterprise access points
(Zachman business row) to a complete network architecture
(Zachman builder row).

TABLE |
FUNCTIONAL VIEW

EIS Profile Entity Type SysML Entity
Role external Block
Initiate internal Dependency
Invoke internal Dependency
Data Entity external Block
Module (Client & Server) | external Block
Service external Block

I11. SYSML PROFILE DESCRIPTION

In the proposed SysML profile each view is depicted using
a discrete diagram. The stereotype mechanism provided by
UML and SysML is used to customize SysML functionality
to depict EIS Architecture views. Functional, Topology and
Network Infrastructure views are described using hierarchical
block-definition diagrams. SysML blocks can be used through-
out all phases of system specification and design, and can
be applied to many different kinds of systems. These include
modeling either the logical or physical decomposition of a
system, and the specification of software, hardware, or human
elements.

Functional view depicts functional requirements related to
software components and related data, as well as EIS users. It
also includes design decisions related to software architecture.
Roles are used to depict the behavior of different user groups
while modules (client & server) are application tiers that
comprise of services. Each role initiates services that belong
to client modules, and each service may invoke other services
that belong to other modules, depending on the functionality
of the application. Data Entities are used to represent portions
of stored data. Main entities of Functional view, along with
their type (external or internal) and the SysML base class
they extend, are presented in table I. Entities participating in
Functional view are related to entities participating in all other
diagrams to implement the relations depicted in figure 1. These
relations are discussed in the following paragraphs as the rest
of the views are briefly presented.

Topology view facilitates the description of system access
points in terms of hierarchically related locations, called sites.
Sites may be atomic or composite (meaning that are composed
of other sites). Site entity is an extension of SysML Block
entity. Topology View is a Block Definition Diagram that
comprises the aforementioned entities. Topology View entities
are presented in table Il. Entities defined in other views (e.g.
Functional and NFR view) may also participate in the diagram,
in order to describe Topology view interrelation with other
diagrams, as define in figure 1. Software Allocation is used to
describe the allocation of software modules (client or server)
to atomic sites, while Usage Allocation refers to roles that
are allocated to atomic sites. Sites satisfy traffic requirements,
indicating the amount of information exchange between the
modules allocated to them. A traffic requirement is described
in terms of traffic coming in, going out and exchanged within
each site. Traffic requirements are entities defined in NFR

TABLE 1
TOPOLOGY VIEW

TABLE IV
REQUIREMENTS VIEW

EIS Profile entity Type SysML Entity
Site (Atomic & Composite) | external Block EIS Profile entity Associated Elements
Software Allocation internal Allocation Constraint-Req Network-Device, Connections, Server, Workstation
Usage Allocation internal Allocation Load-Req (derived) Network, Server, Workstation

TABLE I1I
NETWORK INFRASTRUCTURE VIEW

EIS Profile entity Type SysML Entity
Network (Atomic & Composite) | external Block
Atomic-Network Diagram external | Block Definition Diagram
Structural-Allocation external Allocation
Server external System
Workstation external System
Network-Device external System
Connection external Association
PTP-Connection external Association
Software-Allocation internal Allocation
Usage-Allocation internal Allocation

view. No SysML extension were needed to represent require-
ment satisfaction relationship. Constraints were used a) to
constraint SysML functionality, for example only modules may
be functionally allocated sites or atomic sites are allocated
only to atomic networks and composite sites or networks have
to own at least one atomic element and b) to compute values
of derived entity attributes, for example, traffic requirements
attributes of a specific site are automatically computed from
Module-Qos requirements attributes of modules allocated to
this site.

Network Infrastructure view refers to the aggregate network,
described through a hierarchical structure comprising of sim-
ple and composite networks. It is represented using a hierarchy
of block diagrams. Hardware components and configurations
are also defined using this view (servers, workstations and
network devices). Networks are inter-connected with PTP-
connections. Sites are allocated to networks using Structural
Allocations. Each atomic network owns a specific diagram
(Block Definition Diagram), called atomic network diagram,
which encompasses all hardware elements that belong to that
network. Main Network Infrastructure View entities are pre-
sented in table I1l. Most of them are characterized as external
entities, since the should be further refined during network
implementation by the system constructor. Existing Network
infrastructure is depicted using constraint requirements defined
in NFR view and associated to appropriate network compo-
nents in Network Infrastructure view. Elements of Functional,
Topology and NFR views may also participate in Network
Infrastructure view to represent inter-view relations.

