
.

ABSTRACT

Faster-than-real-time simulation (FRTS) is used when at-
tempting to reach conclusions for the near future. FRTS
experimentation proves to be the most demanding phase
for conducting FRTS, since it requires concurrent monitor-
ing and management of both the real system and the simu-
lation experiments. Having previously introduced a con-
ceptual methodology and specification for conducting
FRTS experiments, we now propose an implementation
framework, based on the Real Time Unified Modeling
Language (RT-UML). The derived RT-UML model in-
cludes specific timing attributes and is independent of the
application examined via FRTS. Thus, implementation of
FRTS program modules can be analyzed and realized, fol-
lowing the guidelines of this model, ensuring the reliability
of the results within predetermined time frames. A pilot
application regarding FRTS implementation based on the
proposed RT-UML model and related experience is also
discussed in the paper.

1 INTRODUCTION

Faster-than-real-time simulation is used when attempting
to reach conclusions for the near future [1]. In this type of
simulation, advancement of simulation time occurs faster
than real world time. Real time systems often have hard
requirements for interacting with a human operator or other
agents [2]. Current FRTS research directions involve the
distribution of the experiment over a network of worksta-
tions, intelligent control [3] and fault diagnosis [4], interac-
tive dynamic simulation [5] and modeling formalisms [6].

In [7] a conceptual methodology for FRTS was de-
scribed, aiming at providing a framework for conducting
experiments dealing with the complexity and the hard real-
time requirements. The following simulation phases have
been identified: modeling, experimentation and remodel-
ing. During experimentation, both the system and the
model evolve concurrently and are put under monitoring.
Data depicting their consequent states are obtained and
stored after predetermined, real-time intervals of equal

length, called auditing intervals. In the case where the
model state deviates from the corresponding system state,
remodeling is invoked. This may occur due to system
modifications, involve its input data, operation parameters
and structure [7]. Modeling issues and formalisms for
structure modifications have been thoroughly studied either
at the methodological level [8], [9], or for domain/oriented
approaches, such as computer networks [10]. To deal with
system modifications, remodeling adapts the model to the
current system state. This should be accomplished without
terminating the real time experiment, that is, without per-
forming recompilation. When model modifications are
completed, experimentation resumes. Remodeling can also
be invoked when deviations (expressed through appropri-
ate statistical measures) are indicated between the system
and the model due to the stochastic nature of simulation,
even when system parameters/components have not been
modified. Finally, in case simulation results (predictions
for the near future) are considered to be valid, an additional
phase, called plan scheduling, is invoked to take advantage
of them [7].

Experimentation phase comprises monitoring, that is,
obtaining and storing system and model data during the
auditing interval, and auditing, that is, examining a) if the
system has been modified during the last auditing interval
(system reformations), b) if the model no longer provides a
valid representation of the system (deviations) and, c) if
predictions should be used in plan scheduling. Evidently, if
conditions (a) or (b) are fulfilled, remodeling is invoked
without examining condition (c).

As the system dynamic behavior may result in critical
modifications of the system input data, operation parame-
ters and structure, we distinguish three system reformation
types. Specific measures are monitored to determine
whether reformations have occurred. The variables used to
obtain the corresponding values are referred as monitoring
variables. Note that monitoring variables do not follow the
single-valued definition of program variables. Auditing ex-
amines monitoring variables corresponding to the same
real time points (i.e. the current system state and simula-

INTRODUCING Α UML MODEL FOR FASTER-THAN-REAL-TIME SIMULATION

Dimosthenis Anagnostopoulos
George-Dimitrios Kapos

Harokopio University of Athens
70 El. Venizelou Str, 17671

Athens, Greece
email: {dimosthe, gdkapos}@hua.gr

Vassilis Dalakas*
Mara Nikolaidou*

*University of Athens
Panepistimiopolis, 15771

Athens, Greece
email: {vdalakas, mara}@di.uoa.gr

tion predictions for this point) and concludes for the valid-
ity of the model.

Both system and model evolution in real time is de-
picted in Figure 1. Real time points are noted as ti. The
states of the system and the model at point ti are noted as
Ri and Si, respectively. When the model predicts the sys-
tem state at tn (simulation time equal to tn) at real time
point tx, we use the notation Sim(tx)= tn. Auditing is per-
formed at tn-1, tn, tn+1 and, thus, compares states Sx and
Rn at time point tn. If model validity is consecutively en-
sured within a number of consecutive auditing intervals
[tn-2, tn-1], [tn-1, tn], …, it is likely that simulation predic-
tions are also valid. Thus, plan scheduling is invoked to
take advantage of predictions and experimentation re-
sumes.

Figure1: Experimentation in FRTS

Experimentation is the most demanding phase of FRTS,
since strict time restrictions are imposed: Within an audit-
ing interval, model initialization and execution must take
place faster than the real system, while auditing and re-
modeling must be completed within a small fraction of the
auditing interval. In fact, experimentation phase can be
viewed as a “real time system” itself. In order for an FRTS
experiment to be successful, time restrictions should be
studied prior to FRTS implementation. Thus, it is essential
to provide a model for experimentation activities and their
interrelations, facilitating the FRTS researcher to deter-
mine the conditions under which such an experiment is
feasible, e.g. to determine the auditing interval, the infra-
structure need to execute simulation model, e.t.c.

