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Abstract 

Faster-than-real-time simulation (FRTS) can be used for the performance evaluation of systems behavior in 

real time, providing significant capabilities for studying systems with a time-varying behavior. FRTS enables 

model validation through comparing simulation results with the corresponding system observations. However, 

experimentation proves to be rather demanding, as both delivering output results and ensuring their reliability 

must be accomplished within a predetermined time frame. Output analysis of system observations and model 

results and relevant timing issues are discussed. A method is introduced for determining the “optimal” faster-

than-real-time experiment, in terms of the number of replications that may be scheduled for execution, as well 

as whether it is required to make a compromise between the ability to predict for the long future and the degree 

of reliability achieved for predictions. Experimental results are presented to validate and demonstrate the 

effectiveness of the proposed method. A case study where this method is applied for reaching FRTS 

predictions, contributing to efficiently servicing client requests in a central library information system, is also 

discussed.  
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1. Introduction  

A real-time simulator is a real-time system where some portions of the environment, or even portions of the 

real-time system itself, are realized by a simulation model [1]. Evaluating the performance of a system under 

study in real time is certainly not a trivial task, depending on various issues, such as the system speed (i.e. how 

often state changes occur, compared to world time) and nature, which determines crucial issues, such as the 

allowed degree of human interaction with the system. When attempting to reach conclusions for the system 

behavior in the near future, faster-than-real-time simulation (FRTS) is widely used. In this type of simulation, 

advancement of simulation time occurs faster than real world time.   

Real time systems often have hard requirements for interacting with the human operator or other agents [2]. 

Making models run faster is the modeler's responsibility. When being handled at the implementation level, 

timing problems are recognized during or even after testing, and this may cause considerable inefficiencies. 

Researchers have thus pointed out that timing requirements should be addressed at the design phase [3]. 

Addressing timing problems at this phase, though, does not consider the variability in the time required to 

execute an experiment, which is caused by real conditions, such as arrival-process distribution parameters, 

which may be non-stationary. It does not also consider the need for achieving a specific degree of confidence 

for simulation results, which may only be calculated during the execution of the experiment. We thus argue 

that timing issues should also be addressed at the implementation (or execution) phase. Regarding model 

validation in RTS, in which domain-oriented approaches are usually employed, e.g. for validating control 

system models or computer network models [4], we consider that it should also be addressed at the 

methodological level through generic approaches. 

Timing requirements such as the following are considered in FRTS: the model must run faster than the system, 

system data must be obtained and processed in real time so that the current system state is always known, the 

model has to be adapted to the current system state without terminating the FRTS experiment, as the system 

under study may be a time-varying one, and dynamic (i.e. in real time) model modification should be enabled. 

In addition, model validity must always be ensured and, when simulation results are utilized to ensure validity, 
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they must have essential statistical properties (e.g. the appropriate sample size and statistical processing). 

Analysis of simulation results and system data must always be performed within the given time frames. Timing 

requirements can be addressed by methodological approaches, such as [5], which is employed in this paper. 

This conceptual FRTS methodology provides extensions to traditional simulation activities, focusing on real-

time interaction and ensuring the validity of simulation results. It consists of the following phases: modeling, 

experimentation and remodeling. The modified FRTS executive is presented in figure 1. Both the system and 

the model are under monitoring during experimentation. Data depicting their consequent states are obtained 

within predetermined time intervals of equal length, called auditing intervals. In case the model state deviates 

from the corresponding system state, remodeling is invoked. This may occur due to system modifications, 

which can involve its input data, operation parameters and structure [5]. In these cases, remodeling adapts the 

model to the current system state. This is accomplished without terminating the real time experiment, since no 

recompilation is performed. When model modifications are completed, experimentation resumes. Remodeling 

can also be invoked when deviations (expressed through appropriate performance measures) occur between the 

system and the model due to the stochastic nature of simulation, even when the system parameters/ 

components have not been modified. In case simulation results (predictions for the near future) are considered 

to be valid, an additional phase, called plan scheduling, is invoked to take advantage of them [5]. However, as 

depicted in figure 1, plan scheduling activities are not considered as a part of the FRTS environment.  

Experimentation encompasses monitoring, which is the activity where system and model states are obtained 

and stored while the model is executed, and auditing, which accomplishes model validation tasks (figure 1). 

