
Model-based System Engineering using SysML:
Deriving Executable Simulation Models with QVT

George-Dimitrios Kapos, Vassilis Dalakas, Anargyros Tsadimas, Mara Nikolaidou and Dimosthenis Anagnostopoulos

Department of Informatics & Telematics
Harokopio University of Athens

70 El. Venizelou Str, 17671 Athens, GREECE.
{gdkapos, vdalakas, tsadimas, mara, dimosthe}@hua.gr.

Abstract—Systems Modeling Language (SysML) is used to
define hierarchical system models in model-based engineering
(MBE). Although SysML may effectively serve the description
of complex systems, it can not effectively support all model-
based engineering activities. For example, system validation is
usually performed via simulation. In this case, SysML system
models should be transformed to domain-specific models, e.g.
executable simulation models suitable for specific simulation
tools. This paper identifies the key issues for efficient SysML
model simulation, utilizing Model Driven Architecture (MDA)
concepts. The generation of executable simulation code from
SysML system models is considered as a model transformation
from the SysML meta-model to the simulation meta-model.
Since SysML meta-model is defined using Meta-Object Facility
(MOF), the definition of MOF simulation meta-models and the
utilization of the Query/View/Transformation (QVT) language for
model transformations are analytically discussed. The presented
approach is not restricted in a specific simulation framework or
type. However, in this paper, the experience obtained from a case
study on discrete event simulation is evaluated and the conditions
that favor the selection of specific simulation frameworks are
identified.

Index Terms—Model-based Engineering, SysML, MDA, Model
Transformation, QVT, Simulation, DEVS

I. INTRODUCTION

In model-based system engineering, a central system model
is used as a reference to perform all engineering activities in
the specification, design, integration, validation, and operation
of a system [1]. To this end, Systems Modeling Language
(SysML) [2], a widely used general purpose language, has
been proposed by the Object Management Group (OMG).
According to SysML, system models should be defined in-
dependently of specific implementations or tools.

System validation is an engineering activity, which is usu-
ally performed in a model-based fashion using simulation [3].
Thus, a transformation of the SysML system model to the
corresponding executable simulation code is necessary. Such a
transformation may be accomplished in two ways. One way, is
to write tailor-made simulation code, while an alternative is to
follow model transformation standards as dictated by software
engineering techniques.

The approach followed here, is strictly based on Model
Driven Architecture (MDA) concepts, focusing on defining a

Meta-Object Facility (MOF) meta-model for the simulation
domain and corresponding model transformation rules using
Query/View/Transformation (QVT) in a standardized fashion
[4]. MDA separates the specification of system functionality
in a Platform Independent Model (PIM) from the specification
of the implementation of that functionality on a specific
technology platform in a Platform Specific Model (PSM).
These key characteristics render MDA suitable for the im-
plementation of a transformation of the SysML system model
to the corresponding executable simulation code, instead of
producing code in a custom fashion.

The motivation behind this effort derives from the lack of
standardized approaches to perform system simulation. Today,
the engineers use specific commercial simulators or restrict
to in-house software tools. Hence, in the last decade, there
is a strong effort to standardize and unify frameworks and
methodologies related to modeling and simulation, driven
by international organizations such as the Association for
Computing Machinery (ACM), the Society for Modeling &
Simulation International (SCS) and/or the Object Management
Group (OMG). Simulation methodologies provide the means
to define custom system models, which are consequently
simulated using corresponding simulation environments. Cur-
rently, focus is set on benefiting from the wide acceptance of
standard languages and well-defined formalisms as SysML, to
define system models, simulated by a number of simulation
frameworks. Such a need has already been recognized and
there are many efforts towards simulating SysML models (e.g.,
[5]–[9]).

This paper, discuss on the adoption of MDA concepts in
order to seamlessly transform SysML models to executable
discrete event simulation models. More specifically, the po-
tential of applying standard model transformation methods,
based on QVT, as an effort to produce executable simulation
code from SysML models, is explored. It presents our experi-
ence in defining a simulation-specific MOF meta-model using
the Discrete Event System Specification (DEVS) simulation
methodology, as well as, the corresponding transformation of
SysML models to simulation specific models, using QVT.
DEVS formalism targets at specifying discrete event simu-

lation models executed on a variety of simulators [10], such
as DEVS-C++, DEVSJava [11] and others. It was selected
due to intense and mature research efforts for providing
standard Extensible Markup Language (XML) representations
of DEVS models, which are automatically executed in well
known DEVS simulation environments. Focus is set on the
role of two key MDA elements: simulation specific MOF
and QVT. Advantages and disadvantages deriving from their
implementation are identified, revealing the potential of such
an approach, while the reasons why they are not widely
adopted by simulation practitioners are explored. Conditions
that favor the selection of a specific simulation framework to
simulate SysML models are also identified.

In the rest of the paper, Section 2 provides a short overview
of existing efforts to simulate SysML and model transforma-
tion using QVT. Section 3 identifies key issues on transform-
ing SysML models to simulation-specific models via standard
methods and tools. In Section 4, we discuss the represen-
tation of simulation-specific domains using MOF, based on
our experience from DEVS MOF meta-model definition. In
Section 5, we discuss the capabilities of QVT to describe
detailed SysML-to-DEVS model transformations. Conclusions
and future work reside in Section 6.