Furthermore, while modeling/remodeling and model
execution strongly depend upon the real system, auditing
and monitoring are real time activities, which can be im-
plemented based on the same principles for all FRTS ex-
periments [10]. In [11] and [12], a specification of data ex-
change among simulation components was provided and
emphasis was given in activity control and experimental
state transition. As simulation activities and control data
flows may be the same in diverse FRTS implementations, a
common basis for FRTS system development was intro-
duced.

In the following, we introduce a model for FRTS ex-
perimentation phase, emphasizing monitoring and auditing
activities, which are not domain-oriented. The proposed
model aims at establishing common guidelines for FRT
simulator development and facilitating its implementation
in different platforms according to each researcher’s spe-
cific need. We decided to adopt UML for FRTS modeling,
since it is widely used industry standard and facilitates the
automated model implementation in different platforms us-
ing a variety of existing tools.Descriptive capabilities of
distinct types of UML diagrams are utilized to specify dif-
ferent aspects of FRTS systems: distinct entities and their
roles, overall down to detailed logic of FRTS system, syn-
chronized communication, and data specification.

Furthermore, in the proposed specification we use
elements from the OMG UML Profile for Schedulability,
Performance and Time Specification [13] (abbreviated by
Real-Time UML or RT-UML). The profile, also used in
[14], enables the detailed specification of critical time and
synchronization requirements for FRTS components and
an overall performance evaluation. Therefore, we provide a
detailed and integrated specification for FRTS systems,
leading to standardized implementations of such systems
that meet strict time requirements. Implementation may
also be facilitated with the use of tools that support code
generation given a UML model. This suggests automated
program generation and execution during FRTS.

In section 2 we review UML and RT-UML used in the
specification of FRTS systems. An overview of the model,
emphasizing on the identification of the discrete roles for
actors and entities within FRTS, is presented in section 3.
FRTS system modeling, focusing on timing issues, is given
in section 4. Detailed RT-UML diagrams of FRTS system
components specify how each component implements its
functionality in terms of events, activities, and actions,
emphasizing on timing constraints. In section 5 an simple
implementation example is used to illustrate the benefits of
RT-UML modeling of FRTS. Finally, in section 6, conclu-
sions are drawn.

2 RT-UML MODELING FRAMEWORK

Unified Modeling Language (UML) [15, 16] is the result
of an effort to unify concepts among distinct methodolo-
gies, made by the authors of three leading methodologies –
Rumbaugh, Booch, and Jacobson. Currently, UML has
been adopted as a standard by the Object Management
Group (OMG) and is considered a fundamental skill for
software engineers.

UML does not provide the required degree of preci-
sion (regarding timing issues) for the specification of
FRTS. Thus, we use RT-UML [13], which enhances UML
diagrams. RT-UML does not propose new model analysis
techniques, but it rather enables the annotation of UML
models with properties that are related to modeling of time

t
0

t
n -1

t
n

S
n

R nR n -1

S n -1

R
n + 1

S n + 1

t
x

S
x

t
n + 1

S y

t
y

R
n + 2

S n + 2

t
n + 2

m o d e l m o n i to r in g
a n d e x e c u t io n

s y s te m
m o n i to r in g

s y s te m
m o n i to r in g

a u d i t in g

r e m o d e l in g

and time-related aspects. Therefore timing and synchroni-
zation aspects of FRTS components are defined and ex-
plained in terms of standard modeling elements. RT-UML
has a modular structure that allows users to use only the
elements that they need. It is divided into two main parts
(General Resource Modeling Framework and Analysis
Models) and is further partitioned in six subprofiles, dedi-
cated to specific aspects and model analysis techniques.
Since the emphasis of this work is on time and concurrency
aspects of FRTS systems, we only use elements from the
General Time Modeling and General Concurrency Model-
ing subprofiles.

Each subprofile provides several stereotypes with tags
that may be applied to UML models. A stereotype can be
viewed as the way to extend the semantics of existing
UML concepts (activity, method, class, etc.). For example,
a stereotype can be applied on an activity, in order to ex-
tend its semantics to include the duration of its execution.
This is achieved via a new tag added to the activity, speci-
fying the execution duration. Stereotypes define such tags
and their domains.

The proposed FRTS model consists of RT-UML en-
hanced diagrams, which are annotated according to the
conventions used in the RT-UML profile specification and
its examples [13]. Stereotypes applied to classes in class
diagrams are displayed in the class box, above the name of
the class (a in Figure 2). However, when tag values need to
be specified for a certain stereotype, a note is also attached
(b in Figure 2). In sequence diagrams, event stereotypes
are displayed over the events, while method invocation and
execution stereotypes are displayed in notes (c in Figure 2).
In activity diagrams, notes are also used to indicate the ap-
plication of a stereotype on an activity, state or transition
(d in Figure 2).

