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Abstract

Real time simulation is often used to extend the
capabilities of traditional simulation, though not in the
computer network domain due to the network operation
rate. A rather innovative faster than real time approach
that contributes to network performance evaluation
through reaching conclusions for the near future is applied
for relatively slow (10Base) networks. Since simulation
activities are executed in real time and involve both the
model and the network under study, modeling and
experimentation requirements are drastically increased.
Methodological issues for dealing with these requirements
are thoroughly examined. Simulation results and
conclusions for real time experimentation in the dynamic
network environment are also discussed.

1 INTRODUCTION

Simulation contributes considerably to the
performance evaluation of networks and individual
network entities since, when compared to mathematical
and analytical modeling, it provides extended capabilities
for the representation of real conditions, the combination
of complex entities and the analysis of an overall network
architecture.

Numerous simulation tools are active in the network
domain, distinguished according to their orientation,
modeling decisions and techniques and the degree of
automation supported (CACI 1997; Mil3 Inc 1997).
Modeling tools usually adopt a layering scheme and are
object-oriented when extending to the overall network
architecture. Communication-oriented simulators are the
most widely accepted simulation software category (Law
and McComas 1994), since they reduce program
development time and enable automated model

construction through built-in modules, closely related to
the components of a communications network (CACI
1997).

Network simulation tools extract conclusions for the
network performance according to the average or worst
case scenario and rely on either hypothetical or previously
encountered input data when representing real conditions.
The expressiveness of such data is considerably reduced,
especially when the state of the network is not steady (e.g.
when a network node crashes). Thus, simulation tools only
contribute to an “off-line” network performance analysis,
since network behavior is intensely dynamic.

In this paper, we present the methodology and results
from a prototype application of real time simulation
concepts in the network domain, according to the
methodological approach introduced by the authors. The
application domain is computer networks (local area
networks). Selection of this application domain enables
dealing with all network reformation types, but makes
questionable whether it is always possible to achieve
faster than real time simulation. For this reason, an actual
network examined is the Ethernet local network of a
university campus building, consisting of 10Base
segments, which is relatively slow. In these experiments,
real data were used to extract conclusions for the network
performance in the near future so that an enhanced
potential -compared to this of conventional NMSs- would
be provided.  A prototype simulation environment was
also constructed for this objective.

In the following sections, we describe a real time
simulation methodology for conducting the real time
experiments and the requirements imposed for the various
simulation phases. Decisions and techniques adopted for
both modeling and experimentation and the prototype
environment architecture are then discussed. Finally,
faster than real time simulation results indicating both the
potential of this approach as well as the dynamic nature of



the network, along with conclusions, are discussed in the
last section.

2 SIMULATION METHODOLOGY

The real time dimension imposes requirements as the
following for the simulation process (Anagnostopoulos et
al 1995a):

• Ensuring that the model runs faster than the real
network

• Adapting the model to the current network state
• Ensuring the validity of the model

The execution time of the model and the overall
simulation environment is critical, since it relates to the
collection and processing of real time data from the
network and concluding for the network current and future
states. Performing dynamic modifications to the model
during experimentation is also required in order to adapt
the model to the real conditions. This may be achieved
through appropriately integrating new components into the
model and disposing components not currently in use. In
this way, simulation code recompilation is not required
when dealing with cases as the incorporation of additional
entity models within the model. Finally, validity of all -
either primitive or composite models- must be ensured
before models are used.

The network operation scenarios handled by the
simulation environment include the initiation of new
applications (when these have a significant impact on the
overall network load), critical modification of the
application load, application termination, node start up
and active node crash. When these occur, the simulation
environment must be in position to collect and process
network data, adapt the model and reach appropriate
conclusions.

Handling the complexity encountered is supported
through an extended simulation methodology. This
methodology is based upon the traditional simulation
process, provides extensions to the existing phases due to
the increased number of tasks to be accomplished and
incorporates new phases. The real time simulation
methodology used, as described in (Anagnostopoulos et al
1995b)], consists of the following main phases.

• Modeling
• Experimentation
• Remodeling

The above phases as well as their invocation sequence
are depicted in figure 1. A discussion for each phase is
about to follow, emphasizing on the individual tasks. To

accomplish them, specific techniques and methodological
guidelines are adopted.