Auditing examines if simulation results are reliable and if the system has been modified during the last 

observation, based on system observations. The dynamic system behavior may result in critical modifications 

in the system input data, operation parameters and structure. Structure variability, in particular, has been 

studied either at the methodological level [6], [7] or in the context of domain-oriented research approaches. To 

conclude about such modifications, specific attributes of both systems are put under monitoring. The 

corresponding variables are referred as monitoring variables. Monitoring variables should be considered at a 
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conceptual level, not according to the conventional, single-valued definition of program variables. Auditing 

examines the monitoring variables corresponding to the same real time points (i.e. the current system state and 

simulation predictions for this time point) and concludes for the evolution of the system and the model [5]. 
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Figure 1: FRTS executive 

An example is presented in figure 2, where the evolution of the system and the model is depicted at the two 

horizontal axes. Real time points are noted as ti. The states of the system and the model at point ti are noted as 

Ri and Si, respectively. When at tx the model predicts the system state at tn (simulation time is equal to tn) we 
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use the notation Sim(tx)= tn. States Sx and Rn  are thus compared during auditing at time point tn. The auditing 

interval length (e.g. [tn-1, tn], [tn, tn+1]) remains constant throughout the experiment, and is noted as AudInt. 
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Figure 2: Experimentation in FRTS 

In this paper, we address timing issues of FRTS, that is, we state the problems encountered and propose a 

method for executing experiments conforming to the real-time requirements. The proposed experiment 

scheduling method is independent of the execution environment, as it applies to both sequential and parallel 

execution. However, in the latter case, processing units must be of the same hardware and have the same load, 

as latter discussed. The term FRTS (or FRTS experiment) denotes the entire simulation process, involving 

model execution, monitoring, auditing and remodeling activities, performed in consecutive auditing intervals. 

FRTS experiments are terminated when termination conditions are fulfilled (e.g. if FRTS cannot be achieved 

or world time reaches a predetermined value). As, in the general case, simulation does not reach a steady state 

within each auditing interval, a single experiment performed within an auditing interval involves multiple 

replications. This imposes that multiple replications must be completed within the given time frame to reach 

predictions. Towards this objective, a discussion concerning timing issues in FRTS resides in section 2. A 

method for scheduling experiments and dealing with timing requirements is presented in section 3. Section 4 

includes experimental results in order to examine the validity and efficiency of the proposed method. Section 5 

presents a case study where the proposed method is applied for reaching FRTS predictions, contributing to 



 6

efficiently servicing client requests in a central library information system. Finally, conclusions reside in 

section 5.  

2. Timing issues 

Each FRTS experiment is executed in consecutive auditing intervals. Within each interval, an autonomous 

subexperiment is executed, aiming at reaching results for the future states that must be predicted. To achieve 

reliability, each subexperiment involves n independent replications, each one terminated when simulation time 

reaches a specific future time point. Timing issues thus concern accomplishing n replications within a given 

time frame. A description of how FRTS experiments are executed as terminating simulations involving 

multiple replications has been given in [8]. 
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Figure 3: Execution of monitoring, auditing and remodeling within the auditing interval  

We use the auditing interval (AudInt) as a time unit to specify the future time interval for which we wish to 

reach predictions, denoted as the prediction interval. Then, prediction interval = p*AudInt, p ∈ N*. Suppose 

that simulation starts at point tn-1, as depicted in figure 3. To achieve FRTS, results for p intervals ahead of tn-1 

must be reached within interval [tn-1, tn]. As Sim(tx) = tn, and Sim(ty) = tn+1, model results are obtained at the 

respective real time points tx and ty. Note that tx and ty are the time points where all replications are completed 

for the corresponding predicted intervals, e.g. at tx, the “slowest” replication produces its output to form Rn. 
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Except from the first interval (i.e. [tn-1, tx]), where the initial model state has to be identical to the 

corresponding system state, in all other cases, the model state at the end point of the previous interval serves as 

the initial state for the next one. Thus, there are p sets of output results produced within a single auditing 

interval and p terminating events exist in each “complete” (i.e. covering all predicted intervals) replication. 

