
Integrating Simulation Capabilities into SysML for
Enterprise Information System Design
Anargyros Tsadimas, George-Dimitrios Kapos, Vassilis Dalakas, Mara Nikolaidou

and Dimosthenis Anagnostopoulos
Department of Informatics and Telematics

Harokopio University of Athens
70 El. Venizelou St, Kallithea, 17671, Athens, GREECE

email: {tsadimas, gdkapos, vdalakas, mara, dimosthe}@hua.gr

Abstract—Performance requirements play a significant role in
the design of large-scale systems, such as enterprise information
systems. Systems Modeling Language (SysML), proposed by
Object Management Group (OMG) for system engineering,
provides for requirements specification, though a verification
method for quantitative requirements as performance ones is
lacking. In the information systems domain, performance re-
quirements are usually verified using simulation. To integrate
simulation capabilities into SysML the authors have proposed
the concept of the Evaluation View, a discrete diagram to specify
enterprise information system architecture under evaluation and
the conditions under which performance requirements should
be verified. A corresponding SysML profile, called Enterprise
Information System (EIS) profile, has been defined. In this
paper we present an approach that provides (a) the automated
transformation of SysML-based EIS models defined in the
Evaluation View to executable simulation code for Discrete Event
System Specification (DEVS) simulation environments and (b) the
incorporation of simulation results into the original EIS SysML
models to enable the verification of corresponding performance
requirements.

Index Terms—Model-Based System Design, SysML, Non-
functional Requirements, Requirement Verification, Simulation,
Model Transformations, MDA.

I. INTRODUCTION

Enterprise Information System (EIS) design is a complex
task, based on the integration of different aspects and concerns,
subjected to both functional and non-functional requirements
(NFRs). Especially during EIS architecture design, where the
way EIS hardware and software components are interrelated
is defined, NFRs, such as performance requirements, play a
significant role [1], since they depict the conditions under
which specific system components should operate, leading to
alternative design decisions.

A model-based approach for EIS architecture design has
been proposed by the authors in [2], utilizing SysML to model
alternative system views, emphasizing different aspects of the
system. Among them a specialized view, called NFR view,
focuses on NFR description and verification extending SysML
requirement diagram [3]. Emphasis is given on performance
requirements that specific system components and the system
as a whole should satisfy, thus the detail description and
verification of quatitative requirements is provided. To serve
the verification of NFRs a different view is introduced, call

Evaluation View. To explore whether performance requirement
are satified, in the domain of EIS simulation is usually applied,
and more specifically discrete event simulation [4]. Thus, the
EIS model consisting Evaluation View should be simulated,
while simulation results should also be incorporated into the
model to facilitate requirement verification in SysML. This is
the focus of this paper.

Apparently SysML supports a variety of diagrams describ-
ing system structure and states, necessary to perform simu-
lation, which are utilized by different approaches [5], [6]. In
most cases, SysML models defined within a modeling tool are
exported in XMI format and, consequently, transformed into
simulator specific models to be forwarded to the simulation
environment. Depending on the nature and specific charac-
teristics of the systems under study, there is a diversity of
ways proposed to simulate SysML models, utilizing different
diagrams.

The authors have proposed an integrated framework to simu-
late SysML models using DEVS simulators [7]. A MetaObject
Facility (MOF) metamodel for DEVS is proposed and used
for the definition of a standards-based transformation (QVT)
of enriched SysML models to DEVS models that are conse-
quently transformed to executable DEVS code.

The importance of the existence and use of simulation-
specific meta-models, as well as other guidelines regarding
simulation of SysML models are presented in [8]. In order to
generate simulation code, a SysML model should be enriched
with simulation properties. In the case of EIS design, entities
included in the Evaluation view should contain simulation
properties to enable the simulation of EIS system models. In
this paper, we focus on the ability of the proposed profile to
fully automate the generation of executable simulation code
for EIS models defined in SysML by the system engineer and
the prospect to integrate simulation results into the system
model to enhance requirement verification process.

