
Data Organization and Data Comparison for Model Validation in
Faster-than-Real-Time Simulation

 Dimosthenis Anagnostopoulos Mara Nikolaidou
Harokopio University of Athens

70 El. Venizelou Str., 17671
Athens, Greece

 email: dimosthe@hua.gr email: mara@di.uoa.gr

Abstract
Validation is an essential feature of faster-than-real-simulation
(FRTS), since models must be validated prior used for near-
future predictions. As no relevant approaches exist in the
literature, the paper contribution is to propose an approach a)
accomplishing validation as a real-time, automated process,
with low time overhead, b) dealing with the complexity of
validation data, as the number and type of the data compared
may be changing and c) realizing the transition from validation
process conceptual design to an efficient real-time execution. A
formal data organization scheme (data model) and algorithms
for constructing and accessing it are implemented for this
purpose. Realization of model validation in a FRTS experiment
on a single-queue/multi-server processing system is presented to
exhibit the applicability of the proposed approach. The
proposed organization scheme may also be applied in
simulation studies where timing and automation requirements
are not critical.

1. Introduction 1

When simulation reaches conclusions for systems
behavior in real time, it is known as real-time simulation.
In faster-than-real-time simulation (FRTS), results are
delivered earlier than real-time. FRTS is thus widely
employed for prediction purposes [1]. Performance issues
are critical and often addressed using parallel and
distributed simulation (PADS) [2]. Communication
networks, military networks, transportation systems and
manufacturing are application areas where simulation
performance in real time is strongly emphasized due to
the potential FRTS may offer [2], [3], [4], [5] [6].

A conceptual faster-than-real-time simulation
methodology has been introduced in [6], providing a
framework for conducting experiments dealing with the
complexity and the hard real-time requirements. The
following simulation phases have been identified:
modeling, experimentation and remodeling. During

This research was supported by Pythagoras program (MIS 89198) co-funded
by the Greek Government (25%) and the European Union (75%).

experimentation, both the system and the model evolve
concurrently and are put under monitoring. Data
depicting their consequent states are obtained in
predetermined, real-time intervals of equal length, called
auditing intervals. A substantial issue is that time-
dynamic systems may be subjected to changes at any time
point, which involve their structure and operation
parameters. To deal with them, the model must be
subjected to dynamic remodeling, i.e. in real-time,
without recompilation.

Validation is the process of determining whether a
simulation model is an accurate representation of the
system for the particular objectives of the study [7]. In
FRTS, we have the unique capability to use system
observations and model results to test model validity and
also reach reliable predictions for the future system states.
This is based on the simple assumption that, if model
validity can be consecutively ensured up to the current
real-time point, it would be most probable that simulation
predictions are also valid. A methodological approach for
model validation in FRTS bas been presented in [8],
aimed at increasing the level of confidence for simulation
predictions concerning the time-dynamic system under
study. To achieve FRTS validation, system observations
and model data must be compared in real time using a
computationally efficient process.

As no relevant approaches exist in the literature, the
paper contribution is to propose an approach dealing with
the following design and implementation issues of model
validation:
1. Accomplishing validation as a real-time, automated

process, with low time overhead.
2. Determining the nature of validation data and deal

with the complexity encountered, as the number and
type of the data compared may be constantly changing.
We establish a formal data organization scheme (data
model) for this objective, based on the relational
model.

3. Realize the transition from the validation process
conceptual design to the efficient real-time execution.

Data structures for system/model data comparison and
algorithms for constructing and accessing these
structures are thus introduced.

In section 2, we review the essential requirements for
accomplishing model validation in FRTS and, in section
3, an organization scheme (data model) is introduced for
the data used in the validation process. In section 4, we
describe the auditing tree structure and propose
algorithms and structures for constructing and accessing
it, while in section 5 implementation of the data model is
analytically described. In section 6, appropriate
comparison techniques are discussed for FRTS. Finally,
an example involving the construction of the auditing
tree, the selection of comparison techniques and the
realization of the data organization scheme for a typical
single-queue, multi-server processing system is presented
in section 7, while conclusions reside in section 8.