The terminating event examines which are the time points (e.g. tj) at which simulation reaches results for each 

one of the forthcoming p intervals, so that:  

Sim(tj) = tn-1+i  = tn-1 + i*AudInt, i ∈ N*, 1≤  i ≤ p 

The above apply on the basis that a fixed number of replications is required to reach predictions for each of the 

future system states (i.e. Rn, Rn+1, …), which is rather a common practice. In this way, reliability is ensured 

with the same amount of experimental results for each of the predicted states.  

Determining the prediction interval length (i.e. predictability) is dictated by the requirements imposed to 

simulation (e.g. for a control processes) and by the constraints imposed by the nature of the system (e.g. how 

fast the system evolves). Reaching reliable predictions for long ahead is also a desirable feature. On the other 

hand, reliability tends to decrease for long-ahead predictions, as the characteristics of real systems tend to 

change over time. In addition, timing restrictions are increased, especially when the system evolves nearly as 

fast as simulation does. Supposing that simulation reaches conclusions for at least p auditing intervals ahead of 

real time, if current time is tn-1 and Sim(tn-1) = tn-1 (i.e. simulation is re-initiated), then, at some future point tj, 

the following must apply: 

Sim(tj) = tn-1+p = tn-1 + p*AudInt  

 tj  < tn = tn-1 + AudInt 

To discuss analytically timing issues, we examine the FRTS activities that need to be accomplished within the 

given time frame. The real-time data flow diagram [9] of figure 4 presents the control process and the time-

consuming activities (in gray) of FRTS, which are: model initialization, system and model monitoring, auditing 

and remodeling. The process that accepts experiment parameters from the user is accomplished prior to the 

initiation of the FRTS experiment, thus not consuming real time. System monitoring is executed continuously 
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and concurrently with model execution during the auditing interval. Thus, timing requirements involve model 

initialization and model monitoring (i.e. model execution and storing output results), consuming time equal to 

TInit and TExec, which must be completed before the upper endpoint of the current auditing interval.   
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Figure 4: Real-Time Data Flow Diagram of FRTS control 

Auditing is rather different, since it is executed only when the auditing interval has elapsed. However, there are 

strong timing requirements for the time it consumes, as model execution is temporarily paused while model 

validity is examined. Auditing must thus be accomplished with minimum time overhead before resuming 

experimentation. The same requirements apply for remodeling, which -when needs to be executed- is invoked 

after auditing. Remodeling additionally discards all previous simulation results and the FRTS experiment is re-

initiated from the current real time point.  

In figure 3, Sim(tx) = tn and Sim(ty) = tn+1. Auditing thus compares Sx with Rn at tn. Assuming that auditing 

indicates that the corresponding model and system states do not coincide, predictions (i.e. Sy) are discarded and 
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remodeling is activated to restore consistency. The time consumed is equal to TAudit and TRemodel, respectively. 

We note that:  

1. System monitoring process is re-initiated after the completion of the previous auditing interval without 

waiting for the completion of auditing and monitoring activities. In this way, we avoid ignoring significant 

system changes during the execution of these activities and we ensure that auditing is always performed at 

the expected time point (i.e. tn-1 + i*AudInt).  

2. Model monitoring/execution is actually performed during a shorter time frame than AudInt (i.e. reduced by 

TAudit and TRemodel). The duration of both auditing and remodeling activities should thus be taken into 

consideration when determining the available time frame for model execution. However, TAudit and TRemodel 

shorten the time frame for executing the subexperiment of the forthcoming interval, not the time frame of 

the current auditing interval (i.e. TAudit required for data of [tn-1, tn] reduces execution time in [tn, tn+1]).  

To finally formulate the timing requirements for executing simulation within the given time frame, we 

consider the general case, also the most demanding, as follows:  

1. Both auditing and remodeling have been performed, consuming time equal to TAudit and TRemodel. Simulation 

time must thus be re-initiated from the starting point of the current auditing interval.  

2. Simulation must reach predictions for p auditing intervals ahead of this point. 

The essential condition for accomplishing FRTS within each auditing interval is thus: 

TAudit + TRemodel  + TInit + TExec ≤ AudInt (1) 

In (1), TInit is practically equal to 0. TExec is the time required to reach predictions for p intervals ahead. As TAudit 

and TRemodel concern the previous auditing interval, these values are already available when a new experiment is 

initiated within the current interval.  