II. RELATED WORK

There are many efforts to simulate SysML models, utilizing
both continuous and discrete event simulators. In most cases,
system models are exported from SysML in XMI format and
consequently fed into the simulation environment. A variaty of
SysML diagrams are utilized to describe simulation models,



depending on the type of simulation used and the choice
of the simulation environment. Though, in all the cases a
corresponding SysML profile is defined to describe simulator
specific properties [8].

Simulation of discrete event systems is commonly utilized,
based on system behavior described in SysML activity, se-
quence or state machine diagrams. In [9], system models
defined in SysML are translated to be simulated using Arena
simulation software. SysML models are not enriched with
simulation-specific properties, while emphasis is given to
system structure rather than system behavior. Model Driven
Architecture (MDA) concepts are applied to export SysML
models from a SysML modeling tool and, consequently,
transformed into Arena simulation models, which should be
enriched with behavioral characteristics before becoming ex-
ecutable.

The SysML4Modelica profile endorsed by the OMG [10]
enables the transformation of SysML models to executable
Modelica simulation code. The Query/View/Transformation
(QVT) standard set of languages is used for the transformation
of SysML models to executable Modelica models. Since
SysML profiles are based on the UML extension mechanism,
they can be imported in any standard UML modeling tool,
such as Rational Modeler [11] or MagicDraw [12], enabling
the integration of simulation tools. In [13], focus is given
on embedded systems. In the proposed profile, the SysML
requirement entity is extended with testable characteristics.
Testable requirements are associated to conditions under which
the requirement is verified with the use of experiments or
test cases. Verification conditions are defined as part of a
test case, which in turn may be simulated using Modelica
simulation language in external simulators to ensure that
a design alternative satisfies related requirements [13]. To
embed simulation capabilities within SysML, ModelicaML
profile is used. Verification conditions associated to testable
requirements are also defined in ModelicaML [14], while
requirement verification is performed in an external modelica
tool (MathModelica) through visual diagrams created during
simulation. No feedback is returned within the SysML mod-
eling tool, thus the system engineer must have notion of both
the SysML modeling tool and modelica environment, while
simulation results are kept seperately of corresponding system
models.

As already mentioned, most of the aforementioned ap-
proaches utilize existing modeling tools to define and apply
simulation-enabling profiles, while they use corresponding
external simulation tools for system validation. MDA con-
cepts are adopted to enable the model-driven transformation
of SysML models to simulation code. In most cases, the
simulation of models is restricted on a specific domain, as
for example real-time systems in Modelica or production line
system in Arena, which is supported by corresponding libraries
in the specific simulation environment. System validation and
requirement verification is usually left to the system designer.
SysML4Modelica profile provides for requirement verification,
but this is performed within Modelica tools and not using the

SysML model.
In the paper, we propose that SysML requirement verfication

process should be performed within the SysML modeling tool,
while simulation results should be incorporated within the
SysML system model and become available to the system
engineer for future reference. Thus, although a specific simula-
tion environment is used, the verification process is perforned
independently from the simulation environment and the system
engineer may have no notion of the simulation method or
envirnoment used. In case a different simulation platform is
utilized, no changes in EIS models is inflicted.

III. EIS PROFILE OVERVIEW

A SysML profile for EIS design has been proposed in [2] to
support the basic activities identified during any system design.
These are: requirement definition, solution synthesis, solution
evaluation and solution re-adjustment [4]. Solution synthesis
encompasses design views of EIS profile, namely Functional-
ity, Topology and Network Infrastructure Views. Functionality
View focuses on software architecture design, Topology View
on software allocation process and Network Infrastructure
View on hardware configuration and network allocation. In
each of these views, the system designer explores functional
requirements and architectural design [2]. A specialized view
is utilized for the description of NFRs, emphazing quatitative
parameters, the automated derivation of requirements based
on others, as requirements imposed to entities belonging in
different views may be interrelated, and verification functions
[3].