2. Model Validation

Numerous model validation types and techniques have
been discussed in the literature. In [9], conceptual model
validation, computerized model verification and
operational validity are identified. In the case of FRTS,
only preconstructed models may be used when modifying
a composite model in real time, i.e. without terminating
the experiment. To accomplishing validation as a real-
time, automated process, a methodological approach
needs to be practical, realizing the transition from the
validation process conceptual design to efficient real-time
execution, eve though functionality may be narrowed to
eliminate the need for human intervention. The proposed
validation approach is a low-level one, being less generic
than other methodological approaches for validation and
certification, such as the ones proposed by Balci [10] and
Birta [11]. However, focusing exclusively on validation
using system observations (according to observational
specifications, described in [11]), it may be
straightforwardly employed for automating validation and
also dealing with timing requirements. The following
activities are identified for realizing validation in FRTS
(also introduced in [8]):
1. Determine the conditions that may lead to model

invalidity (thus, to remodeling). These are denoted as
remodeling conditions.

2. Determine the elements that need to be monitored for
performing comparisons between system observations
and model results. Monitoring variables are used for
this purpose. Considering that k monitoring variables,
MV1-MVk, are used, the respective values of variable i
for the system and the model are denoted as MVi.r and
MVi.s.

3. Realize the transition from conditions to the measures
under monitoring (i.e. express remodeling conditions

in terms of monitoring variables).
4. Determine how each condition contributes to deciding

if the model is invalid.
5. Construct the data structure used for maintaining

system and model monitoring variable values (such as
the auditing tree described in section 4).

6. Form and execute the validation algorithm (or auditing
algorithm).

Activities 1-4 are performed at a specification phase,
while activities 5-6 are executed in real-time.

Remodeling conditions need to explicitly converge to
a mathematical expression. Each remodeling condition
involves one or many comparisons between specific
monitoring variables. The number of monitoring
variables corresponding to a single condition depends on
current system configuration [8]. Discriminating among
remodeling conditions is required, according to whether
conditions autonomously cause remodeling or not. In the
first case, any such condition causes remodeling when
fulfilled. We name them OR type conditions. In the latter,
many conditions of this type need to be fulfilled to cause
remodeling – we name them AND conditions [8]. As
AND conditions may not be equally significant, a weight
factor may be assigned to each of them to determine the
significance of each such condition [8].

Then, as remodeling decision involves both AND and
OR type comparisons, a global scoring algorithm is
required for determining if remodeling must be
performed, through accessing all AND comparison
weights. Scoring models have been used extensively for
model validation purposes [12]. Weights (or scores) are
determined subjectively when conducting validation and
then combined to determine an overall score for the
model. The model is considered as valid when this score
is higher than a threshold. In our case, we consider a valid
model when lower than the threshold, as described in
section 4. To compare monitoring variable values, only
one comparison technique can be most appropriate for
each monitoring variable. The acceptable comparison
parameters (or deviation range) must also be determined,
according to each specific monitoring variable type.
Comparison techniques are further discussed in section 6.

Finally, a generic and consistent relationship between
remodeling conditions, monitoring variables and
monitoring variable comparisons must be established to
be able to determine automatically: a. the variable
comparisons that must be made to examine each
condition and b. how each comparison may be effectively
performed.

3. Validation Data Organization

To execute validation as a real-time, automated process
and determine an efficient organization scheme for

validation data, we introduce a data model for remodeling
conditions, monitoring variables, monitoring variable
values and comparison techniques. All above are
considered as discrete entity types. We use the entity-
relationship (E-R) model for establishing a data model
due to the formalization it offers. Also, for its
declarativity, an SQL-based implementation is
employed– however, any other implementation method
may be applied as well. Functional dependencies are
examined to derive the appropriate data model. Forming
the data model:
1. Remodeling conditions, monitoring variables and

comparison techniques are respectively characterized
(primary key) by the condition name (rcname),
variable name (mvname) and technique name (tname).

2. RemodelCondition.rcname->RemodelCondition.rctype
Each condition is of a specific type, either AND or
OR, no matter how many monitoring variables it
involves. Thus, rctype obtains a single value from
{AND, OR} value list. Type is functionally dependent
on the condition name.

3. RemodelCondition.rcname->RemodelCondition.weight
As a single condition has a specific degree of
significance, all variable comparisons corresponding to
the same remodeling condition have a common weight.
Weight is functionally dependent on the condition
name.

4. MonVariable.mvname->MonVariable.comp_params
There is a specific comparison parameter for each
variable, which may be different for variables of the
same condition (not dependent on the condition id).
Comparison parameter is functionally dependent on
the variable name.

