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ABSTRACT

Faster-than-real-time simulation (FRTS) is used when at-
tempting to reach conclusions for the near future. FRTS 
experimentation proves to be the most demanding phase 
for conducting FRTS, since it requires concurrent monitor-
ing and management of both the real system and the simu-
lation experiments. Having previously introduced a con-
ceptual methodology and specification for conducting 
FRTS experiments, we now propose an implementation 
framework, based on the Real Time Unified Modeling 
Language (RT-UML). The derived RT-UML model in-
cludes specific timing attributes and is independent of the 
application examined via FRTS. Thus, implementation of 
FRTS program modules can be analyzed and realized, fol-
lowing the guidelines of this model, ensuring the reliability 
of the results within predetermined time frames. A pilot 
application regarding FRTS implementation based on the 
proposed RT-UML model and related experience is also 
discussed in the paper.

1 INTRODUCTION

Faster-than-real-time simulation is used when attempting 
to reach conclusions for the near future [1]. In this type of 
simulation, advancement of simulation time occurs faster 
than real world time. Real time systems often have hard 
requirements for interacting with a human operator or other 
agents [2]. Current FRTS research directions involve the 
distribution of the experiment over a network of worksta-
tions, intelligent control [3] and fault diagnosis [4], interac-
tive dynamic simulation [5] and modeling formalisms [6].

In [7] a conceptual methodology for FRTS was de-
scribed, aiming at providing a framework for conducting 
experiments dealing with the complexity and the hard real-
time requirements. The following simulation phases have 
been identified: modeling, experimentation and remodel-
ing. During experimentation, both the system and the 
model evolve concurrently and are put under monitoring. 
Data depicting their consequent states are obtained and 
stored after predetermined, real-time intervals of equal 

length, called auditing intervals. In the case where the 
model state deviates from the corresponding system state, 
remodeling is invoked. This may occur due to system 
modifications, involve its input data, operation parameters 
and structure [7]. Modeling issues and formalisms for 
structure modifications have been thoroughly studied either 
at the methodological level [8], [9], or for domain/oriented 
approaches, such as computer networks [10]. To deal with 
system modifications, remodeling adapts the model to the 
current system state. This should be accomplished without 
terminating the real time experiment, that is, without per-
forming recompilation. When model modifications are 
completed, experimentation resumes. Remodeling can also 
be invoked when deviations (expressed through appropri-
ate statistical measures) are indicated between the system 
and the model due to the stochastic nature of simulation, 
even when system parameters/components have not been 
modified. Finally, in case simulation results (predictions 
for the near future) are considered to be valid, an additional 
phase, called plan scheduling, is invoked to take advantage 
of them [7].

Experimentation phase comprises monitoring, that is, 
obtaining and storing system and model data during the 
auditing interval, and auditing, that is, examining a) if the 
system has been modified during the last auditing interval 
(system reformations), b) if the model no longer provides a 
valid representation of the system (deviations) and, c) if 
predictions should be used in plan scheduling. Evidently, if 
conditions (a) or (b) are fulfilled, remodeling is invoked 
without examining condition (c).

As the system dynamic behavior may result in critical 
modifications of the system input data, operation parame-
ters and structure, we distinguish three system reformation
types. Specific measures are monitored to determine 
whether reformations have occurred. The variables used to 
obtain the corresponding values are referred as monitoring
variables. Note that monitoring variables do not follow the 
single-valued definition of program variables. Auditing ex-
amines monitoring variables corresponding to the same 
real time points (i.e. the current system state and simula-
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tion predictions for this point) and concludes for the valid-
ity of the model. 

Both system and model evolution in real time is de-
picted in Figure 1. Real time points are noted as ti. The 
states of the system and the model at point ti are noted as 
Ri and Si, respectively. When the model predicts the sys-
tem state at tn (simulation time equal to tn) at real time 
point tx, we use the notation Sim(tx)= tn. Auditing is per-
formed at tn-1, tn, tn+1 and, thus, compares states Sx and 
Rn at time point tn. If model validity is consecutively en-
sured within a number of consecutive auditing intervals 
[tn-2, tn-1], [tn-1, tn], …, it is likely that simulation predic-
tions are also valid. Thus, plan scheduling is invoked to 
take advantage of predictions and experimentation re-
sumes.