As seen in figure 1, NFR view comprises requirements that
are satisfied by entities of the three aforementioned views and
are verified by elements of the Evaluation View. Table IV
presents main requirements and the related entities that satisfy
them. All requirements are defined as stereotypes of SysML

Auvailability-Req Server, Workstation

Traffic-Req (derived) Site

Utilization-Req Network, Server, Workstation

Service-QoS-Req Service

Module-QoS-Req (derived) Module

Response-Time-Req Service
Behaviour-Req Role

requirement entity, while additional stereotype attributes are
defined to accommodate specific requirement properties. Re-
quirements may be derived from other requirements, while all
of them are treated as internal entities, since they are defined
on the context of EIS architecture design. Non-functional
requirements Requirements in SysML are described in an
abstract, qualitative manner, since they are defined using a
name and a description. In the case of EIS Architecture De-
sign, non-functional requirements should be more accurately
describe using quantitative properties. Furthermore, derived
requirement properties should be automatically computed by
combining specific attributes of requirement and allocation
entities. Though, SysML provides for non-functional require-
ments description, SysML requirement entity was heavily
extended to effectively represent the quantitative aspects of
requirements and the way they derive from each other. Further
analysis on NFR view can be found in [18].

Evaluation view is introduced to aim at a)defining specific
EIS Architecture configurations, which should be evaluated,
and b)storing the evaluation results of different configuration
scenarios. This knowledge should be available to the system
architect during EIS architecture redesign. In practice, it is
used to determine whether the proposed architecture meets
specifications placed by non-functional requirements. Since
EIS Architecture design process may require to evaluate and
properly adjust the proposed architecture more than once,
Evaluation View consists of multiple test cases used to evaluate
alternative solutions. Since simulation is used for architecture
evaluations, these test cases are called simulation experiments.
A Simulation Experiment is a set of conditions or variables
which will be tested to ensure requirements are met. As
indicated in figure 1, a simulation experiment is conducted to
evaluate design decisions depicted in Functional and Network
Infrastructure View, while its results are used to verify require-
ments defined in NFR View. When conflicts are discovered,
changes are made to the system configuration by the system
architect (e.g. Functional, Topology, Network Infrastructure or
even NFR view) and a new simulation experiment is initiate
by the system architect until a satisfiable solution is reached.

Though SysML provides the test case entity and corre-
sponding behavior diagrams for system evaluation, it was
decided to represent Evaluation view using a set of block

TABLE V
EVALUATION VIEW

EIS Profile entity SysML Entity
Sim-Experiment Block Definition diagram
Sim-Service Block
Sim-Module Block
Sim-Role Block
Sim-Workstation System
Sim-Server System
Sim-Node System
Sim-Network-Device System
Sim-Connection System
Sim-PTP-Connection System
Sim-LAN Block
Usage-Allocation Allocation

Service

From Functional [— — — — —| -processinge_
View -storage _ |
-network _ | |
-
sim-Service | |
— _ _ _ _ ____ ~ Al
. in:processin 3
From Evaluation ‘\n:glorage 9 T - AN
View in:network € - - = — = — — |

outresponseTimg] — — — — — — — — — — — — —

From NFR View -

Fig. 2.

satisfies

verifies

responseTime

~|-responseTime

Sim-Service entity description

definition diagrams, one for each test case. Main entities are
described in V. All of them are considered as internal entities.
Each simulation experiment entity is created to evaluate a
specific EIS Architecture entity and verify corresponding non-
functional requirements. For example, a service has to satisfy
a responseTime requirement indicating maximum execution
time. This requirement must be verified by sim-Service entity,
as represented in figure 2. Simulation entities have input and
output attributes. Input attributes correspond to initialization
conditions passed to the simulation environment and are de-
rived from corresponding attributes of evaluated entities. Out-
put attributes indicate simulation results. To verify a require-
ment, the system designer should compare output attributes
to corresponding requirement attributes, to check if there is
a conflict. For example, the ResponseTime output attribute
of sim-Service is compared to responseTime requirement of
corresponding service entity. If a conflict has been identified,
the system designer should alter the system design (e.g. mod-
ify the network architecture or the requirement itself) using
Functional and NFR views and conduct a new experiment.