Model ing Exper imentat ion

Remodel ing

Figure 1: Invocation sequence of simulation phases

Modeling is the initial simulation phase where the
composite network model is constructed. During
experimentation, both the network and the model are
under monitoring. Data depicting their consequent states
are obtained and recorded within predetermined time
intervals and consequently analyzed. In this way, both
systems evolution is audited. In the case where the state of
the model deviates from the real one remodeling is
invoked, without terminating the real time experiment,
since no recompilation is needed. When the model
adaptation to the real conditions is completed,
experimentation resumes.

Even though not included in the above figure, in case
simulation results (predictions for the near future) are
considered to be valid, a fourth, independent phase can be
invoked to take advantage of these results and take act
appropriately. In this paper, we do not emphasize on
methodological issues about this phase. However, an in-
depth description can be found in (Anagnostopoulos et al
1995b).

3 MODELING FRAMEWORK

The introduced modeling framework aims at providing
extended capabilities for conducting network simulation
experiments, without imposing limits to the efficient
representation of network entities. In the following, we
present the modeling decisions and techniques for network
entity modeling.

The requirements for handling modifications to the
network and ensure model validity are handled through
the use of modular models that have a hierarchical
structure, according to which components are coupled
together to form larger models. This is accomplished
based on object-oriented modeling and use of
preconstructed model components, which are organized in
object hierarchies and reside in model libraries. Either
model components or composite models can be
preconstructed, representing the key network entities.
Since preconstructed models must correspond to all



entities that are likely to participate in the network, all
acceptable individual entity combinations must be
supported. Preconstruction of primitive and composite
models is thus enabled for all higher level entities,
corresponding to the accepted primitive entity
combinations, and is expected to extend to the level where
structural modifications to the network may be
encountered (i.e. nodes and applications).

Object oriented modeling is therefore used along with
process oriented simulation.

The issue of making the network model run faster than
the real network is not discussed in this paper; however,
generic approaches towards this direction are already
established  (Lee and Fishwick 1997).

As key network entities of local networks, modeled in
the form of preconstructed components, the following are
considered (Cramer and Magee 1992): communication
protocols, communication and processing nodes,
communication links and applications.

The above classification corresponds to a discrete
layering scheme of network operations (Jones and Smythe
1993), as the OSI reference model.

The modeling framework is based on hierarchical
layering to depict the functionality of individual network
entities. Hierarchical layering enables the construction of
more complex models through extending the behavior of
existing objects and ensures the uniform manipulation of
all equivalent network entities. In this way, common entity
models can be accessed through the same public interface,
through polymorphism.

Hierarchical layering extends to both primitive and
composite network entities. Implementation of this scheme
proves rather complex and time consuming. However, the
outcome is the pre-construction of all necessary network
components, which ensures the availability of all -possibly
required- models.

Network models consist of composite and primitive
models. Applications and communication links are
perceived as primitive entities. Network nodes are
decomposed in terms of their communication and
processing elements (virtual entities, used to represent the
communication and processing properties of the node). In
this approach, emphasis is given to communication related
issues. The processing element is thus modeled as a
primitive entity, while the communication element is
composite, formed on the basis of the communication
protocol stacks operating on each node. Network nodes
can be either processing or communication nodes. The
communication elements of processing nodes use identical
protocol stacks. Protocol stacks forming the

communication elements of communication nodes
represent the interconnection mechanisms of these nodes
and are more complex. An abstract view of network model
composition is depicted in figure 2.

When considering data transmission and receive, two
additional requirements for protocol stack modeling must
be supported. First, the highest supported layer in local
network nodes is not predetermined. The same does not
apply for the lowest level. Second, it is possible that
intermediate layers are not supported.

Process ing
E lemen t

Commun i ca t i on
E lemen t

Appl icat ion Models

Protocol  Models Node Mode ls

Communicat ion L ink
Mode ls

Network  Models

Figure 2: Abstract view of network model composition

To give an example of the preconstruction of all
required models for a single entity, application modeling
is discussed. Modeling of other network entities, as
processing nodes, is performed on the same guidelines.

Although applications are associated with a single
node, they operate independently. Their operation
involves creation of data units, forwarding them to the
highest protocol layer supported and receiving data units
in reverse order.