The EIS profile offers the evaluation view [2], to serve
system evaluation activity and manage evaluation results and
requirement verification. In order to facilitate the requirements
verification process, evaluation view encompasses entities
from the aforementioned views and stores all the required
attributes for each evaluated model element.

The elements that are participating in EIS profile views
are associated with relations such as satisfy, verify, allocate
and evaluate [7]. Satisfy relates system elements defined in
design views with requirements, verify relates requirements
that are verified by elements from the evaluation view, allocate
relates entities from functional or topology view that are
allocated to entities from network infrastructure, and evaluate
relates entities from evaluation view that are evaluating system
components defined in design views.

The evaluation view also facilitates the definition of the
conditions under which the system will be evaluated the
incorporation of the evaluation results and the requirement
verification process, informing system designers for inconsis-
tencies between defined requirements and system performance
after the simulation process is completed. To achieve this, the
evaluation view consists of evaluation scenarios. Each evalua-
tion scenario defines a specific solution for the system design
and will be evaluated in order to accept the system model
or identify which parts have failed to meet the requirements,
leading to system model modification and generation of new
evaluation scenarios.



Evaluation scenarios comprise of evaluation entities that
verify specific requirements associated with them. Regardless
of the method used to perform system evaluation, these entities
have input properties, related to design entities, and output
properties, depicting evaluation data. Based on the value of
the output properties, requirements are verified or not.

A design entity may satisfy two kinds of NFRs: performance
requirements (depicting system performance restrictions) and
behavior requirements (depicting system behavior). Only a
performance requirement must be verified by an evaluation
entity, since a behavior requirement provides input properties
to the evaluation entity, indicating the conditions (constraints)
under which the evaluation should be done (Fig. 1).

Each evaluation scenario consists of two sub-views (dia-
grams), focusing on software and hardware design, respec-
tively. Entities of software evaluation diagram correspond to
entities from functional view and define the behavior of the
software components during the evaluation of the proposed
EIS architecture design. Hardware evaluation diagram entities
correspond to entities from topology and network infras-
tructure views. These are exploited in order to initialize a
corresponding simulation model instance and/or evaluate the
design entity and/or verify the corresponding requirements.

The EIS profile is complemented by a plug-in, developed
for the MagicDraw UML tool [3]. This plug-in handles model
constraints, embeds the desired functionality in MagicDraw,
and supports the evaluation process.

IV. SIMULATING EVALUATION VIEW

A primary concern in the configuration of simulation for
EIS models is the selection of an appropriate simulation
framework. Simulation frameworks supporting discrete time
simulation are well suited in the case of EIS, as users and
software services generate requests for other services. The
requests generate specific traffic on the network and processing
and I/O load on the site of service. Stochastic functions may be
used to define random behavior of specific parts of the system,
like time handling and type of requests made by users.

Fig. 1. Conceptual transformation

DEVS is appropriate for discrete time simulation by defi-
nition. Also, a MOF metamodel for DEVS simulation models
specification is available [15], enabling the definition and
execution of standards-based transformations of EIS models
(UML meta-model) to simulation models. Additionally, the
authors already had experience on simulating SysML models

with DEVS [7]. Thus, DEVS was selected as the framework
for simulation execution.

Fig. 2 illustrates the EIS simulation life-cycle, consisting of
four discrete steps:

Fig. 2. EIS simulation lifecycle

• Conceptual Transformation: The evaluation scenario of
an EIS system model is transformed to the respective
DEVS simulation model. Such a transformation exam-
ines different aspects of the evaluation view of the EIS
model and generates a complete, yet declarative DEVS
simulation model. A powerful transformation language,
like QVT is suitable in this case.

• Syntactic Transformation: The declarative simulation
model is transformed to executable DEVSJava code.
Since both simulation model and executable code share
the same context (i.e. DEVS), such a transformation is
mainly syntactic and is implemented with XSLT.

• Execution: The simulation code is executed, providing
simulation results in XML format.

• Incorporation: Simulation results are incorporated in
the EIS evaluation scenario of the system model and
compared against predefined requirements.