II. RELATED WORK

A. SysML Model Simulation

SysML is a standard language for modeling complex sys-
tems and systems of systems. It is actually a Unified Modeling
Language (UML) profile that extends a subset of UML model
elements, so that system requirements and specifications can
be described. SysML is smaller than UML and simpler to use
for the description of systems, as it is relieved by the software
centric perspective of UML. On the contrary, it introduces
two new types of diagrams (Requirement and Parametric
Diagrams) that facilitate requirements engineering, as well as
performance and quantitative analysis.

Simulation is a well established method for system valida-
tion. However, SysML notation does not target the creation of
simulation models. Therefore, since SysML became a standard
for system modeling, there was a prompt and intense interest in
creating simulation models from SysML models. Such models
heavily depend on the method used to perform simulation.

Various approaches have been proposed from both re-
search and industrial communities (e.g., [5], [7], [8], [9],
[12]) towards this direction. In most cases, SysML models,
defined within a modeling tool, are exported in XML format,
consequently, transformed into simulator specific models and
forwarded to the simulation environment. Depending on the
nature and specific characteristics of systems under study, there
is a diversity of approaches on simulating models defined in
SysML, which utilize different SysML diagrams. In [13], a
method for simulating the behavior of continuous systems
using mathematical simulation is presented, utilizing SysML
parametric diagrams, which allow the description of complex
mathematical equations. System models are simulated using
composable objects (COBs) [14]. It should be noted that in

any case SysML models should be defined in a way, which
facilitates simulating them [15]. These approaches are better
suited for systems with continuous behavior.

Simulation of discrete event systems is usually performed,
based on system behavior described in SysML activity, se-
quence or state diagrams. In [8], system models defined in
SysML are translated to be simulated using Arena simulation
software. MDA concepts are applied to export SysML models
from a SysML modeling tool and, consequently, transformed
into Arena simulation models, which must be enriched with
behavioral characteristics before becoming executable. In [16],
the utilization of Colored Petri Nets is proposed to sim-
ulate SysML models. If the system behavior is described
using activity and sequence diagrams in SysML, it may be
consequently simulated using discrete event simulation via
Petri Nets. In both cases, although SysML system models are
extracted and used, the system engineer must add large parts
of the simulation code, especially concerning system behavior.

In [6], simulation is performed using Modelica language.
Graph transformations are used for the generation of Modelica
models from SysML models. To ensure that a complete
and accurate Modelica model is constructed using SysML, a
corresponding profile is proposed to enrich SysML models
with simulation-specific capabilities. Towards this direction,
the SysML4Modelica profile and the corresponding SysML
to executable Modelica simulation code transformation, us-
ing standard MDA methods, as QVT language, have been
endorsed by the OMG [9].

A commercial collaborative model-based systems engineer-
ing workspace that uses SysML as the front-end for orches-
trating system engineering activities, from the early stages of
system development, called SLIM, is available from Intercax
[12]. Integration with MATLAB/Simulink, Mathematica and
OpenModelica is offered in a variety of commercial tools,
but these tools are used as math solvers and not as a system
validation method.

The authors share the vision of SLIM, but our approach
targets at the transformation of SysML models to executable
DEVS simulation models via open standards [17] as the
SysML4Modelica effort. In [18], a three-step methodology, in-
dependent of the selected simulation framework, was identified
that was successfully applied in [17] for automated discrete
event simulation code generation, based on SysML models.
The latter is accomplished by enriching these models with
simulation properties [17], [19].

B. Model transformation and QVT

Based on OMG’s MDA, models with standard definitions
and semantics should be created for domains of interest. To en-
sure their interoperability, applications should be based on the
same model. However, in order to extend this facility across
multiple, related domains, a standard model transformation
language is required.

The MOF 2.0 QVT [20] is a model transformation stan-
dard proposed by OMG with a hybrid declarative/imperative
nature. QVT relations is a declarative language, where a

transformation is defined as a set of relations between the
elements of source and target meta-models. It has both textual
and graphical notations. Moreover, the use of QVT may
better establish a transformation, especially in comparison to
custom transformation code. However, QVT transformations
are not widely applied, despite the availability of related efforts
recorded in the literature and appropriate tools and the fact that
it is based on the declarative definition of specific relations
between SysML and simulation-specific elements.

In [21], alignment of data warehouse development pro-
cess to MDA is attempted. A meta-model for multidimen-
sional(MD) data warehouses is defined at the PIM level, while
a set of QVT relations are proposed for transforming MD
PIMs to Common Warehouse Meta-model (CWM) models,
considered as PSMs. In [22], relational QVT is used for
creating UML Testing Profile models from UML models.
Sequence diagrams are transformed to test cases via the
appropriate relations. In [23], QVT is used for representing
Open Distributed Processing (ODP) correspondences, when
UML is used for the specification of the ODP viewpoint of
systems. Since ODP correspondences depend on each system
and configuration, a new set of QVT relations must be defined
in each case. Thus, QVT is not used for the definition of a
standard transformation for this domain, but as the mean for
defining the correspondences. In [24], QVT graphical notation
is used to specify a transformation as a set of QVT relations.
It is proposed that each relation is implemented as an XSLT
rule template, while a prototype tool is also developed. In
[25], graphical debugging is proposed for the QVT relations
language, to overcome limited debugging support in existing
QVT tools. In [26] the need to effectively abstract the useful
information of the source model is focused and relevant QVT
features are explored.

