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Abstract 
Validation is an essential feature of faster-than-real-simulation 
(FRTS), since models must be validated prior used for near-
future predictions. As no relevant approaches exist in the 
literature, the paper contribution is to propose an approach a) 
accomplishing validation as a real-time, automated process, 
with low time overhead, b) dealing with the complexity of 
validation data, as the number and type of the data compared 
may be changing and c) realizing the transition from validation 
process conceptual design to an efficient real-time execution. A 
formal data organization scheme (data model) and algorithms 
for constructing and accessing it are implemented for this 
purpose. Realization of model validation in a FRTS experiment 
on a single-queue/multi-server processing system is presented to 
exhibit the applicability of the proposed approach. The 
proposed organization scheme may also be applied in 
simulation studies where timing and automation requirements 
are not critical. 

1. Introduction 1 

When simulation reaches conclusions for systems 
behavior in real time, it is known as real-time simulation. 
In faster-than-real-time simulation (FRTS), results are 
delivered earlier than real-time. FRTS is thus widely 
employed for prediction purposes [1]. Performance issues 
are critical and often addressed using parallel and 
distributed simulation (PADS) [2]. Communication 
networks, military networks, transportation systems and 
manufacturing are application areas where simulation 
performance in real time is strongly emphasized due to 
the potential FRTS may offer [2], [3], [4], [5] [6].  

A conceptual faster-than-real-time simulation 
methodology has been introduced in [6], providing a 
framework for conducting experiments dealing with the 
complexity and the hard real-time requirements. The 
following simulation phases have been identified: 
modeling, experimentation and remodeling. During 
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experimentation, both the system and the model evolve 
concurrently and are put under monitoring. Data 
depicting their consequent states are obtained in 
predetermined, real-time intervals of equal length, called 
auditing intervals. A substantial issue is that time-
dynamic systems may be subjected to changes at any time 
point, which involve their structure and operation 
parameters. To deal with them, the model must be 
subjected to dynamic remodeling, i.e. in real-time, 
without recompilation.  

Validation is the process of determining whether a 
simulation model is an accurate representation of the 
system for the particular objectives of the study [7]. In 
FRTS, we have the unique capability to use system 
observations and model results to test model validity and 
also reach reliable predictions for the future system states. 
This is based on the simple assumption that, if model 
validity can be consecutively ensured up to the current 
real-time point, it would be most probable that simulation 
predictions are also valid. A methodological approach for 
model validation in FRTS bas been presented in [8], 
aimed at increasing the level of confidence for simulation 
predictions concerning the time-dynamic system under 
study. To achieve FRTS validation, system observations 
and model data must be compared in real time using a 
computationally efficient process.  

As no relevant approaches exist in the literature, the 
paper contribution is to propose an approach dealing with 
the following design and implementation issues of model 
validation: 
1. Accomplishing validation as a real-time, automated 

process, with low time overhead.  
2. Determining the nature of validation data and deal 

with the complexity encountered, as the number and 
type of the data compared may be constantly changing. 
We establish a formal data organization scheme (data 
model) for this objective, based on the relational 
model. 

3. Realize the transition from the validation process 
conceptual design to the efficient real-time execution. 



Data structures for system/model data comparison and 
algorithms for constructing and accessing these 
structures are thus introduced. 

In section 2, we review the essential requirements for 
accomplishing model validation in FRTS and, in section 
3, an organization scheme (data model) is introduced for 
the data used in the validation process. In section 4, we 
describe the auditing tree structure and propose 
algorithms and structures for constructing and accessing 
it, while in section 5 implementation of the data model is 
analytically described. In section 6, appropriate 
comparison techniques are discussed for FRTS. Finally, 
an example involving the construction of the auditing 
tree, the selection of comparison techniques and the 
realization of the data organization scheme for a typical 
single-queue, multi-server processing system is presented 
in section 7, while conclusions reside in section 8.  