3. Experiment scheduling method 

Suppose that Ti is the time required for the sequential execution of replication i out of n independent 

replications that must be performed. We define bi = Ti / PredictedInterval to express how much slower is the 

system than simulation in replication i. Then,  
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Condition (3) is the one determining if it is possible to perform FRTS on a software and hardware platform 

offering the capability to run each replication 1/E(bi) times faster than the system (E(bi) is the expected value 

of bi). Based on this, the following method is proposed for executing multiple replications. The method 

combines theoretical and experimental results to examine whether it is possible to execute n replications, each 

one producing results for p auditing intervals ahead of the starting point, within the given time frame. A 

number of initial replications (no) is used to estimate μ=E(bi).  

Step 1: Make no replications of the simulation and gather statistics (note that no should be large enough to 

provide a good estimation for μ). 

Step 2: Estimate μ and σ2=Var(bi) as follows: 
0 1

1
μ 
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b
n =
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2 1
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Step 3: Suppose that 
1

n

n i
i

bB
=

=∑ . Assume there is distribution function for bi. We know that b1, b2, … bn are 

IID (Independent and Identically Distributed), thus s2 is an estimate of σ2. Using the central limit 

theorem, ( ) /n nB nμ σ− ∼ Ν(0,1). Then, ( ) /n nB n sμ− ∼ Ν(0,1). We want the probability that n 

replications are executed within the given time to be equal to a (e.g. 0.9). Thus,  

P[Bn≤ Audit RemodelAudInt -Τ - T
pAudInt

]≥ a. 

Suppose that λ= Audit RemodelAudInt -Τ - T
pAudInt

. Then, 

P[Bn ≤ λ]=P[ ( ) /n nB n sμ− ≤ ( ) / nn sλ μ− ]= P[Z ≤ ( ) / nn sλ μ− ]≥ a . 

(2) 

(3) 
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Calculate k so that P[Z≤ k] = a. Thus, to perform n replications within the time frame given with 

probability a, the following condition must be fulfilled: 

( ) / nn sλ μ− ≥ k (4) 

Step 4: If condition (4) can be fulfilled, calculate n and execute the rest n-no replications. When results from 

all replication are produced for each interval, update statistics (using also the results from the no 

replications) and store results. If the time consumed during simulation exceeds AudInt, immediately 

terminate simulation. 

Step 5: If condition (4) cannot be fulfilled, a decision has to be made concerning decreasing the number of 

remaining replications (n-no) so that ( ) / nn sλ μ− ≥ k or decreasing p. After that, execute the 

remaining replications.  When results from all replications are produced for each interval, update 

statistics (using also the results from the no replications) and store results. If the time consumed 

exceeds AudInt, immediately terminate simulation.  

Using this method, we cannot be certain that results from all replications will always be produced within the 

given time frame, due to the stochastic nature of simulation. In any experiment that simulation exceeds the 

given time, the specific experiment is immediately terminated. To ensure that results for the most immediate 

intervals are produced with an acceptable degree of reliability, which depends on the number of replications 

performed, concurrent execution of replications may be employed. In this way, reliability of results for the 

most immediate intervals, for which we are mostly concerned as they are soon to be compared with system 

data, is not endangered. If, for instance, some replications were not to produce results within the give time 

frame, there would be an impact on reliability and remodeling could be caused. However, this must be 

avoided, since all predictions would have to be discarded and remodeling time would have to be consumed. 

After all, if predictions for “remote” intervals cannot be obtained, they may as well be produced within the 

next auditing interval. The authors argue that this principle should also be adopted when considering whether 

to decrease the number of remaining replications or the number of predicted intervals in step 5. Assuming that 

a minimum number of replications nmin must be performed to ensure reliability, p must fulfill condition: 
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Audit Remodel

min min

AudInt - T - T
p

AudInt (ks n + n  μ)
≤

∗
  (5) 

Based on the above, the proposed scheme for executing n independent replications is depicted in figure 5. The 

initial no replications are executed sequentially. The remaining n-no ones may be executed concurrently, so that 

all replications first produce their output for tn+1, then for tn+2 and last for tn+p. 

tn

Rn
Rn+1

Sn+1

tn+1

auditing remodeling

 no

replications

 n-no

replications 1        2           3

 