Due to the requirement to support different kinds of
applications and the inability to determine the highest
supported layer in local networks, application models
must be in position to create and forward data units to all
candidate highest layers. Application models must then
support mechanisms for determining at least the
scheduling, size and destination of data units, as already
established in commercial tools (CACI 1997). Since
different layers handle different data units, application
models must be also provided for all layers.

The proposed model hierarchy, focusing on data link
layer applications is presented in figure 3.
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Figure 3: Sample application model hierarchy

Hierarchies are constructed having a base application
model as a common predecessor. An abstract model for
each supported layer is derived as an ancestor. Additional
primitive objects are constructed to provide the required
functionality for data unit scheduling and size
determination. Customized application models are then
derived as ancestors of a) the generic model of the specific
layer applications are forwarding data to and b) the
primitive objects providing the required functionality.

Multiple inheritance is used to implement complex
structures for the required data unit scheduling and size
combinations. If, for example, there are five possible ways
for scheduling data unit creation and four for determining
its size (according to corresponding distributions), nine
primitive objects are to be provided and twenty derived
ones have to be constructed for the corresponding
application models for a single layer. The nine primitive
objects can also be used when constructing other layer
models. Nevertheless, twenty additional models have to be

derived for each other layer supported to provide an
equivalent functionality.

Implementation of the proposed modeling scheme
proves to be rather complex and time consuming.
However, as presented in the next section, the time
required when remodeling the overall network using
preconstructed application models is minimum and, when
objects structures are subjected to insert, update and delete
operations, this process can be highly automated.

4 EXPERIMENTATION

Experimentation with the actual network and the
simulation model is not trivial, since new activities must
be carried out and new parameters must be determined.
These issues are discussed in this section. The objective of
the simulation environment is to maintain the consistency
between the model and the network and to ensure the
reliability for the network performance predictions.

Experimentation phase encompasses monitoring and
auditing (the activity of examining whether both systems
are evolving towards the same direction). Time
restrictions are imposed and concern a) the model
execution, since it must be faster than the real network
speed b) auditing, that must be completed with minimum
time overhead, since all other activities are paused prior to
concluding for the model evolution and c) remodeling,
when restoring consistency is needed, for the same
reasons.

Network performance evaluation can only be
performed when efficiently handling frequent scenarios
that cause major discrepancies to the network, as the
crashing of a network node. The model must then be
customized to the new conditions and still be in position to
ensure the reliability of results. It is therefore essential that
the simulation environment is capable of collecting and
processing real network data as well as extracting
conclusions in real time. Numerous networking issues
emerge during the network operation. These can be
divided in two main categories: the ones intervening to the
network structure and the ones intervening to input data
and network parameters. Structural modifications acquire
an increased degree of complexity. The following are
common networking issues for discussing the
effectiveness of the real time simulation approach: critical
modification of the application load, node start up and
active node crash.

To conclude about occurrence of any of these
scenarios, specific measures of both systems are put under
monitoring. The variables used to obtain the
corresponding values are referred as monitoring variables.
Auditing examines variable values corresponding to the



same time points (i.e. the current network state and
simulation predictions for this time point) and concludes
for the evolution of the network and the model.

Assuming that a node crashes, monitoring data are
cross-examined to indicate the specific node and
applications affected. Auditing indicates that a specific
node and applications are no longer active and concludes
that structural and input data reformations have occurred.
Remodeling is thus invoked, which removes and disposes
the corresponding components from the model
composition tree.

When all required modifications are accomplished, the
resulting model is once more subjected to
experimentation, starting from the current real time point.
In case that other reformations imposed the integration of
additional components, appropriate models would be
directly imported from model libraries, initialized and
dynamically linked to the network model.

Monitoring is thus performed during predetermined
monitoring intervals and when being completed, auditing
is initiated. Evidently, monitoring variables must be
commonly defined for both systems. Monitoring variables
as the following can be used for computer networks:

1. Number of active Nodes (ActiveNodes)
2. Number of active Sessions (NumSessions)
3. Throughput (packets) (Pthroughput)
4. Throughput (bytes) (Bthroughput)
5. Data units per Session

 (PacketSessioni, 1<=i<=NumSessions)
6. Bytes per Session

(ByteSessioni, 1<=i<=NumSessions)
7. Delay per Session

(DelaySessioni, 1<=i<=NumSessions)
8. Number of Collisions

(Collisionsi, 1<=i<=ActiveNodes)

From the above variables, only the last one is
explicitly related to the specific network under study
(10Base network).