2. Model Validation  

Numerous model validation types and techniques have 
been discussed in the literature. In [9], conceptual model 
validation, computerized model verification and 
operational validity are identified. In the case of FRTS, 
only preconstructed models may be used when modifying 
a composite model in real time, i.e. without terminating 
the experiment. To accomplishing validation as a real-
time, automated process, a methodological approach 
needs to be practical, realizing the transition from the 
validation process conceptual design to efficient real-time 
execution, eve though functionality may be narrowed to 
eliminate the need for human intervention. The proposed 
validation approach is a low-level one, being less generic 
than other methodological approaches for validation and 
certification, such as the ones proposed by Balci [10] and 
Birta [11]. However, focusing exclusively on validation 
using system observations (according to observational 
specifications, described in [11]), it may be 
straightforwardly employed for automating validation and 
also dealing with timing requirements. The following 
activities are identified for realizing validation in FRTS 
(also introduced in [8]): 
1. Determine the conditions that may lead to model 

invalidity (thus, to remodeling). These are denoted as 
remodeling conditions. 

2. Determine the elements that need to be monitored for 
performing comparisons between system observations 
and model results. Monitoring variables are used for 
this purpose. Considering that k monitoring variables, 
MV1-MVk, are used, the respective values of variable i 
for the system and the model are denoted as MVi.r and 
MVi.s. 

3. Realize the transition from conditions to the measures 
under monitoring (i.e. express remodeling conditions 

in terms of monitoring variables). 
4. Determine how each condition contributes to deciding 

if the model is invalid. 
5. Construct the data structure used for maintaining 

system and model monitoring variable values (such as 
the auditing tree described in section 4). 

6. Form and execute the validation algorithm (or auditing 
algorithm). 

Activities 1-4 are performed at a specification phase, 
while activities 5-6 are executed in real-time.  

Remodeling conditions need to explicitly converge to 
a mathematical expression. Each remodeling condition 
involves one or many comparisons between specific 
monitoring variables. The number of monitoring 
variables corresponding to a single condition depends on 
current system configuration [8]. Discriminating among 
remodeling conditions is required, according to whether 
conditions autonomously cause remodeling or not. In the 
first case, any such condition causes remodeling when 
fulfilled. We name them OR type conditions. In the latter, 
many conditions of this type need to be fulfilled to cause 
remodeling – we name them AND conditions [8]. As 
AND conditions may not be equally significant, a weight 
factor may be assigned to each of them to determine the 
significance of each such condition [8]. 

Then, as remodeling decision involves both AND and 
OR type comparisons, a global scoring algorithm is 
required for determining if remodeling must be 
performed, through accessing all AND comparison 
weights. Scoring models have been used extensively for 
model validation purposes [12]. Weights (or scores) are 
determined subjectively when conducting validation and 
then combined to determine an overall score for the 
model. The model is considered as valid when this score 
is higher than a threshold. In our case, we consider a valid 
model when lower than the threshold, as described in 
section 4. To compare monitoring variable values, only 
one comparison technique can be most appropriate for 
each monitoring variable. The acceptable comparison 
parameters (or deviation range) must also be determined, 
according to each specific monitoring variable type. 
Comparison techniques are further discussed in section 6.   

Finally, a generic and consistent relationship between 
remodeling conditions, monitoring variables and 
monitoring variable comparisons must be established to 
be able to determine automatically: a. the variable 
comparisons that must be made to examine each 
condition and b. how each comparison may be effectively 
performed.  

3. Validation Data Organization  

To execute validation as a real-time, automated process 
and determine an efficient organization scheme for 



validation data, we introduce a data model for remodeling 
conditions, monitoring variables, monitoring variable 
values and comparison techniques. All above are 
considered as discrete entity types. We use the entity-
relationship (E-R) model for establishing a data model 
due to the formalization it offers. Also, for its 
declarativity, an SQL-based implementation is 
employed– however, any other implementation method 
may be applied as well. Functional dependencies are 
examined to derive the appropriate data model. Forming 
the data model: 
1. Remodeling conditions, monitoring variables and 

comparison techniques are respectively characterized 
(primary key) by the condition name (rcname), 
variable name (mvname) and technique name (tname). 