ClassName
<<StereotypeName>>

ClassName
<<StereotypeName>> <<StereotypeName>>

{tag1=value1,
tag2=value2, ...}

ObjectA ObjectB

<<EventStereotype>>

<<Method
Invocation
Stereotype>>

<<Method
Execution
Stereotype>>

Activity

State1

State2

<<ActivityStereotype>>

<<StateStereotype>>

<<TransitionStereotype>>

(a) (b)

(c) (d)

Figure 2: RT-UML notation

The RT-UML stereotypes used in this paper focus on
timing, concurrency and synchronization issues, providing
considerable precision in the specified model. In class dia-
grams of this paper we use the CRconcurrent and RTtimer
stereotypes. CRconcurrent is used for classes of objects
that may be executed concurrently. A CRmain tag holds a

reference to the method that should be invoked once the
object moves to “executing” state. RTtimer models a timer
mechanism. Tag RTduration specifies the duration of the
timer mechanism, while RTperiodic indicates whether the
timer is periodic or not.

In sequence diagrams we use the RTevent, CRimme-
diate, CRsynch, CRasynch, RTnewTimer, RTstart and
RTaction. RTevent models events of message dispatches,
specifying the time instance they occur (through the RTat
tag). CRimmediate is also used for message dispatches to
indicate that no time is consumed until the message
reaches its destination. The CRthreading tag of this stereo-
type defines the thread that will execute a method (as a re-
sult of the message): the thread of the receiver (value “lo-
cal”) or the thread of the sender (value “remote”). CRsynch
and CRasynch are used to indicate whether a method is in-
voked synchronously or not. Stereotype RTnewTimer
models methods that create new timers and RTstart is used
for events that start timing mechanisms. Finally, RTaction
is used for methods, specifying the instance they start (tag
RTstart) and their duration (tag RTduration).

In activity diagrams we use the RTaction and RTdelay
stereotypes. RTaction was described earlier, while RTdelay
is used for pure delay states, specifying their start, end and
duration. Table 1 summarizes the RT-UML stereotypes
used in the proposed FRTS model, their tags, the concepts
applying to, and the diagram types they are used in.

Stereotype Tags Applied to Diagram
type used in

RTaction RTstart,
RTend, RTdu-
ration

Activity,
Method

Activity and
Sequence

RTdelay RTstart,
RTend, RTdu-
ration

State Activity

RTevent RTat Event Sequence
RTnewTimer RTtimerPar Method Sequence
RTstart - Event Sequence
RTtimer RTduration,

RTperiodic
Class Class

CRasynch - Method in-
vocation

Sequence

CRconcurrent CRmain Class Class
CRimmediate CRthreading Event Sequence

diagram
CRsynch - Method in-

vocation
Sequence
diagram

Table 1: RT-UML Notation

3 FRTS: A HIGH-LEVEL DESCRIPTION

An object-oriented specification of FRTS is provide in this
section. In Figure 3, a UML use case diagram is depicted,
including all entities involved in FRTS. Both the system
and the model, are separate from the main module of FRTS
and handled independently. System environment (SE)
represents the actual system and a surrounding mechanism

facilitating system monitoring. It is considered as a sepa-
rate entity that interacts with the FRTS system. Model envi-
ronment (ME) includes the model and its execution envi-
ronment (MEE), while the FRTS System process is the
software module responsible for controlling FRTS. Finally,
the user is the actor that enables the whole process, provid-
ing the case study.

The user provides the experiment specifications and
manages the FRTS System process by starting or stopping
the experiment.

System and model environment entities provide raw
system data and raw model data, respectivelyThe FRTS
System process performs auditing to identify potential de-
viations between the model and the system. In case such a
deviation is indicated exceeding a respective remodeling
threshold, remodeling is invoked (Remodeling), which re-
sults in the construction of a new model that replaces the
one currently used (Model management).

Raw model data provision

Model Environment

System data provision

System Environment

Experiment specifications
provision

User

RemodelingModel management Auditing

FRTS Management

start/stop FRTS

UsesUses Uses

FRTS System

Figure 3: FRTS detailed use case diagram

We focus on the FRTS System, as the FRTS coordinating
entity. The activity diagram depicted in Figure 4 provides a
description of FRTS System process. The user is obliged to
provide experiment specifications to the process with the
SetExperimentSpecifications command. Then, start initi-
ates the experiment, transiting to the Operational state.

As previously stated, system monitoring is considered
to be performed autonomously by the real system with the
aid of expert sensors that store monitoring information.
The contribution of Start System Monitoring activity is re-
stricted in stimulating the aforementioned sensors to start
collecting and recording data by sending the appropriate
event to SE.