5. MonVarValue.mvname,
MonVarValue.timepoint->MonVarValue.modelvalue
MonVarValue.mvname,
MonVarValue.timepoint->MonVarValue.systemvalue
Monitoring variable values obtained from both the
model and the system are determined by the
monitoring variable name and the time point. This is
due to the fact that, in FRTS, values for a single
variable are obtained for more than one time point, as
we are trying to reach predictions for at least p
intervals ahead of real time. Both modelvalue and
systemvalue may be multivalued and thus are
functionally dependent on the combination of the
variable name and time point.
Concerning the relationships between these entities:

1. A remodeling condition involves one or many
monitoring variables; each variable corresponds only
to a single condition. The number ri of monitoring
variables corresponding to a single condition i can be
different whenever auditing is executed, depending on
the current system/model configuration

2. A single comparison technique is best suited for each
monitoring variable; more than one monitoring
variable may use the same comparison technique

3. A monitoring variable value corresponds to a single
variable; more than one value may be maintained for a
single variable, for different time points
The corresponding E-R data model is depicted in

Figure 1.

RemodelCondition MonVariableInvolves
1 N

CompTechnique

Compares

1

N

tname

rctype weight
mvname

rcname

1

N

systemvalue modelvalue

comp_params

timepointHas
Value

MonVarValue

Figure 1: Proposed E-R model for validation data

Transiting from the E-R model to the final relational
model, each remodeling condition is ultimately
maintained as follows [13], [14]:
RemodelCondition (rcname, rctype, weight)

In this relation, rcname is unique, rctype holds the its
type, set to either AND or OR. Note that, technically,
attribute weight should not be part of this relation, as it is
also functionally dependent on rctype, as conditions of
type OR have a null weight; however, this approach
offers simplicity and promotes data manipulation with no
overhead. Monitoring variables are maintained as:

MonVariable (mvname, rcname, tname,
comp_params)

where mvname holds the variable name and rcname the
name of the corresponding condition, tname is the
respective comparison technique and comp_params are
the comparison parameters for this specific variable (e.g.
the acceptable deviation range, as discussed in section 6).
Monitoring variables values are maintained as:

MonVarValue (mvname, timepoint,
systemvalue, modelvalue)

as MonVarValue is a weak entity type [13], [14].
Comparison techniques are maintained as:

CompTechnique (tname)

In this data scheme, MonVariable.rcname is a foreign key
on RemodelCondition.rcname, MonVariable.tname on
CompTechnique.tname and MonVarValue.mvname on
MonVariable.mvname. The relational data model for
validation data is overall depicted in Figure 2.

Relation Attributes
RemodelCondition rcname, rctype, weight
MonVariable mvname, rcname, tname,

comp_params
MonVarValue mvname, timepoint,

systemvalue, modelvalue
CompTechnique Tname

Figure 2: Proposed data model for validation data

4. The Auditing Tree

Monitoring variable comparison is realized using the
auditing tree. It is a conceptual tree structure (that is, it
does not follow the formal definition of a tree), divided
into two subtrees, which include two corresponding types
of end nodes, OR and AND. Each node corresponds to a
single monitoring variable comparison. End nodes of type
OR represent comparisons that autonomously - if fulfilled
- cause remodeling. Nodes of type AND are aggregately
evaluated to determine if remodeling is required. End
nodes are directly accessed from Root.

There are a1 OR nodes and a2 AND nodes, all of
which are created as children of Root. In this way, a1+a2
total accesses are required for all nodes. End nodes are
created and inserted in the appropriate subtree whenever
the auditing tree is formed (i.e. during auditing). Thus,
the number of tree nodes may be variable, corresponding
to the number of comparisons to be accomplished. Each
end node is formed for realizing a comparison
corresponding to a single remodeling condition.
However, a single condition may be expressed via more
than one end node. Accessing all nodes, we ensure that all
remodeling conditions are evaluated prior to the initiation
of remodeling and all reformations/deviations are
detected, so that appropriate remodeling actions can be
considered. Upon completion of auditing, end nodes are
removed.

The auditing tree bears substantial differences from the
indicator hierarchy proposed by Balci [10]: It is less
generic, expands only to two levels, has two different
types of nodes, child nodes have only one parent and the
number of nodes differs each time auditing is initiated.
Leaf nodes influence directly the validity decision, not
indirectly through their parents, and their weight needs
not be pre-calculated so that is sums to one per parent.