2. RemodelCondition.rcname->RemodelCondition.rctype  
Each condition is of a specific type, either AND or 
OR, no matter how many monitoring variables it 
involves. Thus, rctype obtains a single value from 
{AND, OR} value list. Type is functionally dependent 
on the condition name. 

3. RemodelCondition.rcname->RemodelCondition.weight 
As a single condition has a specific degree of 
significance, all variable comparisons corresponding to 
the same remodeling condition have a common weight. 
Weight is functionally dependent on the condition 
name. 

4. MonVariable.mvname->MonVariable.comp_params 
There is a specific comparison parameter for each 
variable, which may be different for variables of the 
same condition (not dependent on the condition id). 
Comparison parameter is functionally dependent on 
the variable name. 

5. MonVarValue.mvname,  
MonVarValue.timepoint->MonVarValue.modelvalue 
MonVarValue.mvname,  
MonVarValue.timepoint->MonVarValue.systemvalue 
Monitoring variable values obtained from both the 
model and the system are determined by the 
monitoring variable name and the time point. This is 
due to the fact that, in FRTS, values for a single 
variable are obtained for more than one time point, as 
we are trying to reach predictions for at least p 
intervals ahead of real time. Both modelvalue and 
systemvalue may be multivalued and thus are 
functionally dependent on the combination of the 
variable name and time point. 
Concerning the relationships between these entities: 

1. A remodeling condition involves one or many 
monitoring variables; each variable corresponds only 
to a single condition. The number ri of monitoring 
variables corresponding to a single condition i can be 
different whenever auditing is executed, depending on 
the current system/model configuration 

2. A single comparison technique is best suited for each 
monitoring variable; more than one monitoring 
variable may use the same comparison technique 

3. A monitoring variable value corresponds to a single 
variable; more than one value may be maintained for a 
single variable, for different time points 
The corresponding E-R data model is depicted in 

Figure 1.  
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Figure 1: Proposed E-R model for validation data 

Transiting from the E-R model to the final relational 
model, each remodeling condition is ultimately 
maintained as follows [13], [14]: 
RemodelCondition (rcname, rctype, weight) 

In this relation, rcname is unique, rctype holds the its 
type, set to either AND or OR. Note that, technically, 
attribute weight should not be part of this relation, as it is 
also functionally dependent on rctype, as conditions of 
type OR have a null weight; however, this approach 
offers simplicity and promotes data manipulation with no 
overhead. Monitoring variables are maintained as:  

MonVariable (mvname, rcname, tname, 
comp_params) 

where mvname holds the variable name and rcname the 
name of the corresponding condition, tname is the 
respective comparison technique and comp_params are 
the comparison parameters for this specific variable (e.g. 
the acceptable deviation range, as discussed in section 6). 
Monitoring variables values are maintained as:  

MonVarValue (mvname, timepoint, 
systemvalue, modelvalue) 

as MonVarValue is a weak entity type [13], [14]. 
Comparison techniques are maintained as: 

CompTechnique (tname) 

In this data scheme, MonVariable.rcname is a foreign key 
on RemodelCondition.rcname, MonVariable.tname on 
CompTechnique.tname and MonVarValue.mvname on 
MonVariable.mvname. The relational data model for 
validation data is overall depicted in Figure 2. 



Relation Attributes 
RemodelCondition rcname, rctype, weight 
MonVariable mvname, rcname, tname, 

comp_params 
MonVarValue mvname, timepoint, 

systemvalue, modelvalue 
CompTechnique Tname 

Figure 2: Proposed data model for validation data 

4. The Auditing Tree 

Monitoring variable comparison is realized using the 
auditing tree. It is a conceptual tree structure (that is, it 
does not follow the formal definition of a tree), divided 
into two subtrees, which include two corresponding types 
of end nodes, OR and AND. Each node corresponds to a 
single monitoring variable comparison. End nodes of type 
OR represent comparisons that autonomously - if fulfilled 
- cause remodeling. Nodes of type AND are aggregately 
evaluated to determine if remodeling is required. End 
nodes are directly accessed from Root. 

