
IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2 1

An Integrated Approach to Automated
Semantic Web Service Composition

through Planning
Ourania Hatzi, Dimitris Vrakas, Mara Nikolaidou, Nick Bassiliades,

Dimosthenis Anagnostopoulos, Ioannis Vlahavas

Abstract— The paper presents an integrated approach for automated semantic web service composition using AI planning
techniques. An important advantage of this approach is that the composition process, as well as the discovery of the atomic
services that take part in the composition, are significantly facilitated by the incorporation of semantic information. OWL-S web
service descriptions are transformed into a planning problem described in a standardized fashion using PDDL, while semantic
information is used for the enhancement of the composition process as well as for approximating the optimal composite service
when exact solutions are not found. Solving, visualization, manipulation and evaluation of the produced composite services are
accomplished, while, unlike other systems, independence from specific planners is maintained. Implementation was performed
through the development and integration of two software systems, namely PORSCE II and VLEPPO. PORSCE II is responsible
for the transformation process, semantic enhancement and management of the results. VLEPPO is a general-purpose planning
system used to automatically acquire solutions for the problem by invoking external planners. A case study is also presented to
demonstrate the functionality, performance and potential of the approach.

Index Terms— Intelligent Web Services and Semantic Web, Services Composition, Composite Web Services

—————————— ——————————

1 INTRODUCTION
EB services provide a standardized way to achieve
interoperability between heterogeneous software
systems independently from underlying imple-

mentation technologies and platforms. However, the li-
mited functionality offered by an atomic web service can-
not always satisfy complex user needs and appropriately
reflect intricate business processes [39]. Web service com-
position techniques attempt to solve such issues by com-
bining and integrating suitable atomic web services into a
composite one. The simplest option for web service com-
position is to perform it manually. In this case, a domain
expert takes into account user requirements and browses
through the available web services to eventually create a
desired composite service. The composite service struc-
ture, as well as the atomic services taking part in the
composition, are described statically. However, the most
promising alternative is automated composition. The abil-
ity to perform web service discovery and composition
automatically and dynamically is essential and has
emerged as an important research topic [7][28][29][41].

Automated web service composition deals with the

significant increase in the number of available services
over time, as well as frequent changes in their definitions.
It enables significantly faster responses to user queries for
composite services, compared to the manual case. Also, it
produces compositions up-to-date with the latest web
service definitions, despite the dynamic environment.

Automated web service composition is commonly per-
formed using AI techniques, especially AI planning
[4][30][43][47][48]. Existing approaches [10][12][13] have
successfully utilized intelligent techniques to dynamically
locate services [49] and / or automatically compose them.
They use WSDL or BPEL4WS descriptions emphasizing
structural properties, which describe service interaction
(e.g. service input – output).

The aforementioned approaches and the most common
web service standards operate at the syntactic level. In-
corporation of semantics can facilitate automation of both
discovery and composition by eliminating syntactic bar-
riers [27][38][42]. Semantics also allow the creation of ap-
proximate composite services and, consequently, the
evaluation of their quality in terms of accuracy. Stan-
dards, such as OWL-S [31], provide the means to incorpo-
rate semantics in web service descriptions. Such semantic
descriptions conform to ontologies which define relations
among them. Enhanced composition features, such as
approximation, are facilitated by the semantic informa-
tion of OWL-S; however, existing tools and methodolo-
gies do not utilize this information [3][40].

Apart from syntactic and semantic knowledge, a third

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• O. Hatzi, M. Nikolaidou and D. Anagnostopoulos are with the Depart-

ment of Informatics and Telematics, Harokopio University of Athens,
Greece. E-mail: {raniah, mara, dimosthe}@hua.gr.

• D. Vrakas, N. Bassiliades and I. Vlahavas are with the Department of
Informatics, Aristotle University of Thessaloniki, Greece. E-mail: dvra-
kas, nbassili, vlahavas}@csd.auth.gr.

Manuscript received on June 24th, 2010; 1st revision on September 30th, 2010;
2nd revision on December 7th, 2010; accepted on December 25th, 2010.

W

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

type called contextual or pragmatic knowledge is men-
tioned in the literature [45][46] as useful for providing
reasonable compositions. Pragmatic knowledge does not
concern the service itself, but describes the way the ser-
vice relates to the satisfaction of the goals of the composi-
tion consumer [44]. For example, if several e-bookstore
services offer a specific book, pragmatic knowledge could
indicate that the cheapest offer should be accepted. The
caption of such knowledge is not supported by current
web service description standards, though the exploration
of such issues is a very promising research direction.

We argue that automated composition of web services
should exert the semantic information included in OWL-S
to the full extent. Towards this direction, the paper
presents an integrated approach for semantic web service
composition, exploiting AI Planning techniques. It aims at
providing enhanced composition functionality, including
the expansion of the solution space with approximate
composite services and the evaluation of solutions in
terms of accuracy. The proposed approach is based on
transforming the web service composition problem into a
planning problem and solving it after enrichment with
semantic information extracted from OWL-S. In this way,
extensive research in AI planning can be applied to the
area of web service composition. The produced domain is
described using well-established standards, such as
PDDL [19], while solutions may be acquired using a va-
riety of external planners in a standard way. Indepen-
dence from planning techniques and algorithms is pro-
vided, enabling us to take advantage of recent research
advances. Solutions are transformed back to OWL-S de-
scriptions, which are suitable for execution in any web
service environment. The approach facilitates the compo-
sition process, even for non-expert users. The aforemen-
tioned activities are organized into a seven-step approach
discussed in the paper.

The implementation of the approach is accommodated
by the development and integration of two software sys-
tems. PORSCE II is responsible for all transformation pro-
cedures, semantic enhancement and management of the
results. VLEPPO is a general-purpose, domain-
independent system for the design and solving of plan-
ning problems. In the proposed framework, it is em-
ployed to automatically and flexibly acquire solutions to
web service composition problems.

The rest of the paper is structured as follows: Section 2
discusses related work in the area of automated web ser-
vice composition. Section 3 presents the proposed ap-
proach, identifying its discrete steps, the interaction be-
tween them and how they are implemented. Sections 4
and 5 elaborate on the PORSCE II and VLEPPO systems,
respectively. Section 6 presents a case study and perfor-
mance results and, finally, Section 7 provides conclusions
and poses future directions.

2 RELATED WORK
Web service composition approaches range from ma-

nual, where user intervention is required in every step of
the process, to fully automated, where intervention is
confined to defining user requirements for the desired
composite service [3][4][5][6][7]. The criterion for this ca-
tegorization is the degree of automation of two main as-
pects: structure of the composition and discovery of the
atomic web services taking part in the composition. In
manual approaches, composition is accomplished
through standards, which describe complex business
processes implemented through composite services; the
most prominent is BPEL4WS [8]. Semi-automated ap-
proaches concern only parts of the process. For example,
they automate only the selection of certain atomic web
services that implement a manually defined composition
scheme [9]. Finally, fully automated approaches entail
automation of both the composition plan and the discov-
ery of appropriate atomic web services. As the number of
available services continuously increases over time, au-
tomation of the composition process constitutes the only
solution able to efficiently manage the vast volume of this
domain. Other advantages include scalability, flexibility
to detect changes in atomic service definitions, and dy-
namic handling of service failure/unavailability.

Automated approaches typically involve representa-
tion of the composition problem in such a way that well-
defined and long-studied AI techniques can be utilized to
obtain solutions to the problem. The use of semantics can
significantly facilitate the representation process and en-
hance employment of intelligent techniques.