Key reasons for using this structure are discussed in
the following. The auditing tree is oriented towards
determining invalidity, which must be examined with
minimum time overhead. If some comparisons lead
directly to remodeling (type OR comparisons), they must
be evaluated before all others. Thus, there have to be two
node types (OR, AND). As the number of nodes may be
dynamically modified, to avoid reassigning weights in
real time, the weight of all comparisons corresponding to
the same condition has to be predetermined. As the

number of nodes is variable, weights do not thus sum to
one per condition. When all comparisons are completed,
an aggregate value is calculated and we examine if this
exceeds a predetermined threshold. In this way,
complexity is transferred from real-time weight
assignment to the selection of threshold.

The auditing algorithm is directly derived from the
auditing tree. It concludes that the model is invalid if at
least one of the a1 OR node comparisons or the aggregate
evaluation of the a2 AND node comparisons are fulfilled,
that is:
(C1 = TRUE) OR (C2 = TRUE) … OR (Ca1 = TRUE) OR

(evaluation (Ci, Cii, …Ca2
) = TRUE), where

C1, C2 , .., Ca1 are OR nodes
Ci, Cii, .., Ca2

 are AND nodes
Considering there are r conditions causing remodeling

(ro of type OR and ra of type AND, r=ro+ra) and k
monitoring variables, k comparisons are made. If
condition i involves ri monitoring variables, remodelling

decision is based on k=a1+a2 (a1=
or

ri
i=1
∑ , a2=

o a

o

r +r
ri

i=r +1
∑)

accesses to OR/ AND comparison results, respectively.
The auditing tree structure thus enables the consistent
realization of the complex comparison process,
supporting these essential features:
1. Assigning priorities to specific comparisons (AND,

OR nodes) to enable alternative (optimized)
algorithms to be effective, i.e. searching the auditing
tree for a single condition that may be fulfilled, and
then invoke remodeling without accessing the overall
tree structure. Such a search would cost considerably
less than a1+a2.

2. Ensuring that k=a1+a2 direct accesses to an auditing
node structure will be required when all comparison
results need to be evaluated (worst-case scenario).

3. Representing each comparison as a separate auditing
tree node, the structure of each node includes
identification attributes (i.e. condition name and
variable name), system and model results, comparison
parameters and the weight attribute (only for AND
comparisons).
A code fragment for the implementation of the

extended node structure as object classes is depicted in
Figure 5. As systemvalue and modelvalue fields may be
multivalued, they are represented as arrays of real
numbers. Nodes are initialized obtaining the
corresponding values of the relational model of Figure 2
and then inserted in the appropriate subtree as direct
descendants of Root. A code fragment for the
implementation of the Root node is depicted in Figure 3.
Due to the variable number of tree nodes, all nodes (also
the root node) are constructed when auditing is initiated

and then are removed.

RootNode = OBJECT;
 a1: INTEGER;
 a2: INTEGER;
 ORsubtree: ARRAY INTEGER OF ORnode;
 ANDsubtree: ARRAY INTEGER OF ANDnode;
END OBJECT;
…
VAR
 Root: RootNode;
…
 NEW(Root);
 NEW(Root.ORsubtree, 1..a1);
 NEW(Root.ANDsubtree, 1..a2);

Figure 3: Root implementation

An algorithm for constructing the auditing tree nodes is
depicted in Figure 4. Variable curr_time holds the current
real time point where auditing is initiated, so that only
results concerning this time point are used in auditing.
(OR nodes}
create new_OR_node as
select RemodelCondition.rcname, mvname, tname,
 comp_params, systemvalue, modelvalue
from RemodelCondition, MonVariable,

MonVarValue
where
RemodelCondition.rcname = MonVariable.rcname and
RemodelCondition.rctype = ‘OR’ and
MonVariable.mvname = MonVarValue.mvname and
MonVarValue.timepoint = $curr_time

{AND nodes}
create new_AND_node as
select RemodelCondition.rcname, mvname, tname,

comp_params, weight, systemvalue,
modelvalue

from RemodelCondition, MonVariable,
MonVarValue

where
RemodelCondition.rcname = MonVariable.rcname and
RemodelCondition.rctype = ‘AND’ and
MonVariable.mvname = MonVarValue.mvname and
MonVarValue.timepoint = $curr_time

Figure 4: Construction of auditing tree nodes
A sample algorithm for implementing auditing is then
depicted in Figure 5.