There are a1 OR nodes and a2 AND nodes, all of 
which are created as children of Root. In this way, a1+a2 
total accesses are required for all nodes. End nodes are 
created and inserted in the appropriate subtree whenever 
the auditing tree is formed (i.e. during auditing). Thus, 
the number of tree nodes may be variable, corresponding 
to the number of comparisons to be accomplished. Each 
end node is formed for realizing a comparison 
corresponding to a single remodeling condition. 
However, a single condition may be expressed via more 
than one end node. Accessing all nodes, we ensure that all 
remodeling conditions are evaluated prior to the initiation 
of remodeling and all reformations/deviations are 
detected, so that appropriate remodeling actions can be 
considered. Upon completion of auditing, end nodes are 
removed.  

The auditing tree bears substantial differences from the 
indicator hierarchy proposed by Balci [10]: It is less 
generic, expands only to two levels, has two different 
types of nodes, child nodes have only one parent and the 
number of nodes differs each time auditing is initiated. 
Leaf nodes influence directly the validity decision, not 
indirectly through their parents, and their weight needs 
not be pre-calculated so that is sums to one per parent.  

Key reasons for using this structure are discussed in 
the following. The auditing tree is oriented towards 
determining invalidity, which must be examined with 
minimum time overhead. If some comparisons lead 
directly to remodeling (type OR comparisons), they must 
be evaluated before all others. Thus, there have to be two 
node types (OR, AND). As the number of nodes may be 
dynamically modified, to avoid reassigning weights in 
real time, the weight of all comparisons corresponding to 
the same condition has to be predetermined. As the 

number of nodes is variable, weights do not thus sum to 
one per condition. When all comparisons are completed, 
an aggregate value is calculated and we examine if this 
exceeds a predetermined threshold. In this way, 
complexity is transferred from real-time weight 
assignment to the selection of threshold.  

The auditing algorithm is directly derived from the 
auditing tree. It concludes that the model is invalid if at 
least one of the a1 OR node comparisons or the aggregate 
evaluation of the a2 AND node comparisons are fulfilled, 
that is: 
(C1 = TRUE) OR (C2 = TRUE) … OR (Ca1 = TRUE) OR 

(evaluation (Ci, Cii, …Ca2
) = TRUE), where 

C1, C2 , .., Ca1  are OR nodes 
Ci, Cii, .., Ca2

 are AND nodes 
Considering there are r conditions causing remodeling 

(ro of type OR and ra of type AND, r=ro+ra) and k 
monitoring variables, k comparisons are made. If 
condition i involves ri monitoring variables, remodelling 

decision is based on k=a1+a2 (a1=
or

ri
i=1
∑ , a2=

o a

o

r +r
ri

i=r +1
∑ ) 

accesses to OR/ AND comparison results, respectively. 
The auditing tree structure thus enables the consistent 
realization of the complex comparison process, 
supporting these essential features:  
1. Assigning priorities to specific comparisons (AND, 

OR nodes) to enable alternative (optimized) 
algorithms to be effective, i.e. searching the auditing 
tree for a single condition that may be fulfilled, and 
then invoke remodeling without accessing the overall 
tree structure. Such a search would cost considerably 
less than a1+a2. 

2. Ensuring that k=a1+a2 direct accesses to an auditing 
node structure will be required when all comparison 
results need to be evaluated (worst-case scenario).  

3. Representing each comparison as a separate auditing 
tree node, the structure of each node includes 
identification attributes (i.e. condition name and 
variable name), system and model results, comparison 
parameters and the weight attribute (only for AND 
comparisons).  
A code fragment for the implementation of the 

extended node structure as object classes is depicted in 
Figure 5. As systemvalue and modelvalue fields may be 
multivalued, they are represented as arrays of real 
numbers. Nodes are initialized obtaining the 
corresponding values of the relational model of Figure 2 
and then inserted in the appropriate subtree as direct 
descendants of Root. A code fragment for the 
implementation of the Root node is depicted in Figure 3. 
Due to the variable number of tree nodes, all nodes (also 
the root node) are constructed when auditing is initiated 



and then are removed.  