A model driven development framework for modeling and
simulation is proposed in [27]. Focus is not given on system
engineering. Therefore, conceptual models are initially defined
using Business Process Model and Notation (BPMN), instead
of SysML, and further transformed using ATLAS Transforma-
tion Language (ATL), a commonly used appoach, answering
some of the QVT requirements. Also, in this approach, dif-
ferent tools are built for different types of users that work on
transformed variations of the initial model.

In the framework discussed here, the extensive use of
QVT relations and operations is explored to transform SysML
models to executable simulation-specific models. To obtain
these simulation models both system structure and behavior
should be extracted from corresponding SysML models in a
multi-level fashion as described in the following.

III. KEY ISSUES ON TRANSFORMING SYSML SYSTEM
MODELS TO SIMULATION-SPECIFIC MODELS

Although system validation is an important activity in
model-based system engineering, SysML models do not con-
tain all information required to create executable simulation
models [15]. Furthermore, executable simulation models de-
pend on the simulation methodology adopted and the specific

execution environment. Thus, when selecting a specific sim-
ulation framework, the following issues must be considered
[18]:

• To simulate a SysML model the system engineer should
incorporate in it simulation-specific properties, e.g., spe-
cialize the model to serve a specific engineering ac-
tivity: in this case, system validation using simulation.
To achieve this, simulation-related profiles are usually
defined, as for example Modelica4SysML [9] or DEVS-
SysML profile [17]. Depending on the selected simulation
methodology, each profile facilitates the description of
the required simulation details. Such profiles should be
applied in different modeling tools (e.g., MagicDraw) and
enable the validation of the simulation-enriched SysML
model prior their transformation to simulation code.

• It is more efficient to include all simulation-related in-
formation within the SysML model using the simula-
tion profile defined and automatically produce the entire
simulation code, rather than partially create the structure
of the simulation model and further extend it within
the simulation environment or tool as suggested in [7],
[28]. Hence, the system engineer does not have to write
any simulation code and study the specific simulation
environment and tools. This feature is not supported
by most of the approaches recorded in the literature,
focusing on transforming SysML system structure to
simulation models, while system behavior is described
in the simulation environment.

• SysML to simulation-specific model transformation
should be accomplished in a standardized fashion using
existing languages and tools, as QVT, promoting the
simplicity and correcteness of the overall transformation
process instead of writing tailor-made code.

• In order to facilitate such a transformation, it is essential
to define a MOF meta-model for the selected simulation
methodology, as the SysML meta-model is defined in
MOF. Such a standardized meta-model for a specific
simulation domain is of greater value, when the same sim-
ulation methodology can be applied using different tools,
as for example the DEVS methodology. The simulation-
specific model should be easily translated to executable
code for specific simulators. In this case, the simulation-
specific MOF meta-model may serve as a PIM towards
two directions: a) enable SysML to simulation-specific
model transformation and b) enhance interoperability be-
tween different simulators independently of the language
they use (for example C++ or Java) and the way they are
executed (centrally or distributed).

Fig. 1 presents an MDA-based approach towards SysML
model simulation considering these remarks. Proper enrich-
ment of the integrated SysML system model allows several
engineering activities to be performed on PSMs that derive
from PIMs. Focusing on system validation activity, DEVS
or Modelica models are indicated as examples of simulation
models that could be derived from the integrated system

...

Modelica

Model

DEVS

Model

Simulation Model

Integrated

System

Model

Intended

to serve

all activities

DEVS

Simulation

Performed

on

PIM PSM

Standard

Modeling

Methodology

(SysML/UML

and

simulation

extensions)

Transfor-

mation

Other Activity Model

XLSC

XFDTransfor-

mation
...

...

DEVS Executables

Platform Specific

Activity Model

...

Other

Activity

...

Fig. 1. Simulating System Models based on MDA concepts

model, given that the respective simulation information was
chosen. Furthermore, each kind of simulation PIMs (e.g.,
DEVS or Modelica models) must be transformed to executable
PSMs (e.g., XLSC, XFD). This approach could also be applied
in other engineering activities, provided that the appropriate
PIMs, PSMs and transformations will be defined.

In a more pragmatic context, the use of DEVS simulation
methodology to simulate SysML system models and automati-
cally produce DEVS executable code adopting MDA concepts
has been proposed by the authors [18], as an example of
applying this approach. The corresponding methodology is
presented in Fig. 2 where four steps are identified:

Visual Paradigm

...

MagicDraw

Modeling Tool

Model Specification (XMI)

Model Definition/

Verification

PIM

PSM

Step 1:

Enrich SysML

model with

simulation

capabilities,

using a

simulation-

specific profile

Simulation Model

(based on MOF Metamodel)

Model

Transformation

(QVT)

Code Generation

System Model

(based on SysML and

Simulation Profiles)

Step 2: Transform SysML to

simulation model

Simulation

Environment

...