4.1 Null Nodes

A specific case to be considered is the one of null nodes,
that is, when either the system value or model value of an
auditing tree node is NULL. For instance, as in a GI/G/s
system the number of servers (s) may be modified, so is
the number of monitoring variables referring to the
average service time per server. If a structural
modification occurs in the system, s will be decreased and
the respective model will have an additional server until it
adapts to the current condition.

FOREACH Node IN ORsubtree
IF Deviates(systemvalue,systemvaluenum,
modelvalue, modelvaluenum,tname,comp_params)
 Remodeling(rcname, mvname);
END IF;
END FOREACH;

FOREACH Node IN ANDsubtree
IF Deviates(systemvalue,systemvaluenum,
modelvalue,modelvaluenum,tname,comp_params)
 CalcWeight (TotalWeight, weight);
 BuildRemodelCondition (RemodelCondition,
rcname, mvname);
END IF;
END FOREACH;

IF TotalWeight> Threshold
 Remodeling (RemodelCondition);
END IF;

Figure 5: Auditing algorithm implementation

At auditing, there will be s nodes, one of which will have
the following form (if average service time comparison is
of type AND):

rcname: sdelay {average service
time}

tname: single-multiple {if 1 system value
and n replications}

mvname: avg_svcDs {average service time
of server s}

comp_params: 0.3 {hypothetical value}

weight: 0.2 {hypothetical value}

Systemvalue: NULL

modelvalue: … {values from multiple
replications}

Field modelvalue would respectively be NULL if the
number of servers in the system were increased. As null
nodes are caused by structural modifications, they must
undoubtedly contribute to remodeling. Thus, deviates
function must always return true, no matter whether the
node type is AND or OR.

5. Applying the Data Organization Scheme

We discuss how the data organization scheme facilitates
the execution of the auditing algorithm. System
observations are provided for current interval, while the
model produces results for p intervals ahead. (Figure 6).
As validation is a real-time activity, all preparatory steps
must be accomplished prior to its initiation. These steps
involve the definition of the remodeling conditions, the
comparison techniques and their corresponding attributes.
Definitions are forwarded to Auditor tool, which
performs the validation process. However, monitoring
variables may not be defined at a preparatory stage: their
number may be only determined during runtime, as it
depends on the current system structure. This is fully
supported by the proposed data model.

Auditor
(Model Validation)

System MonitorModel Monitor

prediction for
interval 1
prediction for

interval 2

prediction for
interval p

observations for
interval 1

1.Monitoring Variables
2.Monitoring Variable Values

1.Monitoring Variables
(common across all intervals)
2.Monitoring Variable Values

Storage Entity

Already available:
1.Definition of
 Remodeling Conditions
2.Definition of
 Comparison Techniques

Figure 6: Model results/system observations produced in a single auditing interval

Using the relation database model for validation data,
interoperability between different modules is promoted
(through common access points) as well as

standardization. Applying the proposed organization
scheme thus involves the following steps (marked as RT
when executed in real time):

Actor Step Sample implementation
User

(during
set up)

1. Set up validation data

 1.1 Define remodeling conditions
 (name, type and weight)

insert into RemodelCondition
values ($rcname, $rctype, $weight)

 1.2 Define comparison techniques
 (name)

insert into CompTechniques
values ($tname)

 1.3 Implement a respective
 comparison function for each
 technique defined

Model
Monitor

2. Validation

 2.1 Define monitoring variables (RT)
 (name, comp. parameters, rem.
 condition name and technique name)

insert into MonVariable
values ($mvname,$comp_params,$rcname, $tname)

 2.2 Store model values for all
 monitoring variables and all
 predicted time points (RT)

foreach pred_timepoint
 foreach monvariable
 insert into MonVarValue
 values ($mvname, NULL,
 $modelvalue, $pred_timepoint)
 end foreach
end foreach

System
Monitor

3. Validation

 3.1 Store system values for all
 monitoring variables (RT)

foreach MonVariable
 select count(*) into $found
 from MonVarValue
 where timepoint = $curr_time
 and mvname = $mvname
 if $found = 1
 update MonVarValue
 set systemvalue = $systemvalue
 where mvname = $mvname
 and timepoint = $curr_time
 else
 insert into MonVarValue
 values ($mvname, $systemvalue,
 NULL, $curr_time)
end foreach

In an SQL like notation, $var gives the value of

variable var and curr_time returns the current real-time
point. SQL does not support the ARRAY data type used
for storing multiple values of modelvalue and

systemvalue. However, this functionality may easily
provided using the STRING data type and converting
values to/from strings.