Figure 5: Proposed scheme for executing n replications 

The proposed experiment scheduling method is independent of the execution environment, as it applies to both 

sequential and parallel execution. Parallel simulation is most suitable for executing the remaining n-no 

replications, to ensure that results for the most immediate intervals are produced with an acceptable degree of 

reliability (step 5). However, processing units must be of the same hardware and have the same load, in order 

to run each replication 1/E(bi) times faster than the system. Furthermore, when executing independent, 

sequential simulations on different processors (also known as the replicated trials approach), a drawback is 

that each processor must contain sufficient memory to hold the entire simulation [10]. In the case of large-scale 

systems, TAudit and TRemodel could be considerably increased, but this should not be a problem as they refer to the 

previous auditing interval and are thus known when a new experiment is initiated in the current interval. A 

potential problem could emerge due to unreliable communications, especially in a LAN or WAN computing 
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environment, preventing the delivery of some replication results. Reaching results on the basis of the rest no–1 

or n-1 replications (provided that these are available) could be an acceptable solution.  

Applying the proposed method also requires that monitoring capabilities be provided over Ti, that is, the time 

required to execute replication i. Calculating Ti is rather trivial and, as numerous output variates are calculated 

within each replication, Ti can be considered as an additional output variate, which does not impose any 

limitation to this method.  

4. Experimental validation  

To test the correctness and efficiency of the proposed method, we performed numerous experiments using 

standard queuing models, with the following two objectives: a. to verify that n experiments can actually be 

accomplished within the given time frame with probability a, where n is determined at runtime, and b. to 

estimate the improved reliability of simulation results, after the execution of the maximum number of potential 

replications. To solely explore the above critical issues, we separated the execution of replications from any 

particular real system. Conducting experiments without real-system interaction, irrelevant factors, such the 

duration of TAudit, TRemodel and the availability of system monitoring data when initiating auditing, did not 

interfere with the validation process.   

In each experiment, we executed no initial replications, calculated the number of potential replications n, and 

then executed the remaining n-no ones, to examine if all replications were completed within the given time 

frame. We considered a probability of 95% for being able to execute n replications within the auditing interval 

(a= 0.95). Each experiment was repeated 100 times to determine the percentage of successful experiments and 

compare it against a. The average delay in the queue (avgD) is the output variate of each replication. 

To conduct experiments, we modeled the following types of systems, which are widely used in the literature: 

QNM1:  a M/Gamma/s queuing network (using Kendall’s notation in classical queuing theory), that is, a 

multiple-server/single-queue system with Exponential(b) interarrival times, Gamma(c,β) service 

times and s servers, for s=64, 128, 256, various values of b and c, and β = 2.0. 
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QNM2:  a queuing network with s stations (multiple-server/multiple-queue system) where jobs are randomly 

routed to stations, with Exponential(b) interarrival times, Gamma(c,β) service times, for s=64, 128, 

256, various values of b and c, and β = 2.0.  

Both sequential and distributed FRTS experiments were performed. In sequential simulation, the execution 

environment was a Sun Ultra 5 with 1 CPU and 640 Mbyte running Solaris 8. In distributed simulation, the 

environment consisted of 5 Sun Ultra 5 with 1 CPU and 128 Mbyte running Solaris 8, under conditions of 

equal load. Auditing and prediction intervals are equal to 5.0 sec/15.0 sec and 10.0 sec/30.0 sec, respectively, 

so that predictions had to be reached for 3 auditing intervals ahead (p=3). For each combination of interarrival 

and service parameters b, c and the number of servers s, distinct experiments were conducted according to the 

following algorithm: 

- Make 100 repetitions of steps 1-5 for either experiment type (sequential, distributed) 
 Sequential Distributed 

1 Execute no replications and calculate 
statistics 

Execute at least no replications, equally 
distributed among processors, and 
calculate statistics 

2 Calculate n so that condition (3) is fulfilled with probability a 

3 Execute the remaining n-no replications 
and calculate statistics 

Execute at least n-no equally distributed 
replications and calculate statistics 

4 Determine if the experiment is successful (i.e. if the time required to execute n 
replications is less than the auditing interval) 

5 Calculate the precision increase (pri) in results after n replications compared to the 
corresponding precision after no replications (pri) 

- Calculate the percentage of successful experiments (srate) and the average precision increase 
avg(pri) from all 100 repetitions  

 

After each completion of no and n-no replications, we build a (1-l)% confidence interval for avgD. In our case, 

l=10%, so that a 90% confidence interval is built. We use the average value of the confidence-interval half-

length δ(n,l)=
1,1

2

2 ( )
ln

S n

n
t
− −

 divided by the point estimate ( )avgD n  as a measure of the precision of the 

confidence interval [11]. Results for sequential and distributed simulation successful experiments, for various 

combinations of interarrival times and service times, are given in table 1 for NQM1 and in table 2 for NQM2. 