Step 3:

Execute

simulation

code

...

System Engineer

Step 4: Incorporate simulation

results, Perform requirements

verification

Simulation Results

Fig. 2. A Methodology for Simulating System Models with DEVS

1) SysML model enrichment. The DEVS SysML profile,
that has been defined in the MagicDraw UML tool [29],
is the basis for enriching SysML models.

2) Model transformation. Enriched models are exported
from MagicDraw in XML Metadata Interchange (XMI)
[30] format and transformed to DEVS models, according
to the implemented QVT transformation and the target
(DEVS) meta-model. Such a transformation can be
executed by any QVT compliant tool (e.g., MediniQVT).

3) Simulation execution. Ideally, DEVS simulation models
can be executed by compatible, generic DEVS simu-
lators, if they exist. However, other simulators, with
different executable simulation model format, should be
supported, too. XLSC over DEVSJava [31] has been
used as the simulation execution environment.

4) Results incorporation. Simulation results are inserted
into SysML model to help the system designer to
perform requirements verification based on predefined
requirements.

Note that only the first and the last steps require input by the
system engineer, while the other ones can be fully automated.

Implementing the required infrastructure for applying the
proposed methodology, was enabled by two main factors:

1) Several XML representations have been proposed for
DEVS models, mainly targeting DEVS simulators inter-
operability. Therefore, DEVS community was prepared
for the definition a DEVS MOF meta-model and auto-
mated code generation based on it.

2) This approach is extensively based on standards (UML,
XMI, MOF, QVT, XSLT). Thus, at least one tool was
available for each step of the process.

IV. DEFINING SIMULATION-SPECIFIC MOF
META-MODELS

When models need to be exported from a context, trans-
formed and imported into other contexts, then there is a
fundamental need for an application-independent way to define
how models of a certain domain are supposed to be, i.e. a way
to define meta-models. The UML 2 MOF meta-model [32]
is the foundation for cross-application handling of models.
MOF is widely used and is supported by many modeling tools.
SysML and any simulation-specific profiles are based on the
same meta-model, i.e. the UML MOF metamodel.

In this cotext, existence of a MOF meta-model for any
specific simulation framework is important. First, such a
meta-model provides the basis for a complete, conceptual
representation of simulation models. Second, it is a reference,
target meta-model, for transformations from/to other (system)
models. The fact that the meta-model is defined in terms of
MOF enables the use of MDA concepts and standards for the
transformations, like QVT. Third, it can act as a reference,
source format, for transformations to executable simulation
code for specific simulators. Models defined according to MOF
are stored in XML according to the XMI format.

Unified Modelling Laguage (UML)

Meta Objet Facility (MOF)

SysML Simulation

Enriched System Description System Simulation

Infrastructure Metamodel Profile Model

Simulation Properties

Executable

Simulation

Code

in Several

Formats

Standard Model Transformation Adaptation/Transformation

Fig. 3. System and Simulation Models with MOF

Fig. 3 provides a layered representation of MOF, meta-
models, profiles and models for system description and simu-
lation in a standardised fashion. The important role of a MOF
Simulation meta-model is easily identified, as:

• it enables usage of standard transformation languages
(like QVT),

• it provides a standard representation for the simulation-
specific domain, acting like a reference point for diverse
simulation-specific execution environments,

• it provides a single point, from which transformations or
simple adaptations may be defined for automated code
generation for several simulation execution environments.

To simulate SysML models using DEVS, as suggested in
Fig. 2, a MOF meta-model for DEVS has been defined. Fig.
4 provides an outline of the meta-model. As illustrated in the
figure, simulation models contain DEVS Atomic and DEVS
Coupled elements [10]. DEVS Atomic elements enable the
definition of system behaviour and contain ports (input and
output), states and four functions that define simulation time
advancement and state transitioning. DEVS Coupled elements
enable the definition of composite models in a way similar to
SysML components and contain ports (input and output), other
DEVS (Atomic or Coupled) elements and couplings (e.g., port
inter-connections).

Fig. 4. Outline of the DEVS MOF meta-model

MOF meta-model definition was based on previous efforts
to provide a common XML representation for DEVS [33].
However, the main concern of such efforts was only to ensure
interoperability between DEVS simulators. The adoption of
MOF contributes to the standardization of the common meta-
model and promotes DEVS integration with other simulation
methodologies and SysML/UML modeling approaches. Since
the aim of the proposed approach was to fully automate DEVS
executable code generation, implementation details, such as
the definition of complex expressions and functions, were also
included in the DEVS MOF meta-model. Recently, the first
version of another DEVS meta-model has been proposed [34],
revealing the intense research interest in DEVS meta-modeling
due to lack of standardization.

For the execution of DEVS models, XLSC over DEVSJava
[31] was selected, since it accepts DEVS models in an XML
format as input and was available and fully functional. The
execution of DEVS models defined according to the proposed
DEVS MOF in this environment was straightforward. The
same conditions would apply for any XML-based DEVS
simulation execution environment. Java or other programming
language code (for DEVSJava or other tools) can also be
automatically created, but this would not be as trivial as in

the case of XML-based environments.
As several well-established simulation frameworks are al-

ready available, this increases motivation for implementing
such an approach. The existence of simulators with XML
interfaces simplifies and accelerates implementation and ap-
plication of such an approach.