A. Automated simulation code generation

The DEVS meta-model is considered as the input format
for executable simulation models. Thus, executable simulation
code generation is coarsely performed with the transformation
of the EIS models to the respective DEVS models. However, as
illustrated in Fig. 2, the DEVSJava environment was extended,
so that it can handle DEVS models by introducing a layer that
translates DEVS models to the respective DEVS Java classes.

In the case of EIS, models are composed of large amounts
of interconnected components of specific types (e.g. nodes,
services). Therefore, the respective, required simulation com-
ponents were analyzed and implemented during the application
of the approach for EIS. On the other hand, initialization,
composition and interconnection of the components emerge
from the EIS model during each EIS model verification
execution.

Regarding the generation of DEVS models from EIS mod-
els, the structure and relationships of the latter were ana-
lyzed. The main model entities that affect overall performance
were identified in both Hardware and Software Evaluation



Diagrams. Although, for EIS design purposes, it is better to
define different aspects of EIS elements using different dia-
grams/views, the simulation model should capture a snapshot
of the structure and attributes for a given concrete system.
Additionally, verification and effectiveness of the simulation
largely depends on the simulation model. Therefore, a set of
simulation components were defined as an equivalent to EIS
software and hardware elements, as they could be combined
in the context of a given evaluation scenario.

In a more detailed level of this transformation process, EIS
entities were further analyzed to identify their key attributes
that determine the performance of the system. Equivalent
attributes of the respective simulation elements were defined.
The transformation handles their proper initialization, based
on the values of the respective attributes of EIS elements.
The possible entity interconnection schemes and additional
information derived from the combination with other EIS
model elements were also examined.

The transformation scheme described above is abstracted
in Fig. 1. An EIS evaluation scenario consists of evaluation
entities that conform to behavior requirements and should ver-
ify performance requirements, as explained in III . The DEVS
simulation model is generated from the evaluation scenario and
consists of the respective DEVS EIS library components. The
latter are initialized by the EIS evaluation entities, according
to their behavior requirements. Performance requirements can
be verified once simulation has been executed and simulation
results are incorporated in the evaluation scenario.

The fact that both meta-models (SysML and DEVS) are
MOF-based, enables the use of standard transformation lan-
guages, like QVT. Therefore, the appropriate QVT relations
were defined for the generation and interconnection of DEVS
model elements from the respective EIS model elements.
The DEVS metamodel is the specification for defining self
contained DEVS models, while the EIS profile constraints
ensure that no important information is missing from the EIS
model. Thus, the QVT relations can successfully generate
executable simulation models from any valid EIS model.

Given that the required simulation components are already
implemented in DEVSJava, the essential information con-
tained in the generated DEVS model is the initialization,
interconnection and configuration of such components. There-
fore, as far as the DEVS meta-model compatible environment
is concerned, we decided to implement a transformation of
DEVS models (XMI) to the respective DEVSJava configu-
ration class that instantiates and configures all EIS-related
DEVSJava components, forming, this way, the executable
DEVSJava code. This transformation was defined using XSLT,
as it is basically a syntactic transformation that exploits
initialization information in the DEVS model and creates
the respective Java declarations and statements. Therefore,
the generated DEVS simulation models are executed in the
DEVSJava environment after an automated transformation.

B. Integrating simulation results

Having generated the executable simulation model, simu-
lation may be executed and the simulation results should be
incorporated in the EIS model. Thus, requirement verification
through the profile, independent from the simulation environ-
ment is possible.

In order to be able to use simulation results and import them
in the EIS model via standards based model manipulation ap-
proaches, they should be provided in a standard representation,
i.e. according to a MOF meta-model (Fig. 3).

Fig. 3. Results metamodel

In the results model, for each EIS model element two
properties are recorded: one holding information related with
the identification of the model elements, such as the name, the
stereotype name and a unique identifier and the second holding
information related with the simulation results for that model
element, such as a name-value pair for each attribute of the
model element that will be imported to the system model.

Having the simulation results imported in the system model,
the only thing that the system designer should do is to run
validation rules.