IV. SYSML PROFILE IMPLEMENTATION

The profile is implemented as a plugin to MagicDraw
modeling tool [2], which provides full SysML support. System
designer defines Functional, Topology, Network Infrastructure
and NFR views within the design environment. Simulation
experiments in the Evaluation view, are automatically created
based on the content of Network Infrastructure and Func-
tional views. Simulation experiments are executed using a

.
@ o
<<StructuralAllocation>> .
;} <<Usage Allocation>> <<Atomic-Network>>
<<Role>>” — — 3 <<Atomic-Site>> - — — — 7 LAN-1.1
ole <<RequirementRelated>> {ProtocolStack = TCP/IP ,
role1 office-1.1 type = Ethernet }
~
<<SpftwareAllocationy> | N
<<Client-Module>> g4 / N
accounting 4 I N
4 I
/ <<Satisfy>>
7 ! \
<<SoffwareAllocation>><<Satigfy>> \ <<Composite-Site>>
/ | \ floor-1
7 \
/
<<Server-Module>>, <;:}TTC‘;E:3>> <<Traffic-Req>>
db_connection G off1.1-in-tr
e avg-value = "170" , e
d="" [avg-value = "120" ,
max-value = "190" , Sl L
Text="", max-va"IL:e- 160" ,
Type = out } [rext="",
[Type =in }

Fig. 3. Topology View example

simulation tool. Entities included in the simulation experiment
diagram and their input attributes are used to properly initialize
simulation, while simulation results are passed to simulation
experiment diagram (each one to the corresponding simulation
entity) in order to verify the requirements. The bidirectional
information exchange between the profile implemented in
MagicDraw tool and the simulation environment are currently
under implementation.

Figure 3 presents a Topology View example, as defined
using MagicDraw. Entity offfice-1.1 is an atomic site, which
belongs to floor-1 composite site. Role rolel, client module
accounting and server module db_connection, already defined
in Functional view, are allocated to offfice-1.1 atomic site. The
number of users and software module replicas allocated in the
specific site are indicate as properties of Usage_Allocation
and Software_Allocation relations respectively. Traffic require-
ments (offl.1-in-tr & offl.1-out-tr), defined in NFR view,
must be satisfied by offfice-1.1 atomic site. The allocation of
office-1.1 to the atomic network LANL1 is also depicted in the
diagram.

V. CASE STUDY

The SysML profile for EIS Architecture design was applied
combined with RUP in a case study where the renovation
of the legacy system of a public organization was explored.
Alternative software architectures and their implications to
hardware/network infrastructure were evaluated. One of the
main objectives of legacy system architecture re-design was to
enhance application performance without major rewriting the
applications themselves. Since performance play a significant
role, it was suggested to apply the proposed SysML profile,
to explore related design decisions and evaluate them. System
architects had to explore two different scenarios: a) to support
existing distributed database architecture and try to consolidate
hardware and b) to establish a central database architecture
resulting in minor applications code modifications. Both sce-
narios were explored. The organization supports more than

350 interconnected regional offices technologically supported
by a central IT Center responsible for IT diffusion and
management. Regional offices are divided into three categories
according to their size, structure and personnel (large, medium
and small). Each category is treaded differently in terms of
network infrastructure requirements.

Since application functionality is well-known, the identifi-
cation of software architecture and performance requirements
was perceived as a trivial task. To obtain this information
the system designer had to communicate with application
maintenance personnel in the corresponding department of the
IT Center. RUP methodology was used for software devel-
opment, thus application description models were developed
within Rational Rose platform. Application description (e.g.
modules and services) as well as data structures were manually
extracted from corresponding Rational Rose [6] files. Though
the process was not automated, Functional View external
entity properties, enabled the system architect to easily obtain
the necessary information. Unfortunately, the identification of
service performance requirements was not a straightforward
procedure, since software maintenance personnel was not able
to accurate provide either response time or service QoS infor-
mation. Response time requirements were finally defined by
system architects, while service QoS information were obtain
after monitoring application functionally during working hours
by system administration personnel in the current version of
the system. Service QoS requirement accurate definition was
essential for the effective exploration of application perfor-
mance based on alternative architecture scenarios.

The network architecture was predefined. The system ar-
chitect was enabled to explore the two different database
architecture scenarios. The system designer modified soft-
ware allocations in the Topology view and corresponding
load requirements satisfied by the network infrastructure were
automatically computed using the profile. System performance
was evaluated using an existing custom simulator, supporting
the same EIS structure as the simulation experiments of the
Evaluation view. Simulation results were manually inserted in
corresponding Simulation Experiment entities by the system
designers. Though, they consisted their incorporation within
the profile a positive aspects, since this enabled them to keep
track of all redesign decisions and the reasons leading to them.
It was estimated that software performance was improved
almost by one third by the second scenario, thus, it was
decided to apply it although it involved minor application
rewriting.