Parameters (s,b,c) of each experiment are depicted in the rows marked with gray. For NQM1, results from 27 
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different combinations are presented, also for NQM2. The average number of experiments where replications 

were executed within the given time frame is noted as avg(srate). In most cases, the results obtained are far 

better than expected, i.e. avg(srate)>α, indicating that experiments were accomplished as scheduled.  

S interarrival and service times (b, c) 

64 0.01, 
0.608 

0.01, 
0.624 

0.01, 
0.640 

0.02, 
1.216 

0.02, 
1.248 

0.02, 
1.280 

0.03, 
1.824 

0.03, 
1.872 

0.03, 
1.92 

seq. 0.973 0.956 0.99 0.95 0.953 0.986 0.99 0.966 0.993 
distr. 0.98 0.966 0.976 0.966 0.97 0.956 0.976 0.953 0.96 

128 0.01, 
1.216 

0.01, 
1.248 

0.01, 
1.280 

0.02, 
2.432 

0.02, 
2.496 

0.02, 
2.56 

0.03, 
3.648 

0.03, 
3.744 

0.03, 
3.84 

seq. 0.986 0.983 0.986 0.996 0.973 0.986 0.99 0.983 0.97 
distr. 0.966 0.99 0.98 0.976 0.966 0.97 0.98 0.966 0.973 

256 0.01, 
2.432 

0.01, 
2.432 

0.01, 
2.496 

0.02, 
4.864 

0.02, 
4.992 

0.02, 
5.12 

0.03, 
7.296 

0.03, 
3.488 

0.03, 
7.68 

seq. 0.98 0.99 0.956 0.98 0.976 0.993 0.966 0.95 0.973 
distr. 0.967 0.98 0.96 0.986 0.95 0.99 0.953 0.96 0.966 

Table 1: avg(srate) in sequential and distributed simulation (NQM1) 

s interarrival and service times (b, c) 

64 0.01, 
0.512 

0.01, 
0.576 

0.01, 
0.640 

0.02, 
1.024 

0.02, 
1.152 

0.02, 
1.28 

0.03, 
1.536 

0.03, 
1.728 

0.03, 
1.92 

seq. 0.99 0.996 0.97 0.986 0.97 0.966 0.98 0.993 0.986 
distr. 0.973 0.973 0.99 0.963 0.963 0.976 0.963 0.976 0.97 

128 0.01, 
1.024 

0.01, 
1.152 

0.01, 
1.28 

0.02, 
2.048 

0.02, 
2.304 

0.02, 
2.56 

0.03, 
3.072 

0.03, 
3.456 

0.03, 
3.84 

seq. 0.99 0.976 0.993 0.98 0.956 0.97 0.963 0.976 0.963 
distr. 0.966 0.96 0.99 0.973 0.96 0.99 0.99 0.976 0.98 

256 0.01, 
2.948 

0.01, 
2.304 

0.01, 
2.56 

0.02, 
4.096 

0.02, 
4.608 

0.02, 
5.12 

0.03, 
6.144 

0.03, 
6.192 

0.03, 
7.68 

seq. 0.99 0.986 0.976 0.993 0.99 0.98 0.963 0.966 0.956 
distr. 0.973 0.953 0.99 0.963 0.956 0.97 0.953 0.97 0.95 

Table 2: avg(srate) in sequential and distributed simulation (NQM2) 

Executing the maximum number of potential replications, the average increase in the precision of simulation 

results is depicted in table 3. The precision obtained after no and n replications is equal to δ(no,l)/ 0avgD(n )  

and δ(n,l)/ ( )avgD n , respectively. Precision is increased when the average value of the confidence-interval 

half-length δ(n,l)= 
1,1

2

2 ( )
ln

S n

n
t
− −

 divided by the point estimate ( )avgD n , after the execution of n 

replications, is less than the respective value obtained after no replications, that is, when pri<1, where  

pri = (δ(n,l)/ ( )avgD n )/(δ(no,l)/ 0avgD(n ) ) 
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Precision increase results with distributed simulation are presented in table 3 for NQM1. As avg(pri) ranges 

from 0.616 to 0.846, an increase of 15.4% up to 38.4% is obtained, contributing significantly to the reliability 

of predictions.  