V. TRANSFORMING SYSTEM MODELS TO SIMULATION
MODELS USING QVT

Utilizing a standard, declarative, meta-model aware transfor-
mation approach, like QVT, the definition of model transfor-
mations is simplified. This allows the developer to focus on ac-
tual model element relations, rather than technical transforma-
tion issues. Additionally, Object Constraint Language (OCL)
with imperative extensions allows powerful manipulation of
model elements.

Alternative options that do not take full advantage of the
MOF, are also feasible. Attempting to obtain model informa-
tion using the modeling tool Application Programming Inter-
face (API) or from the exported system model representation
in XML or other format and create simulation code, using a
custom tool, is one of them. However, lack of consistency,
coupling with specific tools and maintenance cost are only a
few of their disadvantages. Unexpectedly, in practice, this was
the dominant approach so far, since users seamed reluctant
with the extensive use of QVT, despite its benefits.

In the following, we discuss our experience using QVT to
generate executable DEVS simulation models from SysML
enterprise information system (EIS) models, defined using the
EIS SysML profile. In the case of SysML-to-DEVS model
transformation, the MediniQVT tool was used to define the
DEVS MOF 2.0 meta-model and the QVT transformation.

Fig. 5. Hardware architecture of an information system

Consider a system, defined using the EIS SysML pro-
file, as described in [35]. A specific view, called evaluation
view, depicts system software and hardware architecture and
enriches model elements with simulation-specific attributes.
Fig. 5 presents the hardware architecture of an information
system, consisting of three regional offices and a datacenter.
There are two kinds of networks: atomic and composite.

Composite networks contain other sub-networks (atomic or
composite), while atomic networks are comprized of nodes,
software components that are allocated to these nodes and
user roles that are interacting with the software components.
To simplify the presentation of the transformation, we will
focus on atomic networks. Fig. 6 presents a specific atomic
network of fig. 5. User behavior is defined with specific
attributes, like StartTime and through behavior requirement. A
behavior requirement extends SysML requirement entity, with
simulation specific attributes like distribution function and its
parameters.

Fig. 6. An atomic network consisting of nodes, software components and
user roles

In order to effectively define the EIS to DEVS transfor-
mation, a set of DEVS simulation components, respective to
EIS model elements, has been developed and utilised. A high
level mapping of EIS elements (left side), contained in an
Atomic network, to the respective DEVS elements (right side)
is illustrated in Fig. 7. In some cases there is one-to-one
mapping between EIS and DEVS elements (Network, Role,
Node), while, in others, DEVS elements emerge from the
combination of more than one EIS elements (Module). In the
case of Node element, the functionality of the DEVS Node
simulation component is implemented as a composition of
three other components (DEVS Processor, DEVS Storage and
DEVS Network Interface).

Fig. 7. EIS to DEVS mapping

The generated DEVS model for the Atomic Network of
Fig. 6 is provided in Fig. 8 in XMI format.

Using QVT, the transformation has been defined in a
declarative manner as a set of relations between elements of
the two meta-models, simplifying the process in several ways
and promoting transformation consistency. In the remainder of
this section, a few such cases are discussed.

<COMPONENT_REFERENCE xsi:type="Devs:T_Component_Reference"
 text="Atomic-Network small regional net evaluation">
 <LIBRARY_COMPONENT class="Network" package="eis">
 <INIT_PARAMS>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="throughput">
 <VALUE type="Real" value="100"/>
 </INIT_PARAM>
 <INIT_PARAM xsi:type="Devs:T_Array_Init_Param" name="nodes">
 <INIT_PARAMS>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="node">
 <VALUE type="String" value="Server local server evaluation"/>
 </INIT_PARAM>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="node">
 <VALUE type="String" value="Workstation registry staff w/s evaluation"/>
 </INIT_PARAM>
 </INIT_PARAMS>
 </INIT_PARAM>
 </INIT_PARAMS>
 </LIBRARY_COMPONENT>
</COMPONENT_REFERENCE>
...
<COMPONENT_REFERENCE xsi:type="Devs:T_Component_Reference"
 text="Workstation registry staff w/s evaluation" instances="1">
 <LIBRARY_COMPONENT class="Node" package="eis">
 <INIT_PARAMS>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="processingPower">
 <VALUE type="Real" value="1"/>
 </INIT_PARAM>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="processors">
 <VALUE type="Integer" value="1"/>
 </INIT_PARAM>
 <INIT_PARAM xsi:type="Devs:T_Value_Init_Param" name="cores">
 <VALUE type="Integer" value="2"/>
 </INIT_PARAM>
 ...
 </INIT_PARAMS>
 </LIBRARY_COMPONENT>
</COMPONENT_REFERENCE>

Fig. 8. DEVS XMI representation of an EIS Atomic Network

A. Imperative Relational Approach

Using QVT, a single transformation is defined to convert the
SysML system model, defined as a hierarchy of components,
to a DEVS coupled model, consisting of other DEVS models,
either coupled or atomic. This transformation is unidirectional
and defined using QVT relations. Each QVT relation consists
of (a) the declaration of the source and target meta-model
domains it is applied to, (b) the when clause, defining the
preconditions that must hold so that the relation is applied
and (c) the where clause indicating relations that should be
applied if this relation is valid. This way model element
relationships, preconditions and postconditions are declared
in distinct sections of relation definitions, simplifying the
definition of transformations. This eliminates syntactical errors
and facilitates avoiding logical ones. In Fig. 9, the relation
applied to EIS Atomic Networks to create DEVS Network
components is presented. When the precondition holds, i.e.
the Eval-Atomic-Network stereotype is applied to a SysML
block, four predicates are applied (where clause). The first
one creates the list of components contained in the network.
The second and third configure network components intercon-
nections (forward and reverse direction, respectively).