V. CASE STUDY

In order to be able to work with EIS models, the system
designer must use the MagicDraw modeling tool. Moreover,
the EIS profile and the corresponding plugin should be im-
ported. Both software and hardware architectures are described
in terms of Functional, Topology and Network Infrastructure
views.

After defining the EIS architecture, the system designer is
able to evaluate it through the Evaluation view [3]. Evaluation
scenarios defined in this view, are snapshots of the predefined
software and hardware architecture. An information system
of a simple registry application is considered in Fig. 4. The
registry client application interacts with software services ex-
ecuted in distributed database servers. Two kinds of user roles
(manager and staff ) might use the client application. Each
role can use distinct services, while the probability of each
service to be invoked is predefined, for evaluation purposes.
Additionally, specific parameters of model elements must be
defined to enable simulation execution. A role depicted in
Fig. 4 is connected to a specific requirement that defines its
behavior.

System designers create evaluation scenarios and are able to
automatically construct the software and hardware evaluation
diagrams (derived from other diagrams) inside the modeling
tool. Then, the system models are enriched with simulation-
related properties, enabling their transformation to simula-



Fig. 4. Evaluation view: Software architecture diagram

Fig. 5. Evaluation view: Verifying requirements



tion models. The scenarios are consequently simulated using
DEVS.

Fig. 5 presents an excerpt of the evaluation view, where the
simulation results have been incorporated in the system model
evaluation elements. The incorporation involves an XML file,
similar to the one illustrated in listing 1, processed by the
EIS plugin that supplements the values of predefined elements.

<s i m u l a t i o n r e s u l t s>
<r e s u l t i d =” 16 8 14d00da 1366132365894 952758 15900 ”

s t e r e o t y p e =” Eval−Atomic−N e t w o r k : : E v a l−Network ”
name=” Atomic−Network d a t a c e n t e r ne twork e v a l u a t i o n ”>

<p r o p e r t y name=” avg−a v a i l ”
v a l u e =” 0 . 8 2 ” />

<p r o p e r t y name=” avg−load−t r a f ”
v a l u e =” 3 . 1 0 ” />

<p r o p e r t y name=” avg−u t i l ”
v a l u e =” 0 . 6 7 ” />

<p r o p e r t y name=”max−load−t r a f ”
v a l u e =” 6 . 0 0 ” />

<p r o p e r t y name=”max−u t i l ”
v a l u e =” 0 . 8 5 ” />

<p r o p e r t y name=” min−a v a i l ”
v a l u e =” 0 . 9 0 ” />

</ r e s u l t>
. . .

</ s i m u l a t i o n r e s u l t s>

Listing 1. Sample simulation output file

Suppose we have a local network where the traffic that is
derived from the requirements of the processes that are running
over computers in this network, has an average value of
2.7 Mbps with a deviation of 0.2Mbps. After running the
simulation, the results show a value of 3.1 Mbps, which is
out of defined range between [2.5 , 2.9] Mbps. To this end,
the designer could either relax the non-satisfied requirement by
increasing the range or by changing the allocation of services
in order to reduce the network traffic. The latter is depicted
with red color in Fig. 5, where this requirement is not satisfied
by the model element. Validation rules are utilized to indicate
the evaluation entities associated to non-verified requirements.
Evaluation entities not verifying a model constraint are marked
with red color, and the designer is able, by clicking on them,
to identify the non-verified requirement. In case the system
designer decides to intervene and modify design views in
line with previous evaluation results, he/she may consequently
create another evaluation scenario to be simulated. Previous
simulation scenarios and results are kept as part of pre-
existing evaluation scenarios, enabling the system designer to
keep track of the modifications made and the corresponding
results, as evaluation scenarios are maintained as parts of the
Evaluation View. It is up to the system designer whether an
evaluation scenario will be kept or deleted.