Theoretical works, such as the Causal Link Matrix
(CLM) [35], provide a solid background for semantic web
service composition through AI techniques. CLM consti-
tutes a formal theoretical model accommodating AI plan-
ning for web service composition. It involves precomput-
ing all causal relations between semantic web services
and utilizing them to formulate valid compositions. Al-
though it takes into account semantics, the lack of an im-
plementation and experimental results does not allow us
to draw conclusions about its scalability.

SHOP2 [10] was initially created as a general-purpose,
heuristic-driven Hierarchical Task Network (HTN) plan-
ning system. It was later used for automated web service
composition. OWL-S process models are encoded as
SHOP2 domains, while the web service composition
problem is encoded as a planning problem. Solutions are
acquired by HTN planning. The main disadvantage of
this approach is that the planning process, due to its hie-
rarchical nature, requires certain decomposition rules to
be encoded in advance with the help of a DAML-S
process ontology. In order for decomposition rules to be
sound, prior expert knowledge of the domain is required.

Another approach for automated web service composi-
tion is attempted through planning as model checking,
with the modification of the MBP system [11]. MBP ac-
cepts as input web services, described as abstract
processes in BPEL4WS, and a given goal process. It pro-
duces a description of the desired composite service in
BPEL4WS. This approach copes with issues such as non-

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 3

determinism, partial observability and extended goals.
However, semantic information is not utilized during
composition, while scalability is questionable.

The work in [36] represents atomic services as state
transition operators and employs estimated-regression
planning with heuristics to perform composition. In order
to be used, it requires extension to current standards,
while scalability results are not encouraging.

The approach presented in [12] attempts the modifica-
tion of GOLOG to adjust it to web service composition
standards. The approach is based on intelligent agents
having the ability to reason for automated service discov-
ery and composition. User requirements and constraints
are modeled through Situation Calculus. Consequently,
GOLOG is used to find an appropriate composition plan.
Encoding and translation processes in this approach are
generally complex, while interoperability with existing
systems and standards is decreased.

The SWORD system [13] describes available web ser-
vices with the aid of Entity – Relationship Models and
Horn rules. Therefore, domain-specific knowledge is re-
quired. The final composition plan is derived through a
rule-based expert system, requiring user intervention.

OWLS-XPlan [14] uses semantic descriptions of web
services in OWL-S to derive planning domains and prob-
lems, and then invokes a planning module, called XPlan,
to generate composite services. The system is compliant
with an XML dialect of PDDL. However, semantic infor-
mation provided from domain ontologies is not utilized;
therefore, the planning module requires exact matching
between service inputs and outputs.

The middleware presented in [32] is able to transform
a group of OWL-S web service descriptions into a tem-
poral HTN domain. The composition is performed with a
combination of a built-in HTN planner called SIADEX
and temporal reasoning. Although this system is very
interesting, as it deals with the aspect of temporality, it
does not utilize the full potential of the semantic descrip-
tions of web services. The middleware is not capable of
processing semantics appropriately in order to perform
relaxed matching; therefore, exact matching is required.

The motivation for our work is to propose an approach
for automated service composition through planning,
avoiding possible deficiencies of the aforementioned sys-
tems. This approach extensively utilizes semantics, while
maintaining high efficiency, provides interoperability
with current standards, and does not require any addi-
tional, domain-expert knowledge. Therefore, it demands
minimum user intervention. Moreover, it finds semanti-
cally approximate solutions, according to user desires.
Also, it takes into account cases of service unavailability
and handles them appropriately. Finally, the approach is
modular and independent from any implementation de-
tails, such as specific planning algorithms. In this way, its
implementation and the acquisition of solutions can be
facilitated by a number of different systems.

3 PROPOSED APPROACH
Our approach aims at automated semantic web service

composition under semantic awareness, via AI planning
techniques. This is achieved by transforming the web ser-
vice composition problem into a planning problem. In-
corporation of semantic information expands the solution
space with approximate solutions. Solutions are obtained
by invoking external planners in a standardized way. In
order to facilitate execution, the results are eventually
transformed to the original web service context.

The proposed approach achieves a high degree of au-
tomation, facilitating web service composition, even for
non-experts. The overall user experience is not signifi-
cantly different from the experience of discovering and
invoking an atomic web service.

The key features of this approach are:
 Natural representation of web services in planning

terms, due to straightforward mapping of OWL-S to
PDDL elements.

 Flexibility in the selection of external planning sys-
tem, due to the independence between representa-
tion and solving.

 Extensive exploitation of semantic information (se-
mantic web service descriptions and accompanying
ontologies).

 Compliance with prominent standards.
 Full-cycle composition support, as the procedure in-

itiates from web service descriptions in OWL-S, and
results in composite service descriptions in the same
standard, facilitating deployment of the produced
composite services.

The discrete steps constituting the overall approach are:
1. Problem transformation
2. Visual representation (optional)
3. Semantic enhancement
4. Solving through external planners
5. Composite service accuracy assessment
6. Service replacement (optional)
7. Reverse transformation

The first step is the translation of the web service
composition problem into a planning problem. It con-
cerns both the available OWL-S web services and user
requirements of the composite service. It produces a
planning domain and problem description, which can be
consequently visualized. The next step involves semantic
enhancement of this planning domain and problem. This
is significant, as in many cases the syntactical differences
among concepts prohibit planning systems from success-
fully matching inputs to outputs, even if they are seman-
tically equivalent or very similar. The planning domains
and problems derived from the initial web service com-
position problem, possibly semantically enhanced, are
exported to PDDL so they can be solved by external,
PDDL-compliant, domain independent planners, employ-
ing classical planning techniques. The produced plans
constitute descriptions of the desired composite service.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

Semantic enhancement as well as the use of multiple ex-
ternal planning systems might produce more than one
composite services, which are compared and assessed in
the next step. The optional replacement step handles cas-
es of service failure or unavailability by replacing atomic
services taking part in a composite service. Finally, the
produced results are transformed to OWL-S.

Fig. 1. Proposed approach steps.

All web service related steps, namely transformation, se-
mantic enhancement, service accuracy assessment, service
replacement and reverse transformation, are imple-
mented in the PORSCE II system [1]. Planning related
steps are accommodated by the VLEPPO system [2][24],
which can also be used as a general purpose planning
system for other applications. Implementation of these

steps in the two systems is depicted in Fig. 1.
Although we have developed PORSCE II and VLEP-

PO systems to support the proposed steps, other existing
systems could be used as well. In this case, the proposed
methodology should be viewed as a plan depicting how
these systems should be integrated.

The architecture of the two software systems imple-
mented to support the proposed approach and the way
they are integrated are depicted in Fig 2.

PORSCE II is responsible for automated composition
of semantic web services through planning. It comprises
of five subcomponents: OWL-S Parser, OWL Ontology
Manager (OOM), Transformation Component, Visualizer
and Service Replacement Component.

The OWL-S Parser adds the available OWL-S web ser-
vice profiles and the corresponding ontologies in the sys-
tem. OOM applies algorithms for discovering concepts
that are semantically similar to a query concept, accord-
ing to similarity metrics. The Transformation Component
expresses the problem of web service composition as a
planning problem. Moreover, it interacts with the user to
set semantic similarity thresholds and enhances the plan-
ning problem with semantic information retrieved from
the OOM. Additionally, it cooperates with external plan-
ning systems, which search for composition plans by
matching OWL-S profile input and output parameters.
When a solution to the problem is acquired, the Trans-
formation Component uses information about concepts to
assess its accuracy. Finally, it transforms the produced
composite services back to OWL-S. The purpose of the
Visualizer is to provide the user with a visual description
of the plan representing the composite service, along with
its calculated accuracy. Finally, the Service Replacement
Component enables the user to modify the composite
service by replacing a specific atomic web service in it.

Fig. 2. Architectures of PORSCE II and VLEPPO.