V1. CONCLUSIONS

A model-based approach using SysML to design EIS Ar-
chitecture was explored in the paper. The provision of a well-
defined model to perform all design tasks, including system
evaluation and adjustment is essential for the system designer,
while the characteristics of alternative design decisions should
also be integrated in the model. Dealing with non-functional
requirements and their verification using Evaluation view

enhances the system designer’s perception of the way specific
design decisions may affect others.

SysML modeling language efficiently supported model-
based EIS Architecture design, as it provided the means to
accurate depict discrete architecture design views and their
relation. EIS description as a system of systems and resource
allocation, provided by SysML, enabled the straightforward
description of EIS desired functionality. Non-functional re-
quirement description resulted in a heavy extension of SysML
requirement entity using both addition attributes and complex
constraints, which can not be implemented using OCL. Evalu-
ation View was treated as a hierarchy of block diagrams, since
it is used as the means to store evaluation results, and not to
describe how this evaluation should be performed as described
by SysML test case behavioral diagrams. The proposed profile
is currently tested using real-world case studies.

REFERENCES

[1] “Institute For Enterprise Architecture
http://www.enterprise-architecture.info/.

[2] “MagicDraw UML,” http://www.magicdraw.com/.

[3] “INCOSE Handbook SE Process Model,” INCOSE, September 2003,
http://g2sebok.incose.org/.

[4] “Systems Modeling Language (SYSML) Specification. Version 1.0,” O.
M. G. Inc, September 2007.

[5] B. Dave and D. Jim, “The new, improved RUP SE Architecture
Framework,” 2005, iBM Rational Edge.

[6] b. dave, d. jim, and S. J. Vaughan-Nichols, “Web services,” pp. 18-21,
2002, ibm rational edge.

[7] D.J. de Villiers, Using the Zachman Framework to assess RUP, Rational
Edge, 2001.

[8] J. A. Estefan, Survey of Model-based Systems Engineering (MBSE)
Methodologies, INCOSE MBSE Focus Group, May 2007.

[9] A. Fatolahi and F. Shams, “An investigation into applying UML
to the Zachman Framework,” Information Systems Frontiers, vol. 8,
no. 2, pp. 133-143, 2006. [Online]. Available: http://dx.doi.org/10.
1007/s10796-006-7977-8

[10] S. Graupner, V. E. Kotov, and H. Trinks, “A framework for analyzing
and organizing complex systems,” in ICECCS IEEE Computer
Society, 2001, p. 155. [Online]. Awailable: http://csdl.computer.org/
comp/proceedings/iceccs/2001/1159/00/11590155abs.htm

[11] IEEE, “IEEE System and Software Engineering - Architectural Descrip-
tion: Std 42010,” Tech. Rep., May 2009.

[12] IEEE Sd 15288 -2004, Systems Engineering -System Life Cycle Pro-
cesses, Institute for Electrical and Electronic Engineers, June 2005.

[13] S. Leist and G. Zellner, “Evaluation of current architecture frameworks,”
in SAC, H. Haddad, Ed. ACM, 2006, pp. 1546-1553. [Online].
Auvailable: http://doi.acm.org/10.1145/1141277.1141635

[14] M. Nikolaidou, N. Alexopoulou, A. Tsadimas, and D. Anagnostopoulos,
“Employing zachman enterprise architecture framework to systemati-
cally perform model-based system engineering activities,” in Hawaii
International Conference on System Sciences (HICSS-42), Waikoloa, Big
Island, Hawaii, January 5-8, 2009, 2009.

[15] K. Pohl and E. Sikora, “Supporting the Co-Design of Requirements
and Architectural Artifacts,” in 15th |EEE International Requirements
Engineering Conference (RE'07), India Habitat Center, New Delhi,
2007, pp. 258-261.

[16] J. Schekkerman, How to Survive in the Jungle of Enterprise Architecture
Frameworks: Creating or Choosing an Enterprise Architecture Frame-
work. Trafford, 2003.

[17] J. F. Sowa and J. A. Zachman, “Extending and Formalizing the Frame-
work for Information Systems Architecture,” IBM Systems Journal,
vol. 31, no. 3, pp. 590-616, 1992.

[18] A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Handling non-
functional requirements in information system architecture design,” in
The Fourth International Conference on Software Engineering Advances
ICSEA 2009, September 20-25, 2009 - Porto, Portugal.

Developments,”