VI. CONCLUSIONS

Verifying performance requirements is important during EIS
architecture design. To this end, in this paper we presented how
to integrate simulation capabilities within the EIS SysML pro-
file, targeting model-based design of EIS architectures. Based
on system models defined in SysML, corresponding simulation
code is automatically generated for DEVS simulators. The

tasks performed during simulation configuration require exper-
tise in several technologies and standards, as MOF, SysML,
DEVS, QVT, Java and the EIS domain. However, once the
simulation libraries and corresponding transformations were
implemented for the EIS domain, the benefits from their com-
bined use become available for multiple uses by EIS engineers
using SysML to explore enterprise information system design
scenarios. Based on our experience on EIS domain, it is
evident that a complex issue, as SysML model simulation and
moreover the incorporation of simulation results within the
SysML model in an automated manner is feasible.

Future work will focus on applying the proposed simulation
approach for SysML models in other domains, as well as the
incorporation of alternative simulation environments.

REFERENCES

[1] C.-W. Ho, L. Williams, and B. Robinson, “Examining the relationships
between performance requirements and ”not a problem” defect reports,”
in RE ’08: Proceedings of the 2008 16th IEEE International Require-
ments Engineering Conference. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 135–144.

[2] A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Evaluating soft-
ware architecture in a model-based approach for enterprise information
system design,” in SHARK ’10. New York, USA: ACM, 2010, pp.
72–79.

[3] ——, “Extending sysml to explore non-functional requirements: the
case of information system design,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, ser. SAC ’12. New
York, NY, USA: ACM, 2012, pp. 1057–1062. [Online]. Available:
http://doi.acm.org/10.1145/2231936.2231941

[4] J. A. Estefan, Survey of Model-based Systems Engineering (MBSE)
Methodologies - Revision B, INCOSE MBSE Focus Group, June 2008.

[5] E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation
modeling using SysML,” in WSC ’07: Proceedings of the 39th confer-
ence on Winter simulation. Piscataway, NJ, USA: IEEE Press, 2007,
pp. 796–803.

[6] O. Schonherr and O. Rose, “First steps towards a general SysML model
for discrete processes in production systems,” in Proceedings of the 2009
Winter Simulation Conference, Austin, TE, USA, December 2009, pp.
1711–1718.

[7] P. Casas, Formal Languages for Computer Simulation: Transdisciplinary
Models and Applications. Igi Global, 2013. [Online]. Available:
http://books.google.gr/books?id=YDismgEACAAJ

[8] M. Nikolaidou, G.-D. Kapos, V. Dalakas, and D. Anagnostopoulos, “Ba-
sic Guidelines for Simulating SysML Models: An Experience Report,”
in Proc. Seventh Int. Conf. on System of Systems Engineering (SoSE)
2012, July 2012, pp. 95–100.

[9] O. Batarseh and L. F. McGinnis, “System modeling in sysml and system
analysis in arena,” in Proceedings of the Winter Simulation Conference,
ser. WSC ’12. Winter Simulation Conference, 2012, pp. 258:1–258:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2429759.2430107

[10] OMG, SysML-Modelica Transformation (SyM), Nov. 2012. [Online].
Available: http://www.omg.org/spec/SyM/1.0/PDF/

[11] IBM, “Rational Software Modeler,” Available online via
http://www.ibm.com/developerworks/rational, 2010.

[12] MG, SysML Plugin for Magic Draw, 2007.
[13] A. A. Kerzhner, J. M. Jobe, and C. J. J. Paredis, “A formal framework

for capturing knowledge to transform structural models into analysis
models,” Journal of Simulation, vol. 5, no. 3, pp. 202–216, 2011.

[14] W. Schamai, P. Helle, P. Fritzson, and C. J. J. Paredis, “Virtual
verification of system designs against system requirements,”
in Proceedings of the 2010 international conference on
Models in software engineering, ser. MODELS’10. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 75–89. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2008503.2008514

[15] G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anag-
nostopoulos, “Model-based System Engineering using SysML: Deriving
Executable Simulation Models with QVT,” in Systems Conference
(SysCon), 2014 IEEE International. IEEE Computer Society, 2014.