Uninitialized

Start

Initialized

Set Experiment Specifications

Operational

Remodel Resume Model

Audit

Pause ModelState Audit

Waiting (model is
running)

Start Model
Monitoring

Start Model

Initialize Model

Start System
Monitoring

Remodel Resume Model

Audit

[Valid]
[Invalid]

Pause ModelState Audit

[Invalid]

Waiting (model is
running)

Audit Interval
State Interval

[Valid]

Start Model
Monitoring

Start Model

Initialize Model

Start System
Monitoring

Start
Stop

Figure 4: FRTS System activity diagram

Based on the experiment specifications, an initial model is
being created (Initialize Model activity) using classes from
predetermined libraries. Model environment is considered
separate from the FRTS environment (e.g. it could be a
DEVS-based execution environment). Therefore, Start
Model activity simply tells ME to start simulation and is
used for synchronization purposes. Model monitoring is
considered to be performed by the ME which stores moni-
toring data. Thus, model and system monitoring are per-
formed concurrently and autonomously, collecting data
from both. Model monitoring is executed for a time period
equal to auditing interval, such as [tn-1, tn] in Figure 1,
during which the FRTS System process mainly remains in
state Waiting (Figure 4). Model execution is then paused
and Audit is invoked. Audit determines if the model still

provides a valid representation of the system. If invalid,
Remodel is invoked. Otherwise, MEE is informed to re-
sume execution and monitoring of the model.

UML semantics were adequate to represent FRTS sys-
tem operation in a high-level of detail, since there was no
need to represent timing constraints between FRTS spe-
cific activities and system/model environment.

In a smaller time interval (state interval) than the au-
diting interval, the FRTS System process leaves Waiting
state, to perform the State Audit activity. State Audit han-
dles critical, such as structural, modifications of the real
system, where remodeling must be performed instantly to
restore consistency between the model and the system.
Model monitoring is disabled during Audit and Remodel.
On the other hand, system monitoring is never terminated,
so that system changes can always be perceived. The only
modification it experiences is that it is restarted for syn-
chronization purposes after Remodel.

4 FRTS SYSTEM SPECIFICATION

In this section a specification for FRTS systems implemen-
tation is provided. First, FRTS system main classes and in-
terfaces are presented in a class diagram. Then, FRTS main
operations are presented using activity and sequence dia-
grams. RT-UML semantics are included in the diagrams in
both case mainly to indicate concurrent execution of activi-
ties, the need for synchronization and timing constraints.

4.1 FRTS Components

Figure 5 depicts the FRTS system design, based on a set of
classes and interfaces. The classes are shortly described be-
low (detailed descriptions are given in following subsec-
tions):
• Context is a utility class, used for storing the experi-

ment specifications, references to the system monitor
and the model environment, and monitoring variable
values used for state auditing.

• Control class initiates the FRTS process.
• StateAuditor, Auditor, and Remodeller are responsible

for performing the homonymous operations.
• Timer is responsible for producing StateAudit and Au-

dit events, necessary for triggering StateAuditor and
Auditor.

• Class UserInterface is simply the means for introduc-
ing user requests and data and therefore, is not further
explained.

The following interfaces are also used:
• IAuditor interface defines the abstract behavior of an

auditor and is implemented via StateAuditor and Audi-
tor classes.

• Monitor interface models the abstract concept of a
monitor for variables’ values. Interfaces SystemMoni-
tor and ModelExecutionEnvironment extend this inter-
face to capture specific behavioral characteristics, re-
quired for system and model monitoring, respectively.

Auditor

audit()
buildAuditTree()

<<CRConcurrent>>

Remodeller

remodel()

<<CRConcurrent>>

Control

start()

<<CRConcurrent>>

Monitor

startMonitoring()
getVals() : MonitoringVars ModelExecutionE

nvironment

initializeModel()
startModel()

pauseModel()
resumeModel()
deleteModel()

Timer
duration : Time
mult : Integer

<<RTnewTimer>> Timer()
start()

<<RTtimer, CRconcurrent>>

UserInterface

StateAuditor

audit()

<<CRConcurrent>>

<<CRconcurrent>>
{CRmain="start()"}
<<RTtimer>>
{RTduration=d,
RTperiodic=true}

<<CRconcurrent>>
{CRmain="audit()"}

<<CRconcurrent>>
{CRmain="stateAudit()"

<<CRconcurrent>>
{CRmain="remodel()"}

Context
expSpecs : ExperimentSpecs
systemMonitor : Monitor
modelMonitor : ModelExecutionEnvironment
lastStateMonVarsVals : MonitoringVars

setExperimentSpecs()
setModelInitializationParams()
getSpecsFor()
getStateVarVal()
setStateVarVal()

IAuditor

audit()

<<CRconcurrent>>
{CRmain="start()"}

SystemMon
itor

getStateVarsVals()

Figure 5: The main FRTS system classes

.

Classes Control, Timer, StateAuditor, Auditor, and Remod-
eler are intended to run on separate threads and therefore
have the CRconcurrent stereotype. Objects of each of these
classes operate independently and occasionally concur-
rently. The CRmain tag of CRconcurrent stereotypes indi-
cates the method that is executed when objects of each
class are activated. Class Timer has also the RTtimer
stereotype, indicating that it is a timing mechanism that
generates an event. Tags RTduration and RTperiodic fur-
ther define the behavior of this timing mechanism, specify-
ing its duration and indicating whether it is periodic or not.

No classes are specified for the system monitor and
the model environment, since they are not part of the FRTS
system. FRTS components require only communication
interfaces with the system monitor and the model environ-
ment, denoted by SystemMonitor and ModelExecutionEn-
vironment.