RootNode = OBJECT; 
 a1: INTEGER; 
 a2: INTEGER; 
 ORsubtree: ARRAY INTEGER OF ORnode; 
 ANDsubtree: ARRAY INTEGER OF ANDnode; 
END OBJECT; 
… 
VAR 
 Root: RootNode; 
… 
 NEW(Root); 
 NEW(Root.ORsubtree, 1..a1); 
 NEW(Root.ANDsubtree, 1..a2); 

Figure 3: Root implementation 

An algorithm for constructing the auditing tree nodes is 
depicted in Figure 4. Variable curr_time holds the current 
real time point where auditing is initiated, so that only 
results concerning this time point are used in auditing.  
(OR nodes} 
create new_OR_node as  
select RemodelCondition.rcname, mvname, tname, 
 comp_params, systemvalue, modelvalue  
from  RemodelCondition, MonVariable, 

MonVarValue 
where  
RemodelCondition.rcname = MonVariable.rcname and  
RemodelCondition.rctype = ‘OR’ and 
MonVariable.mvname = MonVarValue.mvname and  
MonVarValue.timepoint = $curr_time 
 
{AND nodes} 
create new_AND_node as 
select RemodelCondition.rcname, mvname, tname, 

comp_params, weight, systemvalue, 
modelvalue 

from  RemodelCondition, MonVariable, 
MonVarValue 

where  
RemodelCondition.rcname = MonVariable.rcname and  
RemodelCondition.rctype = ‘AND’ and 
MonVariable.mvname = MonVarValue.mvname and  
MonVarValue.timepoint = $curr_time 

Figure 4: Construction of auditing tree nodes 
A sample algorithm for implementing auditing is then 
depicted in Figure 5.  

4.1 Null Nodes 

A specific case to be considered is the one of null nodes, 
that is, when either the system value or model value of an 
auditing tree node is NULL. For instance, as in a GI/G/s 
system the number of servers (s) may be modified, so is 
the number of monitoring variables referring to the 
average service time per server. If a structural 
modification occurs in the system, s will be decreased and 
the respective model will have an additional server until it 
adapts to the current condition. 

FOREACH Node IN ORsubtree  
IF Deviates(systemvalue,systemvaluenum, 
modelvalue, modelvaluenum,tname,comp_params) 
 Remodeling(rcname, mvname); 
END IF; 
END FOREACH; 
 
FOREACH Node IN ANDsubtree  
IF Deviates(systemvalue,systemvaluenum, 
modelvalue,modelvaluenum,tname,comp_params) 
 CalcWeight (TotalWeight, weight);  
 BuildRemodelCondition (RemodelCondition, 
rcname, mvname); 
END IF; 
END FOREACH; 
 
IF TotalWeight> Threshold  
 Remodeling (RemodelCondition); 
END IF; 

Figure 5: Auditing algorithm implementation  

At auditing, there will be s nodes, one of which will have 
the following form (if average service time comparison is 
of type AND): 

rcname:  sdelay  {average service 
time} 

tname:  single-multiple {if 1 system value 
and n replications} 

mvname:  avg_svcDs  {average service time 
of server s} 

comp_params: 0.3 {hypothetical value} 

weight: 0.2  {hypothetical value} 

Systemvalue: NULL  

modelvalue:  … {values from multiple 
replications} 

Field modelvalue would respectively be NULL if the 
number of servers in the system were increased. As null 
nodes are caused by structural modifications, they must 
undoubtedly contribute to remodeling. Thus, deviates 
function must always return true, no matter whether the 
node type is AND or OR.  