Following the above steps, model validation involves
constructing the auditing tree nodes (Figure 7), and
accessing the tree to apply the auditing algorithm (Figure
8), both being executed in real time.

6. Comparison Techniques

We propose the following three techniques as most
appropriate for realizing monitoring variable comparison:
1. System - model value comparison, for single-valued

variables (i.e. when only one value is available from
the model and the system).

2. Inspection approach, for statistical variables when
available one system observation data set and n model
result data sets [15]. In FRTS, it is evident that only a
single system data set will be available in almost all
cases, as system observations are produced within a
single auditing interval.

3. Confidence interval approach, for statistical variables
when available m system observation data sets and n
model data sets) [15]. We suggest the classical
approach proposed by Welch for building a confidence
interval based on a different number of independent
data sets [16], as other approaches are more restrictive,
such as the paired-t approach [15], imposing that n=m,
which can be only rarely ensured.

For single-valued variables, system and model variables
(MVi.s, MVi.r) are directly obtained. For statistical
variables with a single system observation data set and n
model data sets,

MVi.s = sum (MVi1.s, MVi2.s, …, MVin.s)/n,
where MVij.s is the statistical sample obtained from
replication j when n replications are made (i.e. in the case
of terminating simulations).

In the third case, where statistical variables with m
system observation data sets and n model data sets are
available, we build a confidence interval based on a
different number of independent data sets [16]. According
to the Welch approach:

m n
. .

j j
i i

MV r MV sij ij
MV .r , MV .s

m n
= == =
∑ ∑
1 1

m
. i

j
.

[MV r-MV .r]ij
S (MV r)=i m

=

−

∑ 2

12

1
n

. i
j

.

[MV s-MV .s]ij
S (MV s)=i n

=

−

∑ 2

12

1

The estimated degrees of freedom are computed as
2. .

2 2. .

[S (MV r)/m+S (MV s)/n] i if
[S (MV r)/m] /(m -) [S (MV s)/n] /(n -)i i

=
+

2 2

2 21 1
The following interval as an approximate 100(1-a)%
confidence interval for MVi.r-MVi.s

. .
. . f , a /

S (MV r) S (MV s)i iMV r MV s ti i m n−− ± +
2 2

1 2
Evidently, the deviation range defines the value a,
meaning that we wish the confidence interval to cover
MVi.r-MVi.s with probability 1-a. Suppose that the upper
and lower endpoints of the interval are marked as u(a)
and l(a), respectively. If 0 ∉ [l(a), u(a)], the difference
between MVi.r and MVi.s is statistically significant at
level a and we consider the model to be invalid.

7. A Multi-Server Processing System Case
Study

A single-queue, multi-server processing system is used as
an example involving validation, data organization and
model-system observation comparison offering the
capability to apply all three comparison techniques. This
system is modeled as a GI/G/s queue, according to classic
queuing theory, where GI (general independent) is the
distribution of interarrival times, G (general) is the
distribution of service times and s is the number of
servers (we consider that s>1). The system has a variable
number of servers that can be modified during runtime, as
servers may be abruptly activated or de-activated. Servers
have identical service characteristics. The objective of
FRTS is to reach reliable conclusions and to ensure
model validity taking into consideration system changes.
We consider that n model replications are executed for
reaching reliable simulation results, i.e. the case of
terminating simulations, where the model does not reach
a steady state. Two remodeling conditions are defined:
(1) Different number of servers (diffserv) as of type OR

due to its significance.
There is as single monitoring variable server_no for
condition diffserv. The model value for this variable is
single-valued, as all replications are performed with
the same number of servers. The allowed deviation
range (comp_params) is set to 0.0, i.e. between the
number of servers in the system and the model. As
server_no is single-valued, the single comparison
technique may be employed.

(2) Deviation in the average service time per server
(sdelay) as of type AND (having a 0.2 weight)

There are s monitoring variables for condition sdelay -
each corresponding to the delay of each one of the s
servers. Deviation range (comp_params) is set to 0.1
for all such comparisons. As one observation data set

and n model data sets (stemming from the n
replications) are available, a single-multiple
comparison must be performed.

Organizing validation data, relations RemodelCondition,
CompTechnique and MonVariable are formed as
described in Table 1, Table 2 and Table 3, respectively.
The following steps are automated.