4.2 Initiation of the FRTS process

Figure 6 shows the sequence of messages exchanged by
the FRTS system objects during initiation. This sequence
diagram of the FRTS process starts when the user sends the

start() event to the Control (through the UserInterface) at a
random time instance ty. The start() event causes the im-
mediate execution of the homonymous method of the Con-
trol, as indicated by the CRimmediateExecution stereotype.
Value ‘local’ of the tag CRthreading shows that the start()
method of Control is not executed by the thread of the in-
voking object (UserInterface), but by a separate, local
thread of the Control. A ‘remote’ value on this tag would
indicate execution of the method by the thread of the in-
voking object. The CRasynch stereotype indicates that the
invocation of the start() method is asynchronous, i.e. the
invoking object does not wait for the execution of the
method to be completed. At this stage several initiation
messages are exchanged until the FRTS process reaches its
stable state of periodic audits and state audits. This hap-
pens when the last message (start()) is sent to the Timer
that will repeatedly produce state audit and audit events
from this point on. All method executions are annotated
with the appropriate RTaction stereotypes that indicate
when each execution starts (tag RTstart) and its duration
(tag RTduration).

ui :
UserInterface

control :
Control

timer : Timer
modelExEnv :
ModelExec...

systemMonitor
: Monitor

<<RTevent>> {RTat=(ty+b,'ms')}
<<CRimmediateExecution>>

{CRthreading='local'} startMonitoring()

<<RTevent>> {RTat=(ty+2*b,'ms')}
<<CRimmediateExecution>>

{CRthreading='local'}
initializeModel(ModelInitializationParams)

<<RTevent>> {RTat=(ty+3*b+c,'ms')}
<<CRimmediateExecution>>

{CRthreading='local'} startModel()

<<RTevent>> {RTat=(ty+5*b+c,'ms')}
<<CRimmediateExecution>>

{CRthreading='local'} startMonitoring()

<<RTevent>> {RTat=(ty+6*b+c,'ms')}
<<CRimmediateExecution>>

{CRthreading='remote'} <<RTnewTimer>>
{RTtimerPar=x} Timer(RTtimeValue,Integer)

<<RTevent>> {RTat=(ty,'ms')}
<<CRimmediateExecution>>
{CRthreading='local'} start()

<<RTevent>>
{RTat=(ty+9*b+c,'ms')}

<<CRimmediateExecution>>
{CRthreading='local'}

<<RTstart>> start()

<<CRasynch>>
<<CRasynch>>

<<CRsynch>>

<<CRsynch>>

<<CRasynch>>

<<CRsynch>>

<<CRasynch>>

<<RTaction>>
{RTstart=(ty+2*b,'ms'),
RTduration=(c,'ms')}

<<RTaction>>
{RTstart=(ty+3*b+c,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+6*b+c,'ms'),
RTduration=(2*b,'ms')}

Parameter 'b' is the
time needed for a
primitive operation
to be performed

Parameter 'c'
depends on
modeling/remodeling
etc.

<<RTaction>>
{RTstart=(ty+5*b+c,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+b,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+9*b+c,'ms'),
RTduration=Infinite}

Figure 6: Sequence diagram for starting the FRTS process

The use of RT-UML in sequence diagram of Figure 6 clari-
fies thread synchronization and execution, determines
event occurrence and action duration, and enhances its se-
mantics. Thus, an in-depth and comprehensive view of the
FRTS system is obtained.

Τhe activity diagram of Figure 7 defines the function-
ality of the start() method of class Control. Each activity of
the diagram is annotated with the appropriate RTaction
stereotype note. Using this kind of stereotype and its
RTduration tag, activities’ durations are specified. The
lower part (do/) of each activity defines the actions exe-
cuted or messages sent. Message dispatches are denoted
with the ^ symbol. The overall duration of start()method is
9*b+c ms, where b is the time needed for a basic operation
to be performed (arithmetic operation, method invocation,
etc.). Parameter c is the duration of model’s initialization
and depends on the experiment specification. The overall
duration of start() refers to the duration from the time in-
stance when the user sends a start() event until everything
has been initialized and Timer is started.

Start System Monitoring

do/ ^context.systemMonitor.startMonitoring()

Initialize Model

do/ ^control.modelMonitor.initializeModel(control.expSpecs.modelInitParams)

Start Model

do/ ^context.modelMonitor.startModel()

ModelInitialized

Start Model Monitoring

do/ ^context.modelMonitor.startMonitoring()

ModelStarted

Create Timer

do/ m=context.expSpecs.auditingInterval/context.expSpecs.stateInterval
do/ ^Timer.new(context.expSpecs.stateInterval,m)

Start Timer

do/ ^timer.start()

TimerCreated

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b+c,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(3*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'c'
depends on
modeling/remodeling
etc.

Figure 7: Activity diagram for method start of class Con-
trol

4.3 Audit

Audit is the key experimentation activity determining
model validity through comparing the corresponding sys-
tem and model monitoring variables. Auditing is activated
either after a state interval or an audit interval. Two dis-
tinct cases are thus considered: standard auditing and state
auditing. Throughout this paper, the term auditing refers to
standard auditing. State auditing is explicitly referenced.