B. Stereotype Handling

The stereotype mechanism is commonly used to discrim-
inate EIS elements with attributes important for simulation.
As stereotypes defined for meta-model elements of the source
meta-model can be easily checked in relation preconditions,
elements of the source meta-model a transformation should
be applied to are effectively identified. The QVT relation
eisEvalNetwork2ComponentReference, depicted in Fig. 9, is
applied only for blocks stereotyped as Eval-Atomic-Network,

relation eisEvalNetwork2ComponentReference {
 networkName: String;
 throughput: String;
 checkonly domain eis scenario : uml::Class {
 nestedClassifier = network : uml::Classifier {
 name = networkName } };
 enforce domain devs componentReferenceList : Devs::T_Component_Reference_List {
 COMPONENT_REFERENCE = componentReference : Devs::T_Component_Reference {
 text = networkName,
 LIBRARY_COMPONENT = libraryComponent : Devs::T_Library_Component {
 class = 'Network',
 _package = 'eis',
 INIT_PARAMS = ips : Devs::T_Init_Params {
 INIT_PARAM = ip : Devs::T_Value_Init_Param {
 name = 'throughput',
 VALUE = v : Devs::T_Value { type = 'Real', value = throughput } },
 INIT_PARAM = ip0 : Devs::T_Array_Init_Param {
 name = 'nodes',
 INIT_PARAMS = nodes :Devs::T_Init_Params { } } } } }};
 when {
 network.getAppliedStereotype(
 'Eval-Atomic-Network::Eval-Atomic-Network')->notEmpty(); }
 where {
 eisEvalNode2ComponentReference(scenario,network,nodes,componentReferenceList);
 eisEvalNodeContainment2NetworkNodeCoupling(network,internalCoupling);
 eisEvalNodeContainmentRev2NetworkNodeCoupling(network,internalCoupling);
 throughput = getStringValueFromStereotypes(
 network,Set{'Eval-Atomic-Network::Eval-Atomic-Network'},'Throughput'); } }

Fig. 9. Transforming Network elements to DEVS components with QVT

as indicated in the when clause (precondition). The same
holds for stereotype properties defined as tagged values. For
example, the throughput attribute of DEVS Network element is
assigned the Throughput tagged value of the Atomic Network.

C. Controlling Sets of Meta-model Elements

In QVT, OCL declarative set operators, like select, any and
forAll, can be used, allowing the conditional aggregation and
validation of target meta-model elements that a relation is
applied to. Using them, element multiplicity may be handled
in a clear, declarative fashion, allowing emphasis to be given
on defining the actual conditions that must hold, further
promoting model transformation correctness. The QVT code
fragment, depicted in Fig. 10, is used to apply a relation for
all network names stored in a string, delimited by a new line
character. The split method creates a sequence of the delimited
network names and the select operator selects only the network
names (x) with size above one, to avoid empty entries. The
second select operator contains in its condition and therefore
applies the atomicNetworkName2CompositeNetworkIP rela-
tion to all selected network names. The result of a select
operation is a collection that is converted to boolean with the
isEmpty operation, so that it can be placed in the where clause.

where {
 networksString.split('\n')->select(x | x.size()>1)->
 select(y | atomicNetworkName2CompositeNetworkIP(y,networks)).isEmpty();}

Fig. 10. Handling collections in QVT with OCL

D. Operational Characteristics

Operational characteristics may be facilitated, whenever the
relational approach is not convenient. For example, Fig. 11
depicts the definition of a query that checks parentheses align-
ment in an expression. This is implemented in a procedural
manner, but it can be used in when clauses of relations.
This way, relational and operational characteristics may be
combined. Appropriate balance of such a combination may
further simplify the definition of the transformation.

query parenthesesOk(s:String, i:Integer) : Boolean {

 if (s.size()=0 and i=0)

 then true

 else if (s.size()=0 and i<>0)

 then false

 else if (s.startsWith('('))

 then parenthesesOk(s.substring(2,s.size()),i+1)

 else if (s.startsWith(')'))

 then parenthesesOk(s.substring(2,s.size()),i-1)

 else parenthesesOk(s.substring(2,s.size()),i)

 endif

 endif

 endif

 endif}

Fig. 11. Custom operational query definition in QVT

E. QVT Usability

Summarizing, QVT seems ideal for model transformation,
provided models are defined based on MOF meta-models. As
far as QVT transformation definition is concerned, although
there is a standard graphical notation for QVT relations, it
can not be effectively applied for large transformations with
complex expressions, as expected in most cases. Thus, model
transformation relations are defined using QVT code. How-
ever, once a transformation is defined, it may be simply applied
by system engineers in different models without additional
parameterization.