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 5

Key features of PORSCE II include:
 Parsing of OWL-S web service profiles, atomic or

composite, and translation into PDDL operators.
 Interaction with the user to acquire their preferences

regarding the composite service and desired metrics
for concept similarity.

 Enhancement of the planning domain and problem
with semantically equivalent and relevant concepts
by utilizing a Description Logic Reasoner.

 Acquisition of solutions to the web service composi-
tion problem.

 Composite service accuracy evaluation, based on
the selected concept similarity metric.

 Visualization of solution, facilitating identification
of sub-processes, such as Sequence, Split and
Split+Join OWL-S Control constructs.

 Transformation of the solution (composite web ser-
vice) to OWL-S.

 Searching through the available web services to lo-
cate semantically relevant or equivalent alternatives
(atomic or sub-plan) and replacement on demand.

VLEPPO is an integrated system intended to facilitate
modeling and solving of planning problems. Among its
key features is a convenient and intuitive graphical inter-
face, allowing design, comprehension and maintenance of
planning domains and problems. VLEPPO maintains
compatibility with standards, as most visual design ele-
ments offered in the system correspond to PDDL ele-
ments. Compliance with PDDL is also achieved through
import and export features. VLEPPO offers increased
flexibility in integrating planners that are exploited to
acquire solutions to specific planning problems. Thus, the
user is not restricted to a single planning algorithm, but
has the ability to experiment with different planners. Its
main components are Visual Component, Planning Com-
ponent, Import / Load and Export / Save Component.

Advantages of the proposed approach include the abil-
ity to determine how to form valid composite services
satisfying given goals, based only on the OWL-S descrip-
tions of the web services and the corresponding ontolo-
gies. No prior or additional knowledge is demanded,
since the ontologies capture adequately the semantics of
the concepts used. Furthermore, the decision concerning
the quantity and quality of the results, i.e. the number of
composite services produced and their accuracy in
achieving the given goals, is up to the user. Even when no
exact composite services can be found, the system is able
to utilize semantic information to find composite services
that approximate best the desired goal. Moreover, service
failure is handled through atomic service replacement,
without any obligation to perform planning again, a fea-
ture not provided by similar systems. Another important
aspect concerns the independence of problem representa-
tion from problem solution, thus enabling exploitation of
planning research advances, instead of a built-in planner.
Further advantages include conformation to current stan-
dards and increased interoperability and scalability.

4 PORSCE II
This section elaborates on the aspects of the approach
accommodated by the PORSCE II system.

4.1 Semantic Analysis
OOM exploits semantic information contained in the de-
scriptions of web services to enhance the composition
procedure. For that reason, it manages the domain ontol-
ogies used to annotate the input/output parameter con-
cepts of web service descriptions. Management of domain
ontologies involves a reasoning procedure that computes
the inferred ontology relationships, utilizing the Pellet DL
Reasoner [16]. Consequently, concept relevance criteria
are applied to determine semantically equivalent and
relevant concepts to a specific query concept. In the pro-
posed approach, two ontology concepts are considered
relevant if and only if (a) they have a specific hierarchical
relationship, and (b) their semantic distance does not ex-
ceed a user-defined threshold.

Hierarchical Relationships
 Four possible hierarchical relationships exist between
two ontology concepts A and B:
 exact(A,B): The two concepts should have the same

URI or they should be equivalent, in terms of OWL
class equivalence, i.e. A = B ∨ A ≡ B.

 plugin(A,B): The concept A should be subsumed by
the concept B, i.e. A B.

 subsume(A,B): The concept A should subsume the
concept B, i.e. B A. In both the plugin and subsume
cases the subsumption relationships of equivalent
concepts are not considered.

 sibling(A,B): The two concepts have a common, but
not necessarily direct, superclass T, such as AT∧BT.

Semantic Distance
 Two methods for determining the semantic distance
between two ontology concepts are provided [1]:

The Edge-Counting Distance (ec) is based on the dis-
tance of two concepts in terms of the number of edges
found on the shortest path between them in the ontology.
An edge exists between two concepts A and B if A is a
direct subclass of B.

The Upwards Cotopic Distance [17] is defined in terms
of the upwards cotopic measure, denoted as uc(A), that
represents the set of superclasses of concept A, including
A itself. In the proposed approach, this definition has
been modified to incorporate the semantics of an ontolo-
gy hierarchy and it is calculated as (1):

-1
-1

() ()(,) =1-
() ()uc

uc A uc Bd A B
uc A uc B

∩
∪

 (1)

In both cases, the implementation of the semantic dis-
tance metric between two concepts returns a value be-
tween 0 and 1, with 1 denoting absolute mismatch.

4.2 Problem Transformation
A typical web service composition problem involves

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

inputs, or data that the user is willing to provide to the
composite service, and outputs, which reflect the desired
results of the composite web service functionality. It also
includes a number of available web services which can be
combined to achieve a goal. The first step towards utiliz-
ing planning to solve a web service composition problem
is translation of this problem in planning terms.

A planning problem is modeled according to STRIPS
(Stanford Research Institute Planning System) notation
[18] as a tuple <I, A, G> where I is the initial state, A is a
set of available actions and G is a set of goals. States in
STRIPS are represented as sets of atomic facts. Set A con-
tains all the actions that can be used to modify states.
Each action Ai has three lists of facts containing the pre-
conditions of Ai, the facts that are added to the state and
the facts that are deleted from the state, noted as prec(Ai),
add(Ai) and del(Ai) respectively. The following formulae
hold for the states in STRIPS notation:
 An action Ai is applicable to a state S if prec(Ai) ⊆ S.
 If Ai is applied to S, the successor state S’ is calcu-

lated as S’ = S - del(Ai) ∪ add(Ai).
 The solution to a planning problem (plan) is a se-

quence of actions, which, if applied to I, lead to a
state S’ such that S’⊇G.

The solution adopted by our approach for mapping the
web service composition problem to a planning problem
is the following: Let IC be the set of concepts that the user
can provide to the composite service and GC its desired
outputs. If O denotes the set of all available ontology con-
cepts, then IC⊆O, GC⊆O and IC∩GC≡∅. The inputs that
the user wishes to provide formulate the initial state,
while the desired outputs of the composite service formu-
late the goals of the problem: I = IC and G=GC.

The available OWL-S web service descriptions are
used to obtain the available actions in the planning do-
main. More specifically, each web service description
WSDi is translated to a domain action Ai, using the infor-
mation provided by the corresponding profile instance
(each web service description is actually an instance of
the OWL-S Profile class). More specifically:
 The name of the action is the rdf:ID of the profile in-

stance:
()iname A .IDiWSD=

 The preconditions are based on the service input
and precondition definitions (concepts):

m

k
ki

n

k
kii econditionhasWSDhasInputWSDAprec

11

}Pr.{}.{)(
==

∪≡

 The add effects comprise of the service output and
positive effect definitions (concepts):

m

k
ki

n

k
kii hasEffectWSDhasOutputWSDAadd

11

}.{}.{)(
=

+

=

∪≡

 The delete list is formed by the negative effect defi-
nitions (concepts). The SWRL language [25] was
used in order to model the preconditions and effects
of the web services. Preconditions are modeled by
SWRL rule conditions, while positive effects are

modeled as SWRL atomic expressions that are true
in the world after the execution of the web service.
Since SWRL does not directly support negation and
negated atomic expressions, which would model
negative (delete) effects, the negation element of Ru-
leML [26] was employed. The <neg> element is
used by the transformation process in order to dis-
criminate between add and delete effects. The delete
list of the action is formulated as follows:

n

k
kii hasEffectWSDAdel

1

}.{)(
=

−≡

Invocation of planning algorithms over the newly for-
mulated planning problem produces plans, representing
the description of the desired composite web service.