During auditing, system modifications, involving its input
data, operation parameters and structure, as well as devia-
tions between the system and the model are examined to
determine model validity. If remodeling is required, a re-
modeling indication is produced. All monitoring variables
are used in this process.

Monitoring variable comparison is realized using the
auditing tree, which is a conceptual tree structure. It is di-
vided into two subtrees and includes two corresponding
types of end nodes, OR and AND, as depicted in Figure 8.
The audit activity constructs the auditing tree retrieving
system and model monitoring variable entries from the
System Monitor and Model Execution Environment,
respectively.

ORNode

rcname : String
tname : String
mvname : String
comp_params : Double
systemvalue : OutputValues
modelvalue : OutputValues

ANDNode

weight : Double

RootNode

orNum : Integer
andNum : Integer
ORsubtree : ORNode[]
ANDsubtree : ANDNode[]

Figure 8: Auditing tree class diagram

Both Audit and State Audit execution are restricted by
strict timing concerns, since in both cases the auditing tree
must be constructed in a small fraction of the audit/state
audit interval. Furthermore, the auditing tree construction
is bounded by system and model environments since moni-
toring variable values must be fetched from both of them.
These restrictions are denoted in detail in corresponding
sequence and activity diagrams, where RT-UML use offers
the ability to estimate the time elapsed in separate activities
or the whole auditing process in total. Hence, bottlenecks
regarding the execution time of specific Auditing and
Model/System Environment processes (e.g. comparing
values of a monitoring variable) may be identified during
analysis and Auditing implementation performance can be
measured and validated with regard to Model/System En-
vironment operation. For example, since the FRTS Mod-
eler is able to realize the way the overall duration of audit
depends on the number of monitoring variables or the
fetching mechanism of System Environment, he/she may
regulate the operation of all FRTS modules.

In figures 9 and 10, the State Audit RT-UML se-
quence and activity diagrams are presented. As shown in
figure 9, state audit activity inspects the current system
state to determine if reformations have occurred. In this
case, the model no longer provides a valid representation
and the relevant remodelling indication is produced. As in-
dicated in the activity diagram in figure 10, only variables
designated as state monitoring variables are retrieved dur-

ing state audit. Each of these variables is compared to its
previous known value and the newer is stored. If the devia-
tion between the two values supersedes the specified
compParam, it is considered as invalid and the algorithm
directly invokes remodeling to modify the model with
minimum time overhead, without exhaustively examining
the remaining state monitoring variables. Otherwise, the

state auditor examines the remaining state monitoring vari-
ables.

As indicated in Figure 10, the overall duration of the
state audit is 8*b+net1+f ms, where f belongs in [4*b+d,
(4*b+d)*e], d is the mean time for the comparison for one
variable and e is the number of state monitoring variables.

 : Timer : StateAuditor System Monitor :
SystemMonitor

<<RTevent>> {RTat=tz+b} <<CRimmediateExecution>>
{CRthreading='local'} getStateVarsVals()

system state monitoring values

<<RTevent>> {RTat=tz}
<<CRimmediateExecution>>

{CRthreading='local'} audit()

<<CRasynch>>
<<CRsynch>> <<RTaction>>

{RTstart=(tz+b,'ms'),
RTduration=(b,'ms')}

tz =
ty+9*b+c+x*duration

<<RTaction>>
{RTstart=(tz+2*b,'ms'),
RTduration=(net1,'ms')}

Parameter 'net1'
depends on the
number of state
monitoring variables
and their type

Parameter 'x' is a
positive integer

Figure 9: State audit sequence diagram

Get System State Monitoring Values

do/ s = context.systemMonitor.getStateVarsVals()

Check all state monitoring variables until an invalid value is found

Check Alteration of Monitoring Value

do/ x=context.getStateVarVal(s[i].mv.mvname)
do/ comp=s[i].mv.ctechnique.compare(s[i].vals,x,s[i].mv.compParam)
do/ i++

Valid

Invalid

Valid
Range

Check Alteration of Monitoring Value

do/ x=context.getStateVarVal(s[i].mv.mvname)
do/ comp=s[i].mv.ctechnique.compare(s[i].vals,x,s[i].mv.compParam)
do/ i++

Valid

Invalid

[!comp]

Valid
Range

[comp]

[i>=s.size]

[i<s.size]

 / Integer i=0; Boolean comp=True

Store New State Value and Start Remodeling

do/ ^context.setStateVarVal(s[i].mv.mvname,s[i].vals)
do/ r = new Remodeler()
do/ ^r.remodel(ri)

<<RTaction>>
{RTduration=(2*b+net1,'ms')}

Parameter 'net1'
depends on the
number of state
monitoring variables
and their type

<<RTaction>>
{RTduration=(f*b+
e*(4*b+d),'ms')}

<<RTaction>>
{RTduration=(2*b+d,'ms')}

Parameter 'd' is an
estimated mean
time needed for the
comparison

<<RTaction>>
{RTduration=(3*b,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'e' is the
final value of i and
parameter 'f' is 0 if
invalid or 1 if valid

<<RTaction>>
{RTduration=(b,'ms')}

[Valid]
[Invalid]

Figure 10: Activity diagram for method audit of class StateAuditor

.