Auditing examines the values of monitoring variables
from the model and the network on the basis of
predetermined criteria. These define the range of
acceptable deviation between of values of simulation
variables and the corresponding ones of the actual network
before concluding that deviations are encountered. The
algorithm determining how corresponding variable values
are compared in order to decide whether remodeling
should be invoked is referred as auditing algorithm.

For the purposes of this paper, a simplified example
using the basic inspection method for comparing real
observations and simulation results is presented, whereas a

more efficient approach can be established on the basis of
confidence intervals. In this example, the bytes transferred
through session i in the model and the network are noted
as SByteSessioni and RByteSessioni, respectively, and the
model is considered to deviate when:

SByteSessioni ∉ [RByteSessioni - RByteSessioni*Dni ,

RByteSessioni + RByteSessioni*Dni]

where Dni is the deviation parameter determining the
range of the above interval. Deviation parameters must be
defined for all monitoring variables.

The values of deviation parameters vary according to
the specific variable and the orientation of the simulation
experiment, since experiments can emphasize on different
aspects. Lower values contribute to the reliability of
simulation predictions, but lead more frequently to
remodeling thus causing results to be discarded. High
values have opposite effects. In the general case, values in
the range [0.0, 0.8] prove to be efficient, as indicated
through a number of experimental trials.

The lower limit (0.0) is used when no deviation is
acceptable, as for the number of active nodes.  The upper
limit is not as high as it may seem, considering that a) in
the general case, more than one monitoring variables must
be within the corresponding range and b) use of aggregate
variables, as Pthroughput, provide a verification
mechanism for individual ones, as PacketSessioni. Use of
aggregate variables is also enabled when monitoring of
specific measures cannot be directly accomplished.

Simulation results for the examples presented in this
paper are produced using the values of Table 1.

N Variable Name D parameter value
1 ActiveNodes 0.0

2 NumSessions 0.1

3 Pthroughput 0.5

4 Bthroughput 0.5

5 PacketSessioni
0.8,

∀i:1<=i<=NumSessions

6 ByteSessioni
0.8,

∀i: 1<=i<=NumSessions

7 DelaySessioni
0.8,

∀i: 1<=i<=NumSessions

8 Collisionsi
0.8,

∀i: 1<=i<=ActiveNodes

Table 1: Deviation parameter values for monitoring
variables



A significant issue that must be addressed is the length
of the monitoring interval. This is the time period where
data collection is performed for both systems. Auditing
initiates after the completion of the monitoring interval.

A short interval results in the following disadvantages:
a) frequent auditing, before a considerable amount of data
is collected and b) wasting time, since execution of
monitoring and auditing has a significant cost and no other
activity can be carried out in parallel. The selection of a
10-sec monitoring interval falls in this category.

On the other hand, if a long interval is used, it is
possible that the simulation environment for a
considerable time period will not perceive certain events,
like a node crash. The selection of a 5-min monitoring
interval would fall in this category, which also is not
acceptable. Based on these conclusions and a number of
initial trials, a 60-sec monitoring interval was finally used.

5 SIMULATION ENVIRONMENT

A prototype implementation based on the above
methodology was carried out for a local network
environment using Modsim III simulation language
(Anagnostopoulos et al 1995c). The implementation
domain is the TCP/IP local network of a university
campus building, consisting of 10BaseT and 10Base5
segments. It also includes more than 30 computer nodes
for students and academic staff.

The real time simulation environment integrates tools
supporting the individual simulation phases. The
environment architecture is illustrated in figure 4.
Connections with arrow ends between modules indicate
both information flows and module invocation.