5. Applying the Data Organization Scheme 

We discuss how the data organization scheme facilitates 
the execution of the auditing algorithm. System 
observations are provided for current interval, while the 
model produces results for p intervals ahead. (Figure 6). 
As validation is a real-time activity, all preparatory steps 
must be accomplished prior to its initiation. These steps 
involve the definition of the remodeling conditions, the 
comparison techniques and their corresponding attributes. 
Definitions are forwarded to Auditor tool, which 
performs the validation process. However, monitoring 
variables may not be defined at a preparatory stage: their 
number may be only determined during runtime, as it 
depends on the current system structure. This is fully 
supported by the proposed data model. 
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Figure 6: Model results/system observations produced in a single auditing interval 

Using the relation database model for validation data, 
interoperability between different modules is promoted 
(through common access points) as well as 

standardization. Applying the proposed organization 
scheme thus involves the following steps (marked as RT 
when executed in real time): 

 
Actor Step Sample implementation 
User 

(during 
set up) 

1. Set up validation data 
 

 

 1.1 Define remodeling conditions  
  (name, type and weight) 

insert into RemodelCondition 
values ($rcname, $rctype, $weight) 

 1.2 Define comparison techniques  
  (name) 

insert into CompTechniques 
values ($tname) 

 1.3 Implement a respective 
 comparison function for each 
 technique defined 

 

Model 
Monitor 

2. Validation  

 2.1 Define monitoring variables (RT) 
 (name, comp. parameters, rem. 
 condition name and technique name) 

insert into MonVariable  
values ($mvname,$comp_params,$rcname, $tname) 

 2.2 Store model values for all 
 monitoring variables and all 
 predicted time points (RT) 

foreach pred_timepoint 
 foreach monvariable  
  insert into MonVarValue 
  values ($mvname, NULL,  
  $modelvalue, $pred_timepoint) 
 end foreach 
end foreach 

System 
Monitor 

3. Validation  

 3.1 Store system values for all 
 monitoring variables (RT) 

foreach MonVariable 
 select count(*) into $found  
 from MonVarValue 
 where timepoint = $curr_time  
 and mvname = $mvname 
 if $found = 1  
  update MonVarValue 
  set systemvalue = $systemvalue  
  where mvname = $mvname  
  and timepoint = $curr_time 
 else  
  insert into MonVarValue 
  values ($mvname, $systemvalue,  
  NULL, $curr_time) 
end foreach 

 
In an SQL like notation, $var gives the value of 

variable var and curr_time returns the current real-time 
point. SQL does not support the ARRAY data type used 
for storing multiple values of modelvalue and 



systemvalue. However, this functionality may easily 
provided using the STRING data type and converting 
values to/from strings.  

Following the above steps, model validation involves 
constructing the auditing tree nodes (Figure 7), and 
accessing the tree to apply the auditing algorithm (Figure 
8), both being executed in real time.  

6. Comparison Techniques 

We propose the following three techniques as most 
appropriate for realizing monitoring variable comparison: 
1. System - model value comparison, for single-valued 

variables (i.e. when only one value is available from 
the model and the system). 

2. Inspection approach, for statistical variables when 
available one system observation data set and n model 
result data sets [15]. In FRTS, it is evident that only a 
single system data set will be available in almost all 
cases, as system observations are produced within a 
single auditing interval.  

3. Confidence interval approach, for statistical variables 
when available m system observation data sets and n 
model data sets) [15]. We suggest the classical 
approach proposed by Welch for building a confidence 
interval based on a different number of independent 
data sets [16], as other approaches are more restrictive, 
such as the paired-t approach [15], imposing that n=m, 
which can be only rarely ensured.  

For single-valued variables, system and model variables 
(MVi.s, MVi.r) are directly obtained. For statistical 
variables with a single system observation data set and n 
model data sets,  

MVi.s = sum (MVi1.s, MVi2.s, …, MVin.s)/n, 
where MVij.s is the statistical sample obtained from 
replication j when n replications are made (i.e. in the case 
of terminating simulations).  

In the third case, where statistical variables with m 
system observation data sets and n model data sets are 
available, we build a confidence interval based on a 
different number of independent data sets [16]. According 
to the Welch approach: 
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2 2

1 2  
Evidently, the deviation range defines the value a, 
meaning that we wish the confidence interval to cover 
MVi.r-MVi.s with probability 1-a. Suppose that the upper 
and lower endpoints of the interval are marked as u(a) 
and l(a), respectively. If 0 ∉ [l(a), u(a)], the difference 
between MVi.r and MVi.s is statistically significant at 
level a and we consider the model to be invalid. 