When defining a QVT transformation, acquaintance with
OCL is a prerequisite for fruitful results, making it quite
difficult for system engineers and simulation practitioners.
Furthermore, although numerous QVT tools are available, no
adequate documentation is provided. These facts contribute to
the impression that QVT is hard to use for the simulation
community.

VI. CONCLUSIONS

The adoption of MDA concepts may facilitate simulation
code generation for SysML models. Precisely, in the case of
simulating SysML models with DEVS, we have experienced
that an entirely MDA-based approach is both feasible and,
most importantly, practical. Existence of simulation-specific
MOF meta-models is fundamental in such approaches, since
it is the only prerequisite to take advantage of main MDA char-
acteristics, and standard transformation tools based on QVT. It
would enable simulation communities to integrate with SysML
in a standardized way, and promotes interoperability.

Lack of know-how, adhesion to proprietary representations,
difficulty in forming standardization groups and partial diffi-
culties in using existing transformation tools were identified
as some of the reasons behind the fact that simulation-specific
MOF meta-models are not established. However, research and
industry across multiple domains and simulation community
could benefit from such an evolution.

Here, transformation of SysML system models to simula-
tion models is considered as a standards-based process that
transforms elements of the UML meta-model to elements of
the simulation-specific meta-model. Each transformation to a
simulation framework is defined in its own semantic context,
while high-level, semantic-aware transformations are defined
with QVT. The overall methodology utilizes existing tools for
both SysML system modeling and simulation execution, as
well as model transformation.

As already stated the alternative would be to directly pro-
duce simulation code using a custom application integrated
within the adopted SysML modeling tool. Some simulation
practitioners might favor it, as they would consider such an
approach much simpler. However, it may lacks in model trans-
formation consistency and completeness. It should be noted
that the use of domain specific languages (DSLs) instead of
SysML is possible, but it constitutes a not so general approach.
In addition, the overhead for creating extensions in multiple
DSLs, incorporating them in the corresponding modeling tools
and defining transformations to target simulation frameworks
would be dramatically increased.

Future work involves the progressive development of a MOF
meta-models library for different simulation environments, fur-
ther contributing to their interoperability and the exploitation
of a common SysML profile serving all of them.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Nicolas Meseth, Patrick
Kirchhof, and Thomas Witte for their valuable help.

REFERENCES

[1] L. Baker, P. Clemente, B. Cohen, L. Permenter, B. Purves, and
P. Salmon, “Foundational Concepts for Model Driven System Design,”
July 2000.

[2] O. M. G. Inc, Systems Modeling Language (SYSML) Specification,
Version 1.3, Std., June 2012, http://www.omg.org/spec/SysML/1.3/PDF.

[3] A. Law, Simulation modeling and analysis, 4th ed., ser. McGraw-Hill
series in industrial engineering and management science. McGraw-Hill,
2006.

[4] OMG, “Model Driven Architecture. Version 1.0.1,” Available online via
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, June 2003.

[5] E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation
modeling using SysML,” in WSC ’07: Proceedings of the 39th confer-
ence on Winter simulation. Piscataway, NJ, USA: IEEE Press, 2007,
pp. 796–803.

[6] A. A. Kerzhner, J. M. Jobe, and C. J. J. Paredis, “A formal framework
for capturing knowledge to transform structural models into analysis
models,” Journal of Simulation, vol. 5, no. 3, pp. 202–216, 2011.

[7] O. Schonherr and O. Rose, “First steps towards a general SysML model
for discrete processes in production systems,” in Proceedings of the 2009
Winter Simulation Conference, Austin, TE, USA, December 2009, pp.
1711–1718.

[8] O. Batarseh and L. F. McGinnis, “System modeling in sysml and system
analysis in arena,” in Proceedings of the Winter Simulation Conference,
ser. WSC ’12. Winter Simulation Conference, 2012, pp. 258:1–258:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2429759.2430107

[9] OMG, SysML-Modelica Transformation (SyM), Nov. 2012. [Online].
Available: http://www.omg.org/spec/SyM/1.0/PDF/

[10] B. P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and
Simulation, 2nd ed. Academic Press, 2000.

[11] B. P. Zeigler and H. S. Sarjoughian, Introduction to DEVS Modeling and
Simulation with JAVA. DEVSJAVA Manual, 2003. [Online]. Available:
www.acims.arizona.edu/PUBLICATIONS/publications.shtml

[12] M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. Scott, and M. Wil-
son, “Slim: collaborative model-based systems engineering workspace
for next-generation complex systems,” in Aerospace Conference, 2011
IEEE, 2011, pp. 1–15.

[13] R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Bajaj, and I. Kim,
“Simulation-based design using SysML part 1: A parametrics primer,”
in INCOSE Intl. Symposium, San Diego, CA, USA, 2007, pp. 1–20.

[14] R. Peak, C. J. Paredis, and D. R. Tamburini, “The composable object
(COB) knowledge representation: Enabling advanced collaborative engi-
neering environments (CEEs), COB requirements & objectives (v1.0),”
Georgia Institute of Technology, Atlanta, GA, Technical Report, Oct.
2005.