4.3 Semantic Awareness and Relaxation
Successful composition is facilitated if the planning

system is aware of possible similarities among syntacti-
cally different but semantically equivalent concepts. Se-
mantic awareness enables planners to match precondi-
tions and effects correctly, even if the terms used to refer
to them in the web service OWL-S profiles differ [37].

Furthermore, in cases when no exact matching of con-
cepts is possible, the approach is able to utilize, apart
from equivalent concepts, semantically similar concepts
as well. In this case, input concepts can be matched to
output concepts approximately. Semantic relaxation
enables the formulation of composite web services that
are less accurate; nevertheless, they serve the purpose of
the user in the best possible way.

For implementation of semantic awareness and relaxa-
tion, the produced planning domain and problem are
enhanced with semantic information, thus maintaining
planner independence. In a pre-processing step, semanti-
cally similar concepts for the facts of the initial state and
the outputs of the available actions are discovered. Se-
mantic enhancement is based on the following rules:
 The original concepts of the initial state together

with the equivalent and semantically similar con-
cepts form a new set of facts noted as the Expanded
Initial State (EIS).

 The goals of the problem remain the same.
 The Enhanced Operator Set (EOS) is produced, by

including in the effects list of each operator all
equivalent and semantically similar concepts for the
concepts in its initial effects list.

Semantic enhancement, as described above, is performed
in cycles. The thresholds for semantic similarities are in-
creased gradually, and independent thresholds are used
for each hierarchical relationship. In this way, solutions
will be returned in an increasing order of relaxation, start-
ing with exact solutions, if such exist.

4.4 Solution Acquisition and Visualization
The planning domain and problem produced in the

previous steps is encoded into PDDL and solved by ex-
ternal planners in VLEPPO. The derived plans, which
might be either sequential or partially parallel, structured

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 7

in levels, are visualized in PORSCE II. Examples of this
visualization can be found in Section 6. Visualization faci-
litates comprehension of the structure of the produced
composite service.

4.5 Composite Service Accuracy Assessment
In many cases the user is presented with multiple

composite services, due to semantic relaxation and use of
different planners. Despite the fact that all of these com-
posite services cover the requested functionality, some of
them may be more preferable. Therefore, statistics such as
the number of actions and the number of levels in a plan,
as well as accuracy metrics, such as the distance quality
metric, have to be calculated for each composite service.

For the calculation of the distance quality metric, each
concept appearing in the plan is annotated with a seman-
tic distance with respect to the original concept it was
derived from and the selected similarity metric. Addi-
tionally, each concept is annotated with the kind of hie-
rarchical relationship it has with the original concept
(plugin, subsume or sibling relationship).

If there are a total of n concepts and each concept ci is
annotated with a semantic distance value of di, returned
from the OOM, and a corresponding weight of wi, de-
pending on its hierarchical relationship to the original
concept, the distance quality metric for the case of the
edge-counting distance (Plan Semantic Distance for edge-
counting – PSDec) is calculated as a weighted sum of the
distances of all concepts appearing in the plan (2):

i

n

i
iec dwPSD ∑

=

=
0

 (2)

When the upwards cotopic metric is used, the distance
(Plan Semantic Distance for upwards cotopic – PSDuc) is cal-
culated as a weighted product of the all concept distances
appearing in the plan, excluding equivalent concepts (3):

0,
0

≠= ∏
=

ii

n

i
iuc ddwPSD (3)

The weights are used to indicate that, from a semantic
perspective, in specific domains, several hierarchical rela-
tionships are more/less preferable. The plan accuracy
metric in both cases is calculated as 1-PSD; therefore, if
there is exact input to output matching, or if only equiva-
lent concepts are used, then the plan quality metric value
is 1, while it decreases as the plan becomes less accurate.

4.6 Atomic Service Unavailability Handling
Atomic web service unavailability occurs when at-

tempts to access a service using the interface described in
its definition are unsuccessful. In such cases, the ability to
replace this service in the composite service description is
essential. Service replacement can also deal with cases
when the user is unwilling to use a certain web service
due to lack of trust to its provider, security concerns, cost
or time constraints, etc.

Service Replacement Component initiates search from
a selected atomic service included in the composite ser-

vice. It discovers all atomic services that could be used
alternatively, and performs replacement as indicated.

Discovery of alternative atomic services requires ad-
vice from the OOM as far as equivalent and semantically
similar concepts are concerned. An action A is considered
an alternative for an action Q of the plan as far as it does
not disturb the plan sequence and the intermediate states.
Therefore, both the following conditions must hold:
 prec(A) ⊆ S, where S is the state of the world exactly

before the application of this action.
 S-del(A)∪add(A) ⊇ S’, where S’ is the set of facts that

must definitely hold after the execution of A in or-
der for the rest of the plan to be applicable. S’ is giv-
en by applying Algorithm 1 to the part of the plan
starting after Q.

Algorithm 1 Computes the minimum set of facts that must hold in
a state S in order for a plan π to be applicable in S.
Inputs: π = {A1,..,An}: a plan
Output: S’: a set of facts

 set S’ ← {}
 for i ← n downto 1
 set S’ ← S’ ∪ prec(Ai) \ add(Ai)

 return S’

Note that in cases where the original plan was paral-
lel, the above procedure should first serialize the plan,
then search for possible replacements and finally attempt
to recreate the possible parallel structure on the new plan.
This is required in order to increase the number of possi-
ble candidates for action Q. Otherwise, any candidate
replacement should not only lead to a valid plan but also
maintain the same parallel structure of the initial plan.

Alternatively, if no atomic service candidates exist,
Service Replacement Component can perform replanning
in order to locate a set of services that have the same ef-
fect as the one being replaced, and therefore can substi-
tute it. States S and S’, as presented above, serve as initial
and goal states for the replanning process, respectively.

In both cases, lists of alternatives are populated and
the user is enabled to select among them. The selected
alternative substitutes the original service both in the plan
and in the visualization, and accuracy metric is appro-
priately adjusted to reflect the current composite service.

4.7 Solution Transformation
The composition process is completed by transform-

ing the produced composite service into OWL-S. This
process takes into account semantics included in OWL-S
descriptions and domain ontologies. OWL-S establishes a
framework for defining composite processes as a set of
atomic processes, combined together using a number of
control constructs, such as Sequence, Split, and Split+Join.

Algorithm 2 presents the basic algorithm that creates a
composite service, given a web service graph. A web ser-
vice graph is a graph G=(V, E), where the nodes in V cor-
respond to all atomic services in the plan. The edges
(x→y) in E, where x and y are nodes in V, define that web
service x produces an output that is required by y as an

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

input. Algorithm 2 processes every root node in the graph
and produces as output a composite construct of either
the form sequence(c1, c2), or split(c1, c2,.., cn), where c1 to cn
are either NULL or composite constructs.

Algorithm 2 (Basic) Computes an initial composite service with
Sequence and Split constructs
Inputs: G=(V,E): the web service graph
Output: C: a composite service construct
 set R ← {r∈V: ∀x ∈ V, (x→r)∉E } // R: set of root nodes in G
 if R = 0 then return NULL
 if R = 1 then

 set G’← the tree in G with r∈R as the root
 return sequence(r, Basic(G’-{r}))

 set c ← {}
 for each r in R

 set G’← the tree in G with r∈R as the root
 set c←c∪Basic(G’-{r})

 return split(c)

Fig. 3. Example web service graph.