s interarrival and service times (b, c) 

64 0.01, 
0.608 

0.01, 
0.624 

0.01, 
0.640 

0.02, 
1.216 

0.02, 
1.248 

0.02, 
1.280 

0.03, 
1.824 

0.03, 
1.872 

0.03, 
1.92 

avg(pri) 0.713 0.720 0.706 0.663 0.658 0.671 0.616 0.616 0.622 

128 0.01, 
1.216 

0.01, 
1.248 

0.01, 
1.280 

0.02, 
2.432 

0.02, 
2.496 

0.02, 
2.56 

0.03, 
3.648 

0.03, 
3.744 

0.03, 
3.84 

avg(pri) 0.789 0.768 0.773 0.684 0.692 0.702 0.644 0.647 0.656 

256 0.01, 
2.432 

0.01, 
2.432 

0.01, 
2.496 

0.02, 
4.864 

0.02, 
4.992 

0.02, 
5.12 

0.03, 
7.296 

0.03, 
3.488 

0.03, 
7.68 

avg(pri) 0.820 0.846 0.843 0.697 0.702 0.741 0.648 0.673 0.674 
Table 3: Average precision increase after the execution of n-no replications (NQM1) 

5. A case study  

We present a case study where the proposed scheduling method was employed in the FRTS system supporting 

handling client request for a central library information system. We discuss applicability and efficiency issues, 

as being capable of executing n replication with the given time frame and improving the precision of results 

were substantiated in the previous section. Search requests for the University of Athens Library database 

server are issued through the web from more than 20,000 academic users (students and staff). Searching is also 

enabled for external users. During morning peak hours, more than 100 concurrent users may issue 

bibliographical search requests for the central database. The library uses the Horizon library automation 

software [12] for managing bibliographical data, stored in a Sybase RDBMS. Approximately 500,000 

bibliographical records are maintained. The Sybase DB server maintaining Horizon databases runs in a Unix 

cluster, composed from two IBM F50 machines, each equipped with 2 processors and 1Gb RAM, with mutual 

takeover capabilities. Requests are issued through the web and are serviced as follows (figure 6). 

1. End users issue requests from client workstations. 

2. Requests are transferred through HTTP to the WebPac (i.e. the standard web interface of Horizon) server 

and then transmitted to the DB server using a Z39.50 client. Z39.50 is the worldwide standard 

bibliographical data exchange protocol [13]. 
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3. Requests are received from the Z39.50 server and then serviced by the DB server. Results are then emitted 

back to end users in reverse order.  

Client
Workstation

WebPac
Server

Z39.50 Client

Client
Workstation

http

Data Base
Server

Z39.50 Server

http

Client
Workstation

WebPac
Server

Z39.50 Client

http

Data Base
Server

Z39.50 Server

Client
Workstation

WebPac
Server

Z39.50 Client

http

 
 (a) (b) 

Figure 6: Search request servicing (a) normal operation (b) using additional WebPac servers 

In the architecture depicted in figure 6, WebPac servers run only on MS Windows NT or MS Windows 2000 

platforms and are multithreaded. Z39.50 clients are not. A single Z39.50 client instance may run on each 

machine for transmitting search requests to the DB server. It was often observed that the performance of the 

WebPac server was not efficient during morning peak hours, as responses to search requests delayed for more 

than 5 min before results were presented to end users. A thorough examination indicated that this was due to 

the processing requirements of WebPac, which consumed a significant time overhead for presenting search 

results to end users (all results are presented as web pages). On the other hand, the performance of the DB 

server was never problematic, i.e. the time required to process requests and send them back to the Z39.50 

client was constantly less than a maximum value (≈ 2.5 sec).  

A potential solution to this problem was to initiate more than one instance of WebPac/Z39.50 on separate 

servers. This is depicted in figure 6 (b). Applying this solution, a considerable downsizing (more than 50%) in 

the delay was achieved. However, handling peaks like this imposed that additional servers, such as CD-ROM 

servers, be used for running WebPac/Z39.50 processes, in addition to their original tasks. As this may not be 
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employed in a mandatory basis, FRTS techniques were used to indicate whenever utilizing additional servers 

was essential for handling peaking search requests.  