Simulat ion
Model

Computer  Network

Audit ing Remodel ing

Network
Monitor ing

Model
Monitor ing

Model
Libraries

Figure 4: Simulation environment architecture

Model monitoring is performed by an individual
module developed in Modsim III so that it remains as
close as possible to model implementation. Network
monitoring is accomplished through a domain-oriented
tool, constructed on the basis of the etherfind utility.
Network monitoring and auditing tools are implemented in
C. Remodeling tool is also developed as part of the overall
modeling environment to enhance the degree of
interaction with the simulation model.

6 RESULTS AND CONCLUSIONS

The objective of real time simulation is to extend the
management capabilities over the Ethernet segments. The
selection of 10Base segments as the application domain of
this experiment enabled reaching conclusions for the
network performance in the near future. Results from two
independent experiments are used to describe the
experimentation process, express the potential of the real
time approach and point out the dynamic network
behavior that simulation is dealing with.

Since the model is constantly depicting the current
network state, dynamic model modifications are caused
upon activation or shutting down of processing nodes as
well as the initiation or termination of applications. New
model components, as applications and nodes, are
integrated within the model after appropriate initialization,
while other components, as no longer active applications,
are removed. Due to the modeling schema introduced,
termination of the experimentation process is avoided
when modifying the model.
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Figure 5: Variation of active sessions



An example of the experimentation process is depicted
in figures 5 and 6.

The throughput and number of active sessions in the
model and the actual network are plotted for 17
consecutive monitoring intervals of 60 seconds. When
deviations are indicated, the model is appropriately
modified, as depicted with the marks below the horizontal
axon.

It is obvious that simulation results cannot be used
when the model is constantly subjected to modifications.
Results thus contribute to reaching reliable conclusions
only when both systems are moving close enough for a
considerable amount of time, as for example at time point
1052 in figure 5. This is also because the network
behavior is extremely dynamic (e.g. in time points 184 and
308, there are 40 and 33 active sessions, respectively,
while during the intermediate interval only 7 active
sessions seem to exchange data).
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Figure 6: Variation of throughput

The time overhead for examining whether both
systems are evolving towards the same direction (auditing)
and the - occasional - execution of remodeling is
constantly less than 2.5 seconds, which is considered to be
acceptable compared to the 60-sec monitoring period.

The above results are obtained with a relatively high
deviation interval (high values of D). If a closer
representation of the network state was required, deviation
parameters could be reduced near to 0.3. Results from a
second experiment are depicted in figure 7, also for 17
consecutive monitoring intervals.

During the first 10 monitoring intervals, throughput is
much smoother compared to the first experiment, thus
enabling the model to remain close to the network state.
However, due to the low values of the corresponding
deviation parameter, the model is almost always subjected
to modifications.

The experiment has thus failed, since simulation
results are discarded as unreliable, even though the model
is relatively close to the real conditions.

This experiment shows that indicating deviations between
the network and the model is not a straightforward process
and that techniques, as use of aggregate variables (e.g.
total number of bytes) must be considered instead of
imposing low values for deviation parameters.
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Figure 7: Variation of throughput (2nd experiment)

Analysis of simulation experiment results, as the ones
included in this paper, pointed out the following:

1. Network models manipulation was performed during
the experiment with minimum time overhead and no
recompilation. Simulation results can only be used
when considered to be reliable. Appropriate
customization and parameterization of the
environment is thus critical and may lead to either a
success or even total failure of the simulation
experiment.



2. Faster than real time network simulation was feasible,
since the model actually overcame the network
operation speed and provided predictions for the
network performance in the near future. Feasibility
was one of the primary concerns, when considering
this application in the computer network domain. The
selection of a relatively slow -10Base- network
contributed towards this objective.

In the worst case, simulation results predicted how the
network would perform for at least one interval ahead
of real world time, no matter whether predictions
were considered to be reliable.

3. Despite the feasibility of this study, the authors
consider obtaining real time results from faster
networks rather doubtful, since model execution has
to overcome transmission rates close to Gbps.

4. The behavior exhibited by computer networks is
inherently extremely dynamic. Real time simulation
contributes to indicating possible network failures
only when these occur as the result of gradient
processes and not of instantaneous phenomena.

The overall potential of real time simulation is
considered as significant since it enables reaching
conclusions for the network performance on the basis of
real network data. Nevertheless, taking advantage of these
results and exercising administrative authority on the
network is not discussed in this paper, viewed as a
potential task for network management systems.
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