For example, consider the web service graph presented in
Fig. 3. The output of Algorithm 2 will be:

 split(sequence(WSa,sequence(WSc,NULL)),
 sequence(WSb,sequence(WSc,NULL)))

This output is then further processed, by checking the
elements of each Split construct in pairs. If common last
arguments are located (such as the sequence(WSc,NULL)
argument in the previous example), this suggests that a
join is possible and the pair can be condensed by intro-
ducing a Split+Join construct. The result of this process for
the above example is a construct of the form:

 split(sequence(split+join(WSa,WSb),
 sequence(WSc,NULL)))

Finally, the output is simplified by removing NULLs and
single-argument constructs. The final outcome for the
above example composite service is the construct:

 sequence(split+join(WSa,WSb),WSc)

The transformation of the solution to OWL-S facili-
tates deployment of the composite service in OWL-S ex-
ecution systems such as the OWL-S Virtual Machine [23].

5 VLEPPO
This section overviews the functionality of the VLEP-

PO system pertinent to the proposed approach. Descrip-
tion will be confined to the features regarding web service
composition; a full elaboration on the advanced features
of the system is out of the scope of this paper and can be
found in [24].

5.1 Visual Representation and Design
The key feature of Visual Component is its simplicity

and convenience. Planning domains and problems are
represented using graphical notations, bearing a high

degree of correspondence to PDDL 2.2 elements. Plans,
representing composite services, can also be visualized,
provided that they comply with the PDDL+ standard
[15].

The Domain Entities and Relationships
Planning domain structure is described by employing

the formalism of the entity-relationship model, adapted to
the PDDL standard. Classes are mapped to entities and
predicates are mapped to relationships.

In the web services case, predicates of the planning
domain represent concepts serving as inputs and outputs
of services. Classes may represent arguments of these
inputs and outputs, if such exist. An example of the vi-
sualization of an entity-relationship model is depicted in
Fig. 4. The example concerns a partial web service do-
main including identification information of a certain in-
dividual, and phone number data.

Fig. 4. Entity-relationship model example.

Representing Operators
Operators in VLEPPO have a direct correspondence to

PDDL actions. The essential elements of their definition
are preconditions, results (or add / delete lists), and pa-
rameters, and they are visualized in the Operators Editor.

The default view for an operator is preconditions / re-
sults view. This view depicts the preconditions that must
hold for the action to be executed and the state of the
world after the execution of the action (in terms of predi-
cates affected by this action), as depicted in Fig. 5.

Fig. 5. Operator example.

Another option is the add / delete lists view. This

view depicts the facts that will be added and deleted from
the current state of the world upon the application of the
action. This option is more convenient for representing
inputs and outputs in the web service case. An example
of this view can be found later, in the Case Study section.

Moreover, the system supports operators with dura-
tion, referred to in PDDL as durative actions. These can be

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 9

used instead of simple operators to represent web servic-
es whose descriptions provide temporal information,
such as estimated response and execution time. Such de-
scriptions occur by complementing OWL-S with addi-
tional ontologies, such as DAML-Time [33][34], which
introduce temporal web service properties.

Representing Problems
For every domain defined in PDDL, a large number of

corresponding problems can be defined by describing an
initial and a goal state. In the web services case, the prob-
lem represents the user requirements (inputs and out-
puts) of composite services. Problems are represented by
denoting the predicates in the initial state, the predicates
in the goal state, and the objects that take part in the prob-
lem definition, as depicted in Fig. 6.

Fig. 6. Problem instance example.

Syntax and Validity Checking
A very important feature of VLEPPO is real-time syn-

tax and validity checking, as it detects errors and incon-
sistencies at the time they emerge and prevents them
from propagating in the domain. Planning domains are
checked for consistency within their own structures, and
planning problems have to be checked for consistency
and correspondence to the related domains [24].

The validity checks verify the correct structure of the
operators representing web services; therefore, errors in
the web service definitions, such as inconsistent inputs or
outputs can be detected. Moreover, the system verifies the
consistency of the types of the parameters both in opera-
tors and problems. This ensures that all available web
services, as well as the desired composite service, will
have valid concepts as inputs and outputs. At the time of
export, VLEPPO ensures that the domain and problem
are complete, and all essential classes, operators and pa-
rameters have been defined, thus preventing planning
errors for the external planning systems.

Syntax and validity checking can be a very useful fea-
ture in the web services case as currently there are no sys-
tems providing such functionality.

5.2 Interoperability with PORSCE II through PDDL
The feature of VLEPPO that enables interoperability

with PORSCE II and other systems is the ability to import
from and export to PDDL. In addition, compliance with
PDDL results in increased flexibility in selecting external
planning systems for acquiring solutions.

During export, elements taking part in domain defini-
tion can be combined to formulate constructs and ex-
ported to a PDDL domain file. The domain is automati-
cally enhanced with the appropriate requirements tag, as
detected by the system. Elements that formulate the prob-
lem are exported in a separate PDDL problem file, cor-
responding to a specific domain. Plans produced by ex-
ternal planning systems are exported in PDDL+.

Importing and visualizing planning domains and
problems expressed in PDDL serves comprehension, ma-
nipulation and maintenance purposes. The designer is
thus enabled to modify existing domains and problems in
an intuitive way, even if they are not familiar with PDDL
syntax. Both typed and non-typed PDDL files are sup-
ported; however, importing non-typed PDDL is subject to
some restrictions. If no typing is used, syntax alone might
not be enough, and semantic information might be neces-
sary to discriminate types (or timeless unary predicates)
from ordinary unary predicates. Most domains produced
from a web service composition problem are classified in
the non-typed case. To cope with that, a module for trans-
lating non-typed to typed PDDL has been developed. The
module scans the non-typed PDDL file for unary predi-
cates, which are candidates for being considered as
“types”. Consequently, it examines which of them could
be timeless, using the distinctive property of timeless
predicates that they do not appear in any add or delete
lists. The non-typed to typed PDDL translation module
has the best possible results, provided the information
contained in PDDL files. However, when the domain is
not well formed, the intervention of a user, in order to
interpret semantics, is required. Even so, the effort is sig-
nificantly reduced compared to designing the domain
from scratch.

Load / save functions for both domains and problems
can be used alternatively instead of import / export. They
are capable of preserving additional visual information,
such as colors and positions of elements, even for do-
mains that are under development.

5.3 Solving

Interface with planners implemented as web services
As VLEPPO is intended to be an integrated system not

only for designing but for acquiring solutions to planning
problems as well, interoperability with planning systems
is necessary. This is achieved by providing the ability to
discover and communicate with web services offering
implementations of various planning algorithms. Moreo-
ver, existing planning systems can expose their functio-
nality through web services and be utilized by VLEPPO.

To this end, a dynamic web service client has been de-
veloped as a subsystem. In this way, the system can ex-

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

ploit alternative planning web services according to the
problem at hand, as well as cope with changes in defini-
tions of these web services. Problems can be solved with
many planners simultaneously, without any overhead to
local resources.

Communication with web services is performed by
means of exchanging SOAP (Simple Object Access Proto-
col) messages, as the web service paradigm dictates.
However, in a higher level, the communication is facili-
tated by the use of the PDDL language, which constitutes
the common ground between VLEPPO and the planners.
An additional advantage of using the PDDL standard is
that the system is not obliged to determine which PDDL
features the planners can handle, thus leaving each plan-
ning system to decide for itself.

Employment of the web service technology results in
the independence of the approach from the planning or
problem solving module and increased flexibility. Such a
decoupling is essential since new planning systems that
outperform current ones are being developed. Each of
them can be exposed as a web service and then invoked
for solving a planning problem without any further
changes to the domains and problems already designed
and exported as PDDL files.

Solving planning problems locally
Although VLEPPO aims at exploiting the capabilities

of web service technology to take advantage of different
planners, according to the problem at hand, an option to
solve the problems locally is also offered. This option can
be used at any time without any special machine set up.
Therefore, the lack of internet connectivity or planning
web services does not prevent users from obtaining valid
compositions, although resulting compositions in this
case might not be optimal. Currently, the planners used
for solving problems locally are LPG-td [20], which
proved to perform very well based on the results of Inter-
national Planning Competitions, and JPlan [22], which is
an open-source implementation of Graphplan.