[15] D. R. Tamburini, “Defining executable design & simulation models using
SysML,” Available online via http://www.pslm.gatech.edu/topics/sysml/,
March 2006.

[16] R. Wang and C. Dagli, “An executable system architecture approach
to discrete events system modeling using SysML in conjunction with
colored petri nets,” in IEEE Systems Conference 2008. Montreal: IEEE
Computer Press, April 2008, pp. 1–8.

[17] G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “An
integrated framework for automated simulation of SysML models using
DEVS,” 2012.

[18] M. Nikolaidou, G.-D. Kapos, V. Dalakas, and D. Anagnostopoulos, “Ba-
sic Guidelines for Simulating SysML Models: An Experience Report,”
in Proc. Seventh Int. Conf. on System of Systems Engineering (SoSE)
2012, July 2012, pp. 95–100.

[19] M. Nikolaidou, V. Dalakas, L. Mitsi, G.-D. Kapos, and D. Anagnos-
topoulos, “A SysML profile for classical DEVS simulators,” in Pro-
ceedings of the Third International Conference on Software Engineering
Advances (ICSEA 2008). Malta: IEEE Computer Society, October 2008,
pp. 445–450.

[20] OMG, “Meta object facility (MOF) 2.0 Query/View/Transformation
specification,” Transformation, no. April, pp. 1–230, 2008. [Online].
Available: http://www.omg.org/spec/QVT/1.0/PDF/

[21] J.-N. Mazon, J. Trujillo, M. Serrano, and M. Piattini, “Applying MDA
to the development of data warehouses,” in Proceedings of the 8th
ACM international workshop on Data warehousing and OLAP, ser.
DOLAP ’05. New York, NY, USA: ACM, 2005, pp. 57–66. [Online].
Available: http://doi.acm.org/10.1145/1097002.1097012

[22] B. P. Lamancha, P. R. Mateo, I. R. de Guzmán, M. P. Usaola, and
M. P. Velthius, “Automated model-based testing using the UML testing
profile and QVT,” in Proceedings of the 6th International Workshop on
Model-Driven Engineering, Verification and Validation, ser. MoDeVVa
’09. New York, NY, USA: ACM, 2009, pp. 6:1–6:10.

[23] J. R. Romero, N. Moreno, and A. Vallecillo, “Modeling ODP correspon-
dences using QVT,” in Model-Driven Enterprise Information Systems,
Proceedings of the 2nd International Workshop on Model-Driven En-
terprise Information Systems, MDEIS 2006, In conjunction with ICEIS
2006, Paphos, Cyprus, May 2006, L. F. Pires and S. Hammoudi, Eds.
INSTICC Press, 2006, pp. 15–26.

[24] D. Li, X. Li, and V. Stolz, “QVT-based model transformation using
XSLT,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–8, Jan. 2011.

[25] A. Kusel, W. Schwinger, M. Wimmer, and W. Retschitzegger, “Common
pitfalls of using QVT relations-graphical debugging as remedy,” in En-
gineering of Complex Computer Systems, 2009 14th IEEE International
Conference on. IEEE, 2009, pp. 329–334.

[26] P. Stevens, “Bidirectional model transformations in QVT: Semantic
issues and open questions,” Software and Systems Modeling, vol. 9,
no. 1, pp. 7–20, 2010.

[27] D. Cetinkaya, A. Verbraeck, and M. D. Seck, “Mdd4ms: A model driven
development framework for modeling and simulation,” in Proceedings
of the 2011 Summer Computer Simulation Conference. Society for
Modeling and Simulation International, Jun. 2011, pp. 113–121.

[28] L. McGinnis and V. Ustun, “A simple example of SysML-driven
simulation,” in Winter Simulation Conference (WSC), Proceedings of
the 2009. IEEE, 2009, pp. 1703–1710.

[29] MG, SysML Plugin for Magic Draw, 2007.
[30] OMG, “MOF 2.0 XMI Mapping Specification. Version 2.1.1,” Available

online via http://www.omg.org/technology/documents/formal/xmi.htm,
December 2007.

[31] N. Meseth, P. Kirchhof, and T. Witte, “XML-based DEVS modeling and
interpretation,” in SpringSim ’09: Proceedings of the 2009 Spring Sim-
ulation Multiconference. San Diego, CA, USA: Society for Computer
Simulation International, 2009, pp. 1–9.

[32] OMG, “Model Driven Architecture. Version 1.0.1,” Available online via
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, June 2003.

[33] J. Martı́n, S. Mittal, M. López-Peña, and J. De la Cruz, “A W3C
XML schema for DEVS scenarios,” in Proceedings of the 2007 spring
simulation multiconference-Volume 2. Society for Computer Simulation
International, 2007, pp. 279–286.

[34] S. Garredu, E. Vittori, J. F. Santucci, and P.-A. Bisgambiglia, “A
meta-model for devs - designed following model driven engineering
specifications,” in SIMULTECH’12, 2012, pp. 152–157.

[35] M. Nikolaidou, A. Tsadimas, and D. Anagnostopoulos, “Model-based
enterprise information system architecture design using sysml,” in IEEE
Systems Conference 2010, April 2010.