5 IMPLEMENTING A SIMPLE FRTS USING THE
RT-UML MODEL

In order to evaluate FRTS RT-UML model richness and
flexibility, a simulator was built in Java using the diagrams
analytically discussed in sections 3 and 4. To contact FRTS
experiments successfully, the execution time of specific
activities must be similar to the time estimations reported
in the model. A simple FRTS experiment system is pre-
sented in the following for evaluation purposes. The Simu-
lation Environment (SE) and simulation models were con-
structed in Java, as well. The simulator was easily
implemented using Rational Rose platform (programming
effort was minimized).

In the following, FRTS is applied in a two node web
site, where the second node is used only in cases of heavy
load (that is when FRTS predicts that each node load is
over a certain threshold). Suppose that visitor enquiries are
two kind of processing jobs J1 and J2 that fill two separate
queues Q1 and Q2 respectively. Each job has an inter-
arrival time λi and a predetermined service time εi (ε1 ≥ ε2).
Both queues are connected with a server Si as illustrates
Figure11. Thus, the web site can be modeled as a Multi-
Queue, Multi-Server System.

Figure 11: Example topology

Denoting as di, the average queue delay we may define
the following scenario for our case study. In the beginning
each server serves only its associated queue (Coupling
does not exist). However, if d1 ≥ M1 and d2 ≤ M2 we acti-
vate the coupling among the first queue Q1 and the second
server S2, activating a mechanism that enables S2 to serve
one job from queue Q1 each time its queue (Q2) is empty.
This mechanism is deactivated in case d1 ≤ M1 or d2 ≥ M2.
Then again, each server serves only its associated queue
(Coupling does not exist).

In order to conduct the experiment, detailed descrip-
tion of Monitoring Variables and Remodeling Conditions
was needed during the initialization phase. As model ini-
tialization parameters, the following variables were used:

• 2 job types
• 2 queues
• 2 servers
• Inter-arrival parameter for job 1 = 3
• Inter-arrival parameter for job 2 = 3
• Service time for job 1 = 10 sec
• Service time for job 1 = 1 sec
• Average queue delay in queue 1 = 60 sec

• Average queue delay in queue 1 = 5 sec
thus, we have modelInitParams = (2, 2, 2, 3, 3, 10, 1, 60,
5).

Having the model variables and the initialization pa-
rameters the MEE can now build the model and execute it.

Checking values for both system and model of these
monitoring variables during auditing we apply remodeling
following the described scenario and in case a server is
down.

The scenario just described is only a case study needed
to be executed with our FRT Simulator implementation to
test the validity of the proposed framework. Table 2 pre-
sents the results of the experimentation with the example
described in this section and the FRTS simulator we built.
Experimentation was conducted within Sun's Netbeans
IDE and the Netbeans Profiler plugin. Measured times
(third column) are presented against estimated durations
(second column) by the RT-UML FRTS model analysis.
The table contains the most important time periods:

a) Execution time of a basic operation. It entirely de-
pends on the computer configuration where the experimen-
tation is conducted. No theoretical estimation can be made.
The measured value is substituted in the formulas that es-
timate other time periods.

b) Audit and state audit intervals.
c) Audit and state audit durations. A fundamental re-

quirement is that state audit duration is less than state audit
interval.

For each time period both estimated and measured, an
average, a minimum and a maximum value are given.

Duration
(avg,min,max)

in msec Theoretical Estimation Measured Time
Time for basic

operation Computer depended (b) 0.0377,0.0011, 0.8229
Audit interval 5000, 5000, 5000 5004.09, 4871, 5278
Audit duration 5.479, 0.155, 123.441 2.700, 0.090, 53.400
State audit in-

terval 1000, 1000, 1000 999, 891, 1106
State audit dura-

tion 0.565, 0.017, 12.344 0.233, 0.087, 10.70

Table 2: Basic FRTS time attribute comparison

As far as the estimated time periods are concerned,
audit and state audit intervals are explicitly defined rather
than estimated. Also, since the basic operation duration (b)
is not estimated, but the measured time is used in other
formulas.

State audit duration is estimated by the formula
8*b+net1+f, where f belongs in [4*b+d, (4*b+d)*e], d is
the mean time for the comparison for one variable and e is
the number of state monitoring variables. In our example
there is only one state monitoring variable (e=1) and the
mean time for the comparison of the integer variable is two
basic operations (d=2*b). Also, as there isn't any factor
that would introduce delays in the reception of state moni-
toring variable values from the system, parameter net1 can

be estimated to be equal to one basic operation duration
(net1=b). Therefore, the formula estimating the state audit
duration becomes 15*b. The respective cell is filled using
the measured value for the basic operation duration (b).