6 CASE STUDY AND PERFORMANCE RESULTS
This section aims at demonstrating the application of

the proposed approach, following the course of Fig. 1.
Additionally, it intends to evaluate performance and sca-
lability of the approach for large numbers of available
web services. A major goal is to emphasize compatibility
with existing web service test sets and ontologies. The test
sets used to perform experiments were obtained from the
SemWebCentral OWLS-TC version 2.2 revision 1 [21].
They included web services classified in various domains
such as books, economy, food and travel, accompanied by
corresponding ontologies. Several additional service de-
scriptions of interest, which were included to illustrate
the full capabilities of the system, appear in Table 1. For
experiments, the entire set of web services included in
specific domains is taken into account, so that the pro-
duced domain size is maintained in realistic levels.

Translation of all available OWL-S atomic web servic-
es for this case study is performed in the Transformation
Component of PORSCE II. Each atomic web service is
transformed into a planning action, with the service in-
puts represented as preconditions and the service outputs
mapped to results. Consequently, if the user wishes to,
the produced domain can be imported to VLEPPO for
visualization purposes. The visual representation for
some of the actions of this case study is depicted in Fig. 7.

Table 1. Add / modified web services.

Service Inputs Outputs
BookToPublisher Book, Author Publisher
CreditCardCharge OrderData, CreditCard Payment
ElectronicOrder Electronic OrderData
PublisherElectro-
nicOrder

PublisherInfo OrderData

ElectronicOrde-
rInfo

Electronic OrderInformation

Shipping Address, OrderData ShippingDate
WaysOfOrder Publisher Electronic
CustomsCost Publisher, OrderData CustomsCost

Fig. 7. E-bookstore domain operators.

The scenario implemented here concerns the electron-
ic purchase of a book. The user wishes to provide as in-
puts a book title (books.owl#Book) and author (books.owl
#Author), credit card information (finance_th_web.owl
#credit_card) and the address that the book will be
shipped to (Mid-level-ontology.owl#Address). The out-
puts of the desired composite service are a payment from
the credit card for the purchase (finance_th_web.owl
#payment), as well as shipping dates (my_ontology.owl
#ShippingDate) and customs cost (my_ontology.owl
#CustomsCost) for the specific item.

User requirements for the desired composite service
are expressed either in PORSCE II through a dialog inter-
face such as the one depicted in Fig. 8, or visually in
VLEPPO as a planning problem, as shown in Fig. 9.

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 11

Fig. 8. Initial and goal state definition in PORSCE II.

Fig. 9. Initial and goal state definition in VLEPPO.

The next step is optional semantic relaxation, per-

formed through semantic enhancement. While exact
matching of input to output concepts is obligatory in clas-
sical planning domains, this might not be the case for the
web services world. Generally, it is considered preferable
to present a composite service that approximates the re-
quired functionality than to present no service at all. In
such cases, semantic relaxation can be proved very useful.

The semantically relevant and equivalent concepts
needed for implementing semantic relaxation are ob-
tained from the OOM, while the user has control over the
degree of relaxation by defining semantic distance me-
trics, hierarchical relationships and thresholds.

At this point, PORSCE II exports the formulated (and
possibly semantically enhanced) planning domain and
problem to PDDL. The full domain and problem for this
case study, visualized in VLEPPO, is presented in Fig. 10.

In order to acquire solutions, both domain and prob-
lem are imported in VLEPPO, which for this example
invokes LPG-td locally, using the operator set described
above, without including any semantically relevant con-
cepts. The result is presented in Fig. 11.

If an exact matching service is impossible to be found,
then the user might resort to approximate services
through semantic relaxation. Such an approximate service
for the specific case study is presented in Fig. 12. The cal-
culated accuracy of this approximate service is different
from the accurate one presented in Fig. 11.

Fig. 10. Domain and problem representation in VLEPPO.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

Fig. 11. Accurate plan. As no relaxed matching is performed, accuracy quality is the best possible.

Fig. 12. Relaxed plan. Note that relaxed matching alters the plan accuracy quality value.

Experiments performed intended to study the beha-

vior of the system as the number of available web services
increases significantly. Scalability issues are emphasized
as they have not been previously explored for other re-
lated systems. For example, OWLS-XPlan has only been
studied for domains up to approximately 50 services, and
no performance measures are provided. The ability of a
web service composition system to scale up and maintain
efficiency is very important, as it is one of the main fac-
tors that determine the applicability of the approach in
real world domains, with hundreds of web services.

Table 2. Time measurements (in milliseconds)

Number of web
services

10 100 500 1000

Preprocessing
time (PORSCE II)

5857 6104 5875 5703

Total trans-
formation time
(PORSCE II)

X 4594 70062 350836 792109
E 4531 75725 335477 796797
C 4585 74688 728633 3901141

Transformation
time per WS
(PORSCE II)

X 459 700 702 792
E 453 671 757 797
C 459 746 1457 3901

Planning time
(LPG-td)
(VLEPPO)

X 1 13 16 17
E 4 6 15 16
C 3 5 16 16

In experiments, web service profiles were added to the

domain progressively in batches. The time performance
results presented in Table 2 were obtained from a number
of runs of the system on a machine with Dual-Core AMD

Opteron Processor at 2.20GHz with 1GB of RAM memory
and concern times for preprocessing, OWL-S to PDDL
transformation and planning using LPG-td.

Measurements took place for domains of different siz-
es, namely 10, 100, 500 and 1000 OWL-S profiles. Some of
the experiments were performed without semantic relaxa-
tion (X), while others were performed with semantic re-
laxation using either the edge-counting distance metric
(E) or the upwards cotopic metric (C).

Preprocessing times did not show significant fluctua-
tion, as they depend only on the number and structure of
processed ontologies and not on the number of available
web services. Preprocessing time is not negligible; how-
ever, this process is done offline, only once. Then, results
are taken into account for a large number of user requests.
Preprocessing does not need to be performed again as far
as the domain ontologies are not significantly altered.

As far as the scalability of the system is concerned, to-
tal transformation time evidently increased as the number
of available web services increased. However, the calcula-
tion of the average transformation time per web service
profile shows that it converged to approximately 0.8
seconds for the exact matching and the edge-counting
distance metric cases. For these cases, the complexity of
the transformation process is linear. In the upwards co-
topic metric distance case, the increase in the average
transformation time appears to be significant as available
web services increase. This overhead is introduced during
the location of semantically similar concepts, in order to
perform semantic relaxation. The delay happens due to

HATZI ET AL.: AN INTEGRATED APPROACH TO AUTOMATED SEMANTIC WEB SERVICE COMPOSITION THROUGH PLANNING 13

higher complexity of the algorithm used for the calcula-
tion of the upwards cotopic relevance between concepts,
compared to the edge-counting case.

As far as average planning time is concerned, LPG-td
shows an increase in planning time as the number of ac-
tions increases. However, it is still proved remarkably
fast, as it uses graph structures to exclude unrelated oper-
ators early during planning. Semantic relaxation does not
impose additional overhead to planning, as it does not
increase the number of operators. Planning time is not the
most important factor that affects system performance, as
no specific planner is inherent in the proposed system.

Table 3 shows the increase in the number of plans as
semantic distance thresholds for different hierarchical
relationships increase during semantic relaxation itera-
tions. The quality metric values for the produced solu-
tions are also depicted.

Table 3. Number of plans and accuracy metric values.