7. A Multi-Server Processing System Case 
Study 

A single-queue, multi-server processing system is used as 
an example involving validation, data organization and 
model-system observation comparison offering the 
capability to apply all three comparison techniques. This 
system is modeled as a GI/G/s queue, according to classic 
queuing theory, where GI (general independent) is the 
distribution of interarrival times, G (general) is the 
distribution of service times and s is the number of 
servers (we consider that s>1). The system has a variable 
number of servers that can be modified during runtime, as 
servers may be abruptly activated or de-activated. Servers 
have identical service characteristics. The objective of 
FRTS is to reach reliable conclusions and to ensure 
model validity taking into consideration system changes. 
We consider that n model replications are executed for 
reaching reliable simulation results, i.e. the case of 
terminating simulations, where the model does not reach 
a steady state. Two remodeling conditions are defined:  
(1) Different number of servers (diffserv) as of type OR 

due to its significance. 
There is as single monitoring variable server_no for 
condition diffserv. The model value for this variable is 
single-valued, as all replications are performed with 
the same number of servers. The allowed deviation 
range (comp_params) is set to 0.0, i.e. between the 
number of servers in the system and the model. As 
server_no is single-valued, the single comparison 
technique may be employed. 

(2) Deviation in the average service time per server 
(sdelay) as of type AND (having a 0.2 weight) 

There are s monitoring variables for condition sdelay - 
each corresponding to the delay of each one of the s 
servers. Deviation range (comp_params) is set to 0.1 
for all such comparisons. As one observation data set 



and n model data sets (stemming from the n 
replications) are available, a single-multiple 
comparison must be performed.  

Organizing validation data, relations RemodelCondition, 
CompTechnique and MonVariable are formed as 
described in Table 1, Table 2 and Table 3, respectively. 
The following steps are automated. 

Table 1: Relation RemodelCondition  
rcname rctype weight 
diffserv OR - 
sdelay AND 0.2 

Table 2: Relation CompTechnique 
tname 
single 

single_multiple 
confidence_interval 

Table 3: Relation MonVariable 
mvname rcname tname comp_pa

rams 
server_no diffserv single 0.0 
avg_svcD1 sdelay single_multiple 0.1 
avg_svcD2 sdelay single_multiple 0.1 

…    
avg_svcDs sdelay single_multiple 0.1 

Examining condition (1), the model is considered as valid 
when: 

server_no.s∈ [server_no.r (1-0.0), server_no.r(1+0.0)] ⇔ 
server_no.s = server_no.r 

Examining condition (2) for monitoring variable i, the 
model is considered as valid when: 

avg_svcDi.s∈[avg_svcDi.r(1-0.1),avg_svcDi .r)(1+0.1)] ⇔  
avg_svcDi .s∈ [0.9*avg_svcDi .r, 1.1*avg_svcDi .r)] 

where avg_svcDi .s =sum(avg_svcDi1 .s, avg_svcDi2 .s, …, 

avg_svcDin .s)/n and avg_svcDij.s is the average delay of 
server i in replication j. As two conditions are examined, 
there are two types of auditing tree nodes for comparing 
model results and system observations (Table 4). 

The actual number of nodes depends on the current 
system configuration. According to the remodeling 
conditions, there will be one node of type OR and s nodes 
of type AND. However, s can be modified when the 
system is subjected to structural changes.  

We executed a number of experiments with a M/M/5 
system (exponential interarrival times, exponential 
service time, s=5) with n=10 (10 replications are made). 
The execution platform is a Sun Ultra 5 with 1 CPU and 
640Mbyte running Solaris 8. Modsim III is used for 
model implementation. For interarrival times, λ=0.5; for 
service times, λ=4.0. Threshold (Figure 5) was set to 0.5. 
An auditing tree instance is depicted in Figure 7. The 
corresponding system-model data comparison results are 
presented in Table 5. 