Similarly, for the estimation of the audit duration, the
formula 14*b+g+net2+net3+k is used. Parameter g is the
time for the audit tree to be built, net2 and net3 depend on
the number (h=9) and the type of the monitoring variables,
and k belongs in [b+h*(4*b+d), b+h*(5*b+d)]. Parameter
g can be estimated to be 6*b times the number of monitor-
ing variables (6*b*h=54*b). Like net1 in state audit dura-
tion, net2 and net3 are considered to be equal to h*b=9*b
each. Considering that h=9 and d=2*b, k belongs in [55b,
64*b].Therefore, audit duration belongs in [141*b, 150*b].
The respective cell is filled using the measured value fot
the basic operation duration (b).

Comparing the theoretical estimations with the meas-
ured times in table 2, the following conclusions are
reached: a) audit and state audit intervals are quite accu-
rate, b) estimated audit and state audit durations are com-
parable to the measured ones. Also, estimations for maxi-
mum audit and state audit durations are higher than the
measured ones, indicating that the estimated maximum
values may be used as the lower limit for audit and state
audit duration.

6 CONCLUSIONS

The main objective of the work presented in this paper was
to introduce a specification for FRTS experimentation,
which was not domain-oriented and establishes common
guidelines for developing FRT simulators. We adopted
RT-UML to provide a thorough and complete model for
FRT simulators emphasizing timing and concurrency is-
sues. RT-UML enabled the description of time constraints
imposed in FRTS, while modeling process was straight-
forward, and no extensions were needed to describe FRTS.
Detailed RT-UML diagrams specify how each FRTS com-
ponent operates in terms of events, activities, and actions
and infers estimations about time consistency and overall
behavior of specific FRTS simulators. The behavior of
FRTS simulators, apart from their implementation,
strongly depends on the application domain and the ex-
periment specifications used. Thus, time consistency of
FRTS simulators may be completely justified only in the
context of an application domain and specific experiment
specifications. To this direction the proposed model quanti-
fied this interdependence and facilitates the evaluation of
FRTS simulators in certain contexts.

7 REFERENCES

[1] Cleveland J. et al., Real Time Simulation User’s Guide: The
Red Book, Analysis and Simulation Branch, NASA Langley
Research Center, 1997

[2] Fishwick P., "OOPM/RT: A Multimodelling Methodology
for Real-Time Simulation", ACM Transactions on Model-
ling and Computer Simulation, 9(2), 1999

[3] Cai Z., Y. Wang, J. Cai, “ A Real-Time Expert Control Sys-
tem”, Artificial Intelligence and Engineering, Elsevier Sci-
ence, vol. 10, 1996, pp. 317-332

[4] Norvilas et al., “Intelligent Process Monitoring by Interfac-
ing Knowledge-Based Systems and Multivariate Statistical
Modelling”, Journal of Process Control, Elsevier Science,
2000, pp. 341-350

[5] Tyreus B.D., “Interactive Dynamic Simulation using Ex-
trapolation Methods”, Computer and Chemical Engineer-
ing, vol. 21, 1997, pp. 173-179, Pergamon Press

[6] Zeigler B. P., H. Praehofer, T. Kim, Theory of Modeling
and Simulation (second edition), Academic Press, 2000

[7] Anagnostopoulos D., M. Nikolaidou, “Timing Issues and
Experiment Scheduling in Faster-than-Real-Time Simula-
tion”, Simulation: Transactions of the Society for Modeling
and Simulation International, Vol. 79, No 11, SCS, 2003

[8] Barros F. J., “Modelling Formalisms for Dynamic Structure
Systems”, ACM Transactions on Modelling and Computer
Simulation - TOMACS, 7(4), pp. 501-515, 1997

[9] Zeigler B.P, H. Praehofer, "Systems Theory Challenges in
the Simulation of Variable Structure and Intelligent Sys-
tems", in CAST: Computer Aided Systems Theory, Lecture
Notes, Springer-Verlag, Berlin, pp: 41-51, 1997

[10] Anagnostopoulos D., M. Nikolaidou, ”An Object-Oriented
Modelling Approach For Dynamic Computer Network
Simulation”, International Journal of Modeling and Simula-
tion, Vol. 21, No 4, Acta Press, 2001

[11] Goldsmith S., A Practical Guide to Real-Time Systems De-
velopment, Prentice Hall, 1993

[12] Anagnostopoulos D., Dalakas V., Nikolaidou M., Vescoukis
V., A Structured-Analysis-Based Specification for Faster-
than-Real-Time Simulation, in Systems Analysis Modeling
and Simulation Journal (SAMS), Taylor and Francis

[13] UML Profile for Schedulability, Performance, and Time
Specification, version 1.0, available on-line at
http://www.omg.org/docs/formal/03-09-
01.pdf

[14] Bertolino A., Marchetti E., Mirandola R., Real-Time UML-
based Performance Engineering to Aid Manager’s Decision
in Multi-project Planning, in Proceedings of WOSP 2002

[15] Rumbaugh J., Jacobson I., Booch G., The Unified Modeling
Language Reference Manual, Addison Wesley, 1998

[16] OMG Unified Modeling Language Specification, version
1.5, available on-line at
http://www.omg.org/docs/formal/03-03-
01.pdf