Thresholds
sup:0
sub:0
sib:0

sup:0
sub:0
sib:1

sup:1
sub:0
sib:1

sup:1
sub:1
sib:0

sup:1
sub:1
sib:1

of plans 2 2 3 4 4

Plan accu-
racy me-
tric values

1
1

1
1

1
1

0.9783

1
1

0.9783
0.9566

1
1

0.9783
0.9566

A comparison with respect to semantic relaxation

techniques (edge-counting or upwards cotopic) would
not produce meaningful conclusions, as the returned re-
sults highly depend on the structure of each ontology.
Instead, semantic relaxation techniques should be viewed
as alternative and complementary ways to retrieve se-
mantically related concepts to the ones of interest.

7 CONCLUSIONS AND FUTURE WORK
This paper proposes an approach utilizing AI tech-

niques to address automated web service composition,
which has emerged as a significant issue in the research
community. The automation of the composition proce-
dure is essential, as it permits handling of the continuous-
ly increasing numbers of available atomic web services. A
significant contribution of the proposed approach con-
cerns the full incorporation of semantics. The utilization
of semantic information facilitates discovery and compo-
sition. It also permits approximate composition and
enables the quality assessment of the produced composite
services in terms of accuracy. The framework maintains
compatibility with the current standards, to ensure inte-
roperability, and it is independent from specific planners.

In the proposed approach, a web service composition
problem is mapped into a planning problem. Knowledge
contributed by domain ontologies is exploited to semanti-
cally enhance the produced problem, allowing approx-
imate compositions. Solutions can be obtained by utiliz-
ing external planning systems. The produced plans,
representing descriptions of the desired composite web
service, are assessed in terms of accuracy. Service failures
are handled by replacement of any service with an equiv-

alent or a similar one. Finally, the produced composite
service is expressed in OWL-S to facilitate its deployment.
Implementation of approach was accommodated by the
development of the PORSCE II and VLEPPO systems.

Future goals include the addition of the OWL-S de-
scriptions of produced composite services in the registry
of available services, to explore the possibility to accele-
rate the composition process. Moreover, it lies in our im-
mediate plans to study ways to enhance the approach
with the ability to produce various composite services
according to non-functional user preferences, dealing
with pragmatic knowledge. As web service standards
evolve, exploitation of pragmatic knowledge could be
possible by extending existing web service description.

REFERENCES
[1] Hatzi, O., Meditskos, G., Vrakas, D., Bassiliades, N., Anagnostopou-

los, D., Vlahavas, I., 2009b. Semantic Web Service Composition us-
ing Planning and Ontology Concept Relevance with PORSCE II, The
IEEE / WIC / ACM Conference on Web Intelligence 2009.

[2] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I. Vlahavas,
"VLEPPO: A Visual Language for Problem Representation", PlanSIG
07, Roman Bartak (Ed.), pp. 60 - 66, Prague, Czech Republic, 2007.

[3] Srivastava, B. and Koehler, J., 2003. Web Service Composition -
Current Solutions and Open Problems. ICAPS 2003 Workshop on
Planning for Web Services.

[4] Milanovic, N., & Malek, M., 2004. Current solutions for Web service
composition. IEEE Internet Computing, 8(6), 51 – 59

[5] Bucchiarone, A. and Gnesi, S., 2006. A Survey on Service Composi-
tion Languages and Models, WsMaTe 2006.

[6] Rao, J. and X. Su, 2004. A Survey of Automated Web Service Com-
position Methods . LNCScience, Vol. 3387/2005, Springer, p. 43-54.

[7] Dustdar, S. and Schreiner, W., 2005. A survey on web services com-
position, Int. J. Web and Grid Services, Vol. 1, No. 1, pp.1–30.

[8] Thatte S. (ed.), 2003. BPEL4WS (Version 1.1),
http://www.ibm.com/developerworks/library/specification/ws-bpel/

[9] Casati, F., Ilnicki, S., Jin, L., et al, 2000. Adaptive and Dynamic Ser-
vice Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.)
CAiSE 2000. LNCS, vol. 1789, Springer, Heidelberg.

[10] Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D., 2004. HTN
planning for web service composition using SHOP2. Journal of Web
Semantics, 1(4) 377–396.

[11] Pistore, M., Marconi, A., Bertoli, P. and Traverso, P., 2005. Auto-
mated Composition of Web Services by Planning at the Knowledge
Level, in proc. of IJCAI 05, Edinburgh, UK.

[12] McIlraith, S. and Son, T., 2002. Adapting Golog for Composition of
Semantic Web Services, KR2002, pp 482-493.

[13] Ponnekanti, S.R. and Fox, A., 2002. SWORD: A Developer Toolkit
for Web Service Composition, WWW 2002, Elsevier, pp. 83-107.

[14] Klusch, M., Gerber, A., Schmidt, M., 2005. Semantic Web Service
Composition Planning with OWLS-XPlan. AAAI Fall Symposium on
Semantic Web and Agents, USA, 2005.

[15] Fox, M. & Long, D., 2002. PDDL+: Modeling continuous time de-
pendent effects. In Proceedings of the 3rd International NASA Work-
shop on Planning and Scheduling for Space.

[16] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A. and Katz, Y., 2007.
Pellet: A Practical OWL DL Reasoner, J. Web Semantics.

[17] Maedche A. and Zacharias, V., 2002. Clustering Ontology-Based
Metadata in the Semantic Web, European Conf. Principles of Data
Mining and Knowledge Discovery.

[18] Fikes, R., Nilsson, N. J., 1971. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving, Artificial Intelligence,
Vol 2 (1971), pp 189-208.

[19] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,
Veloso, M., Weld, D., Wilkins, D., 1998. PDDL -- the Planning Do-
main Definition Language. Technical report, Yale University.

[20] Gerevini, A., Saetti, A., Serina, I., 2004. LPG-td: a Fully Automated
Planner for PDDL2.2 Domains, in IPC, 14t h ICAPS, 2004.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2010-06-0088.R2

[21] OWLS-TC, http://projects.semwebcentral.org/ projects/owls-tc/
[22] JPlan, http://sourceforge.net/projects/jplan
[23] M. Paolucci, A. Ankolekar, N. Srinivasan and K. Sycara, "The

DAML-S Virtual Machine", ISWC, 2003, pp 290-305.
[24] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I. Vlahavas,

"A Visual Programming System for Automated Problem Solving",
Expert Systems With Applications, Elsevier, Vol. 37 (6), pp. 4611-
4625, 2010.

[25] SWRL, http://www.w3.org/Submission/SWRL/
[26] RuleML, http://ruleml.org/
[27] Aalst, W.M.P van der, 2003. Don't Go with the Flow: Web Services

Composition Standards Exposed, IEEE Intelligent Systems, Vol. 18,
No. 1, pp. 72-76.

[28] Berardi, D., Calvanese, D., De Giacomo, G. and Mecella, M., 2005.
Automatic composition of process-based web services: a challenge. In
Proc. of the WWW'05 Workshop on Web Service Semantics: To-
wards Dynamic Business Integration (WSS 2005)

[29] Medjahed, B., Bouguettaya, A., 2003. Elmagarmid, A.K.: Composing
Web services on the Semantic Web. VLDB J. 333-351

[30] Carman M., Serafini L., Traverso P., 2003. Web Service Composition
as Planning, ICAPS 2003 Workshop on Planning for Web Services.

[31] OWL-S 1.1. http://www.daml.org/services/owl-s/1.1/
[32] J. Fernandez Olivares, T. Garzón, L. Castillo Vidal, Ó. García Pérez,

F. Palao. A Middleware for the automated composition and invocation
of semantic web services based on HTN planning techniques. CAE-
PIA07. Springer LNAI 4788, 2007.

[33] Hobbs, J. R., 2002. DAML-Time. ‘A DAML ontology of time’,
http://www.cs.rochester.edu/_ferguson/daml/daml-time-20020830.txt.