Table 1: Relation RemodelCondition
rcname rctype weight
diffserv OR -
sdelay AND 0.2

Table 2: Relation CompTechnique
tname
single

single_multiple
confidence_interval

Table 3: Relation MonVariable
mvname rcname tname comp_pa

rams
server_no diffserv single 0.0
avg_svcD1 sdelay single_multiple 0.1
avg_svcD2 sdelay single_multiple 0.1

…
avg_svcDs sdelay single_multiple 0.1

Examining condition (1), the model is considered as valid
when:

server_no.s∈ [server_no.r (1-0.0), server_no.r(1+0.0)] ⇔
server_no.s = server_no.r

Examining condition (2) for monitoring variable i, the
model is considered as valid when:

avg_svcDi.s∈[avg_svcDi.r(1-0.1),avg_svcDi .r)(1+0.1)] ⇔
avg_svcDi .s∈ [0.9*avg_svcDi .r, 1.1*avg_svcDi .r)]

where avg_svcDi .s =sum(avg_svcDi1 .s, avg_svcDi2 .s, …,

avg_svcDin .s)/n and avg_svcDij.s is the average delay of
server i in replication j. As two conditions are examined,
there are two types of auditing tree nodes for comparing
model results and system observations (Table 4).

The actual number of nodes depends on the current
system configuration. According to the remodeling
conditions, there will be one node of type OR and s nodes
of type AND. However, s can be modified when the
system is subjected to structural changes.

We executed a number of experiments with a M/M/5
system (exponential interarrival times, exponential
service time, s=5) with n=10 (10 replications are made).
The execution platform is a Sun Ultra 5 with 1 CPU and
640Mbyte running Solaris 8. Modsim III is used for
model implementation. For interarrival times, λ=0.5; for
service times, λ=4.0. Threshold (Figure 5) was set to 0.5.
An auditing tree instance is depicted in Figure 7. The
corresponding system-model data comparison results are
presented in Table 5.

Root

(diffserv,
server_no,

single,
5, 5,

0.0, -)

(sdelay,
avg_svcD1,

single_multiple,
3.615,4.074,

0.1,0.2)

(sdelay,
avg_svcD2,

single_multiple,
4.046,4.049,

0.1,0.2)

(sdelay,
avg_svcD3,

single_multiple,
3.912,4.052,

0.1,0.2)

(sdelay,
avg_svcD4,

single_multiple,
4.127,4.032,

0.1,0.2)

(sdelay,
avg_svcD5,

single_multiple,
4.009,4.040,

0.1,0.2)
Figure 7: Auditing tree instance

Table 4: Auditing tree node types
node type rcname mvname system

value
model
value

tname comp_
params

weight

1 OR diffserv server_no single value {system
observation}

single value {used in
all replications}

single 0.0 -

2 AND sdelay avg_svcDi single value {from
system observations}

multiple values
{replication results}

single_multiple 0.1 0.2

Table 5: System-model data comparison
mvname rcname tname model

value
system
value

lower
endpoint

upper
endpoint

valid

server_no diffserv single 5 5 5.0 5.0 yes
avg_svcD1 sdelay single_multiple 4.074 3.615 3.254 3.977 no
avg_svcD2 sdelay single_multiple 4.049 4.046 3.641 4.451 yes
avg_svcD3 sdelay single_multiple 4.052 3.912 3.521 4.304 yes
avg_svcD4 sdelay single_multiple 4.032 4.127 3.714 4.540 yes
avg_svcD5 sdelay single_multiple 4.040 4.009 3.608 4.410 yes

Concerning diffserv, the number of servers is not
changed and the OR condition is not fulfilled. Concerning
sdelay, model invalidity is only indicated in the case of
the average delay of server1 (avg_svcD1). Thus
TotalWeight = 0.2. A threshold equal to 0.5 requires at
least two invalid AND nodes to cause remodeling.