WebPac
Server

Z39.50 Client
Data Base

Server

Z39.50 Server
Queue

2
Queue

3

Client1

Client 2

Client n

{

Queue1

 
Figure 7: Request processing simulation model 

The simulation model for accepting and processing search requests is depicted in figure 7 (Queue1 is different 

to depict multithreading). The FRT simulator runs on an Intel-based 850 MHz workstation with 256 Mbytes of 

RAM. The monitoring variables used for model validation are the number of requests (reqno) in the current 

interval and the average response time (avgreponse). The following parameters were used for simulation 

experimentation: AudInt=60 sec, p=10, no=30. The simulator runs concurrently with the information system, 

using its current data concerning the requests being issued and serviced. Predictions are reached for p=10 

intervals ahead of world time, so that alternative servers can be activated before critical delays are 

encountered. Predictions are considered as valid when found to be reliable in at least 4 consecutive invocations 

of auditing. In this way, additional servers are used only when needed, not just when counters exceed a 

predetermined threshold, as this may be circumstantial.  

In figure 8, the (increasing) number of search requests in consecutive auditing intervals is depicted for three 

different cases (data have been shifted so that they start from point 0.0). Model predictions are also depicted, 

both the valid ones used to activate additional servers as well as invalid predictions, which are marked with 

dotted lines. Invalid predictions are discarded when remodeling is performed; new predictions are then 

produced at later time points. The points where predictions are ultimately considered as valid are explicitly 
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noted with a larger marker. The points where remodeling is invoked are depicted on the lower graph for each 

of the three cases, using 0 to indicate result validity and 1 to indicate remodeling.  
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Figure 8: Variation of the number of search requests in the system and model in consecutive intervals 

In the first case, invalid predictions are produced at points 60.0 and 180.0, as illustrated in figure 8 (a) by 

dotted lines. The first series of predictions is determined to be invalid at 180.0; the second at 240.0. 

Remodeling occurs at 60.0, 180.0 and 240.0. Predictions produced at 240.0 are ultimately considered as 

reliable at 420.0, after 4 auditing intervals, as previously described. Taking advantage of simulation results, i.e. 

initiating an additional WebPac server, is thus accomplished at 420.0, before a relatively high number of 

concurrent requests (i.e. 27, at point 600.0) are issued in the forthcoming intervals. An analogous case appears 

in figure 8 (b), where simulation results are considered to be reliable at an earlier stage (when there are only 15 

search requests), as the number of requests increases more smoothly than in case (a). Remodeling is constantly 

performed up to point 300.0 and, thus, all previous predictions are discarded. On the other hand, in the third 

case, a transitory peak occurs at 240.0, but these predictions are later considered as unreliable. The transient 

behavior of the system causes a delay in taking advantage of simulation results, as these are ultimately 

considered as valid at 540.0, where the number of search requests is already equal to 26. This is a side effect of 

using a rather long auditing interval, which makes more difficult to handle frequent system changes. However, 
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using a short interval does not contribute to the validity of statistical observations from the system, as local 

peaks may be misinterpreted. An analogous misinterpretation may also occur if we decide to reduce the 

required number of consecutive successful invocations of auditing before predictions are considered to be 

reliable, which is currently set to 4.  
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Figure 9: Variation of the number of replications performed in consecutive intervals 

The experiment scheduling method performed well, as replications were executed as expected. The varying 

number of replications executed within the AudInt time frame for the previous three cases is given in figure 9. 

A maximum of 80 replications has been set. When the number of search requests is increased, the time 

consumed per replication also increases and thus the number of potential replications is reduced. Due to this, 

when a small number of requests (<10) is serviced, the number of potential replications may exceed 80. 

However, when dealing with heavily peaking requests, only a limited number of additional replications may be 

executed (i.e. n-no→0).  

6. Conclusions 

In FRTS, reaching conclusions for a specific number of intervals ahead imposes that multiple replications have 

to be made. Timing issues for performing a large number of replications within the given time frame were 

examined. The method introduced facilitates designing and carrying out experiments consisting of n 

independent replications, where n is dynamically determined at runtime, as the duration of replications cannot 

be efficiently calculated at the design phase. Experimental results from a case study were used to validate the 

proposed method.  
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