[34] Pan, F.; Hobbs, J. R. ‘Time in OWL-S’. In Proceedings of AAAI-04
Spring Symposium on Semantic Web Services, 2004.

[35] F. Lecue, A. Leger: A Formal Model for Semantic Web Service Com-
position. ISWC 2006: 385-398.

[36] McDermott, D., 2002. Estimated-regression planning for interactions
with web services. ICAPS’02.

[37] M. Paolucci, T. Kawmura, T. Payne, K. Sycara, Semantic Matching of
Web Services Capabilities, First International Semantic Web Confe-
rence, 2002.

[38] Aalst, W.M.P. van der, Dumas, M. and ter Hofstede, A.H.M., 2003.
Web Service Composition Languages: Old Wine in new Bottles. In:
29t h EUROMICRO Conference.

[39] Alonso, G., Casati, F., Kuno, H. and Machiraju, V., 2004. Web Ser-
vices. Concepts, Architectures and Applications, Springer-Verlag.

[40] Chan, M., Bishop, J., & Baresi, L., 2007. Survey and Comparison of
Planning Techniques for Web Services Composition. University of
Pretoria, Technical Report.

[41] Zhan, R., Arpinar, B., & Aleman-Meza, B., 2003. Automatic compo-
sition of semantic web services. ICWS’03.

[42] Lecue, F., & Delteil, A. (2007). Making the difference in semantic
web service composition. In 22nd National Conference of the Ameri-
can Association for Artificial Intelligence (AAAI’07).

[43] Srivastava, B., 2002. Automatic web services composition using
planning. KBCS’02, pp. 467–47.

[44] Chun, S. A , Lee, Y., Geller, J. Ontological and pragmatic knowledge
management for web service composition. 9th International Confe-
rence on Database Systems for Advanced Applications, 2004.

[45] Schoop, M., de Moor, A. and J. Dietz, “The pragmatic web: a mani-
festo”, Communications of the ACM, vol.49 no.5, 2006, pp. 75-76

[46] Benfell,A., Liu, K., Specifying a Pragmatic Web-browser for the
Automated Discovery of Web Services in a Service Oriented Archi-
tecture Context, 10th International Conference on Organisational Se-
miotics, pp 99, 2007.

[47] Pistore,M., Barbon,F., Bertoli, P., Shaparau, D., Traverso, P. Planning
and Monitoring Web Service Composition, ICAPS-2004 Workshop
on Planning and Scheduling for Web and Grid Services.

[48] Martinez, E., Lesperance, Y., 2004. Web service composition as a
planning task: Experiments using knowledge-based planning, ICAPS-
2004 Workshop on Planning and Scheduling for Web and Grid Ser-
vices, pp. 62-69.

[49] Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, and Dieter
Fensel. Automatic location of services. In Proceedings of the 2nd Eu-
ropean Semantic Web Conference (ESWC2005), May 2005.

AUTHORS’ BIOGRAPHIES
Ourania Hatzi received a BSc Degree in Computer Science from the
Department of Informatics, Aristotle University of Thessaloniki,
Greece, in 2004, and an MSc Diploma in Advanced Information Sys-
tems from the Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece, in 2008.
She received her PhD Degree in Semantic Web Service Composition
through AI Planning from the Department of Informatics and Tele-
matics, Harokopio University of Athens, Greece, in 2009. She is cur-
rently a research associate and an adjunct lecturer at the same de-
partment. Her research interests include the Semantic Web, Intelli-
gent Systems and AI Planning. http://www.dit.hua.gr/~raniah/
Dimitris Vrakas is currently a Lecturer at the Department of Infor-
matics at the Aristotle University of Thessaloniki, Greece. He re-
ceived his PhD degree in Intelligent Planning Systems from the same
department in 2004. His research interests include artificial intelli-
gence, intelligent tutoring systems, Automated Planning, Heuristic
Search and Problem Solving. He has published more than 30 papers
in journals, conferences, and books, co-edited 2 international books
in the above areas. He has been involved in projects concerning edu-
cational software, intelligent agents, e-learning, web services etc.
http://lpis.csd.auth.gr/vrakas
Mara Nikolaidou is an Associate Professor in the Department of
Informatics and Telematics at Harokopio University of Athens. She
holds a PhD and Bachelor degree on Computer Science from De-
partment of Informatics and Telecommunications at University of
Athens. Her research interests include software and information
system engineering, service-oriented architectures, e-government
and digital libraries. Over the last years she actively participated in
numerous projects on service-oriented architectures, digital libraries
and e-government. She has published more than 100 papers in inter-
national journals and conferences. http://www.dit.hua.gr/~mara/
Nick Bassiliades received his PhD degree in parallel knowledge
base systems from the Department of Informatics at the Aristotle
University of Thessaloniki, Greece, in 1998. He is currently an Assis-
tant Professor in the same department. His research interests include
knowledge-based systems, rule systems, agents, and the semantic
Web. He has published more than 100 papers in journals, confe-
rences, and books, and has coauthored two books. He was on the
Program Committee of more than 45 and on the Organizational
Committee of 5 conferences / workshops. He has been involved in
several projects concerning knowledge based systems, intelligent
agents, e-learning, web services, semantic web, rules, ontologies,
etc., leading 7 of them. He is a member of the Board of the Greek
Artificial Intelligence Society, a director of RuleML, Inc., and also a
member of the Greek Computer Society, the IEEE, and the ACM.
http://lpis.csd.auth.gr/people/nbassili/
Dimosthenis Anagnostopoulos is a Professor in the Department of
Informatics and Telematics at Harokopio University of Athens. He
holds a PhD and Bachelor degree on Computer Science from De-
partment of Informatics and Telecommunications at University of
Athens. He has published more than 100 papers in international
journals and conferences. His research interests include discrete
event simulation, faster-than-real-time simulation, modeling and
simulation of distributed information systems. He has actively parti-
cipated in numerous projects related to simulation, e-government
and information systems. http://www.dit.hua.gr/~dimosthe/
Ioannis Vlahavas is a Professor at the Department of Informatics at
the Aristotle University of Thessaloniki. He received his Ph.D. de-
gree in Logic Programming Systems from the same University in
1988. He specializes in logic programming, knowledge based and AI
systems and he has published over 200 papers and book chapters,
and co-authored 8 books in these areas. He teaches logic program-
ming, AI, expert systems, and DSS. He has been involved in more
than 27 research and development projects, leading most of them.
He is leading the Logic Programming and Intelligent Systems Group
(LPIS Group, lpis.csd.auth.gr). http://www.csd.auth.gr/~vlahavas

http://www.dit.hua.gr/~raniah/�
http://lpis.csd.auth.gr/vrakas�
http://www.dit.hua.gr/~mara/�
http://lpis.csd.auth.gr/people/nbassili/�
http://www.dit.hua.gr/~dimosthe/�
http://www.csd.auth.gr/~vlahavas�

	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 PORSCE II
	4.1 Semantic Analysis
	Hierarchical Relationships
	Semantic Distance

	4.2 Problem Transformation
	4.3 Semantic Awareness and Relaxation
	4.4 Solution Acquisition and Visualization
	4.5 Composite Service Accuracy Assessment
	4.6 Atomic Service Unavailability Handling
	4.7 Solution Transformation

	5 VLEPPO
	5.1 Visual Representation and Design
	The Domain Entities and Relationships
	Representing Operators
	Representing Problems
	Syntax and Validity Checking

	5.2 Interoperability with PORSCE II through PDDL
	5.3 Solving
	Interface with planners implemented as web services
	Solving planning problems locally

	6 Case Study and Performance Results
	7 Conclusions and Future Work
	References
	Authors’ Biographies