To apply the third comparison technique, we consider
a composite system consisting of m identical GI/G/s
components, such as the ones discussed above. All
subsystems have identical interarrival and service
characteristics, thus it is possible to consider that m
independent observation sets are available from the
system. In this case, we follow the approach for
constructing an approximate 100(1-a) percent confidence
interval for avg_svcDi.r - avg_svcDi.s, for each
monitoring variable i, having previously calculated

i i iavg _ svcD .r ,avg _ svcD .s,S (avg _ svcD .r)2
, iS (avg _ svcD .s)2

and f . For example, in a system consisting of m=5
M/M/5 components, there are 5 values for avg_svcD1 (i.e.
server1 of each of the 5 components). Considering m=5
system values (3.90, 4.02, 3.97, 3.89, 4.15) and
experimental results from n=10 replications (3.92, 4.05,
3.91, 4.08, 4.24, 4.08, 4.17, 4.01, 4.14, 3.99) for
avg_svcD1, the 90% confidence interval constructed for
avg_svcD1.r-avg_svcD1.s is [-0.179, 0.027]. As 0 ∈ [l(a),
u(a)], the difference between the two means is not
statistically significant at level 10%, and the model is
determined to be valid.

8. Conclusions

The advantages of the proposed data organization scheme
may be summarized as follows:
1. Automated execution of model validation activities
2. Distinguishing the most significant conditions that

cause remodeling and using a different comparison
technique, depending on the specific data sets under
comparison

3. Standardization of the way system and model data are
maintained and processed

4. Ensuring a low time overhead for executing auditing,
especially in the case of a large amount of multiple-
valued monitoring variables

The last point refers to application domains where
multiple (e.g. thousands) monitoring variables are used to
compare the corresponding system and modes states.
Such domains are computer networks, where sessions are
initiated, transfer data and then terminated. Despite its
suitability for FRTS, the proposed organization scheme
may as well be applied for consistently performing
validation in simulation studies where timing and
automation requirements are not so critical.

References

[1] Carothers C., “XSim: Real-Time Analytic Parallel
Simulations”, in Proceedings of PADS’02, IEEE Computer
Press, 2002

[2] Fujimoto R., D. Lunceford, E. Page, A. Uhrmacher,
“Grand Challenges for Modeling and Simulation”,
Dagstuhl Report, 2002,
http://www.dagstuhl.de/About/index.en.html

[3] Perumalla K., R. Fujimoto, T. McLean, G. Riley,
“Experiences Applying Parallel and Interoperable Network
Simulation Techniques in On-Line Simulations of Military
Networks”, in Proceedings of PADS’02, IEEE Computer
Press, 2002

[4] Hu K., M.Takai, J. Martin, Bargodia R., “Looking Ahead
of Real Time in Hybrid Component Networks”, in
Proceedings of PADS’01, IEEE Computer Press, 2001

[5] Schreckenberg M., L. Neubert, J. Wahle, “Traffic
Simulation: Simulation of Traffic in Large Road
Networks”, Future Generation Computer Systems, vol. 17,
2001, pp. 649–657

[6] Anagnostopoulos D., M. Nikolaidou, P. Georgiadis, “A
Conceptual Methodology for Conducting Faster-Than-
Real-Time Experiments”, SCS Transactions on Computer
Simulation, vol. 16, no 2, 1999

[7] Balci O., “Verification, Validation and Accreditation o
Simulation Models”, in Proceedings of WSC’97, IEEE
Computer Press, 1997

[8] Anagnostopoulos D., “A Methodological Approach for
Model Validation in Faster-than-Real-Time Simulation “,
Simulation Practice and Theory, Elsevier Science, vol. 10,
no. 3-4, 2002, pp. 121-139

[9] Sargent R., “Verification, Validation and Accreditation of
Simulation Models”, in Proceedings of WSC’00, IEEE
Computer Press, 2000

[10] Balci O., “A Methodology for Certification of Modeling
and Simulation Applications”, ACM TOMACS, vol. 11, no.
4, 2001

[11] Birta L., F. Ozmizrak, “A Knowledge-Based Approach for
the Validation of Simulation Models: The Foundation”,
ACM TOMACS, vol. 6, no. 1, 1996

[12] Balci O., “How to Assess the Acceptability and Credibility
of Simulation Results” in Proceedings of WSC’89, IEEE
Computer Press, 1989

[13] Date C., An Introduction to Database Systems, Pearson
Addison Wesley, 2003

[14] Elmasri R., S. Navathe, Fundamentals of Database
Systems, Addison-Wesley, 1992

[15] Law A.M., W.D. Kelton, Simulation Modeling and
Analysis, McGraw Hill, 2000

[16] Welch B. L., “The Significance of the Difference Between
Two Means when the Population Variances are Unequal”,
Biometrica, vol. 25, 1938, pp. 350-36