Root

(diffserv,
server_no,

single,
5, 5,

0.0, -)

(sdelay,
avg_svcD1,

single_multiple,
3.615,4.074,

0.1,0.2)

(sdelay,
avg_svcD2,

single_multiple,
4.046,4.049,

0.1,0.2)

(sdelay,
avg_svcD3,

single_multiple,
3.912,4.052,

0.1,0.2)

(sdelay,
avg_svcD4,

single_multiple,
4.127,4.032,

0.1,0.2)

(sdelay,
avg_svcD5,

single_multiple,
4.009,4.040,

0.1,0.2)  
Figure 7: Auditing tree instance 

 

Table 4: Auditing tree node types  
node type rcname mvname system 

value 
model 
value 

tname comp_ 
params 

weight 

1 OR diffserv server_no single value {system 
observation} 

single value {used in 
all replications} 

single 0.0 - 

2 AND sdelay avg_svcDi single value {from 
system observations} 

multiple values 
{replication results} 

single_multiple 0.1 0.2 

Table 5: System-model data comparison 
mvname rcname tname model 

value 
system 
value 

lower 
endpoint 

upper 
endpoint 

valid 

server_no diffserv single 5 5 5.0 5.0 yes 
avg_svcD1 sdelay single_multiple 4.074 3.615 3.254 3.977 no 
avg_svcD2 sdelay single_multiple 4.049 4.046 3.641 4.451 yes 
avg_svcD3 sdelay single_multiple 4.052 3.912 3.521 4.304 yes 
avg_svcD4 sdelay single_multiple 4.032 4.127 3.714 4.540 yes 
avg_svcD5 sdelay single_multiple 4.040 4.009 3.608 4.410 yes 

 



Concerning diffserv, the number of servers is not 
changed and the OR condition is not fulfilled. Concerning 
sdelay, model invalidity is only indicated in the case of 
the average delay of server1 (avg_svcD1). Thus 
TotalWeight = 0.2. A threshold equal to 0.5 requires at 
least two invalid AND nodes to cause remodeling.  

To apply the third comparison technique, we consider 
a composite system consisting of m identical GI/G/s 
components, such as the ones discussed above. All 
subsystems have identical interarrival and service 
characteristics, thus it is possible to consider that m 
independent observation sets are available from the 
system. In this case, we follow the approach for 
constructing an approximate 100(1-a) percent confidence 
interval for avg_svcDi.r - avg_svcDi.s, for each 
monitoring variable i, having previously calculated 

i i iavg _ svcD .r ,avg _ svcD .s,S ( avg _ svcD .r)2
, iS ( avg _ svcD .s)2

 

and f . For example, in a system consisting of m=5 
M/M/5 components, there are 5 values for avg_svcD1 (i.e. 
server1 of each of the 5 components). Considering m=5 
system values (3.90, 4.02, 3.97, 3.89, 4.15) and 
experimental results from n=10 replications (3.92, 4.05, 
3.91, 4.08, 4.24, 4.08, 4.17, 4.01, 4.14, 3.99) for 
avg_svcD1, the 90% confidence interval constructed for 
avg_svcD1.r-avg_svcD1.s is [-0.179, 0.027]. As 0 ∈ [l(a), 
u(a)], the difference between the two means is not 
statistically significant at level 10%, and the model is 
determined to be valid.  

8. Conclusions 

The advantages of the proposed data organization scheme 
may be summarized as follows: 
1. Automated execution of model validation activities 
2. Distinguishing the most significant conditions that 

cause remodeling and using a different comparison 
technique, depending on the specific data sets under 
comparison 

3. Standardization of the way system and model data are 
maintained and processed 

4. Ensuring a low time overhead for executing auditing, 
especially in the case of a large amount of multiple-
valued monitoring variables 

The last point refers to application domains where 
multiple (e.g. thousands) monitoring variables are used to 
compare the corresponding system and modes states. 
Such domains are computer networks, where sessions are 
initiated, transfer data and then terminated. Despite its 
suitability for FRTS, the proposed organization scheme 
may as well be applied for consistently performing 
validation in simulation studies where timing and 
automation requirements are not so critical. 
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