Figure1: Experimentation in FRTS

Experimentation is the most demanding phase of FRTS, 
since strict time restrictions are imposed: Within an audit-
ing interval, model initialization and execution must take 
place faster than the real system, while auditing and re-
modeling must be completed within a small fraction of the 
auditing interval. In fact, experimentation phase can be 
viewed as a “real time system” itself. In order for an FRTS 
experiment to be successful, time restrictions should be 
studied prior to FRTS implementation. Thus, it is essential 
to provide a model for experimentation activities and their 
interrelations, facilitating the FRTS researcher to deter-
mine the conditions under which such an experiment is 
feasible, e.g. to determine the auditing interval, the infra-
structure need to execute simulation model, e.t.c.

Furthermore, while modeling/remodeling and model 
execution strongly depend upon the real system, auditing 
and monitoring are real time activities, which can be im-
plemented based on the same principles for all FRTS ex-
periments [10]. In [11] and [12], a specification of data ex-
change among simulation components was provided and 
emphasis was given in activity control and experimental 
state transition. As simulation activities and control data 
flows may be the same in diverse FRTS implementations, a 
common basis for FRTS system development was intro-
duced. 

In the following, we introduce a model for FRTS ex-
perimentation phase, emphasizing monitoring and auditing 
activities, which are not domain-oriented. The proposed 
model aims at establishing common guidelines for FRT 
simulator development and facilitating its implementation 
in different platforms according to each researcher’s spe-
cific need.  We decided to adopt UML for FRTS modeling, 
since it is widely used industry standard and facilitates the 
automated model implementation in different platforms us-
ing a variety of existing tools.Descriptive capabilities of 
distinct types of UML diagrams are utilized to specify dif-
ferent aspects of FRTS systems: distinct entities and their 
roles, overall down to detailed logic of FRTS system, syn-
chronized communication, and data specification. 

Furthermore, in the proposed specification we use 
elements from the OMG UML Profile for Schedulability, 
Performance and Time Specification [13] (abbreviated by
Real-Time UML or RT-UML). The profile, also used in 
[14], enables the detailed specification of critical time and 
synchronization requirements for FRTS components and 
an overall performance evaluation. Therefore, we provide a 
detailed and integrated specification for FRTS systems, 
leading to standardized implementations of such systems 
that meet strict time requirements. Implementation may 
also be facilitated with the use of tools that support code 
generation given a UML model. This suggests automated 
program generation and execution during FRTS.

In section 2 we review UML and RT-UML used in the 
specification of FRTS systems. An overview of the model, 
emphasizing on the identification of the discrete roles for 
actors and entities within FRTS, is presented in section 3. 
FRTS system modeling, focusing on timing issues, is given 
in section 4. Detailed RT-UML diagrams of FRTS system 
components specify how each component implements its 
functionality in terms of events, activities, and actions, 
emphasizing on timing constraints. In section 5 an simple 
implementation example is used to illustrate the benefits of 
RT-UML modeling of FRTS. Finally, in section 6, conclu-
sions are drawn.

2 RT-UML MODELING FRAMEWORK 

Unified Modeling Language (UML) [15, 16] is the result 
of an effort to unify concepts among distinct methodolo-
gies, made by the authors of three leading methodologies –
Rumbaugh, Booch, and Jacobson. Currently, UML has 
been adopted as a standard by the Object Management 
Group (OMG) and is considered a fundamental skill for 
software engineers.

UML does not provide the required degree of preci-
sion (regarding timing issues) for the specification of 
FRTS. Thus, we use RT-UML [13], which enhances UML 
diagrams. RT-UML does not propose new model analysis 
techniques, but it rather enables the annotation of UML 
models with properties that are related to modeling of time 
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and time-related aspects. Therefore timing and synchroni-
zation aspects of FRTS components are defined and ex-
plained in terms of standard modeling elements. RT-UML 
has a modular structure that allows users to use only the 
elements that they need. It is divided into two main parts 
(General Resource Modeling Framework and Analysis 
Models) and is further partitioned in six subprofiles, dedi-
cated to specific aspects and model analysis techniques. 
Since the emphasis of this work is on time and concurrency 
aspects of FRTS systems, we only use elements from the 
General Time Modeling and General Concurrency Model-
ing subprofiles.

Each subprofile provides several stereotypes with tags 
that may be applied to UML models. A stereotype can be 
viewed as the way to extend the semantics of existing 
UML concepts (activity, method, class, etc.). For example, 
a stereotype can be applied on an activity, in order to ex-
tend its semantics to include the duration of its execution. 
This is achieved via a new tag added to the activity, speci-
fying the execution duration. Stereotypes define such tags 
and their domains.

The proposed FRTS model consists of RT-UML en-
hanced diagrams, which are annotated according to the 
conventions used in the RT-UML profile specification and 
its examples [13]. Stereotypes applied to classes in class 
diagrams are displayed in the class box, above the name of 
the class (a in Figure 2). However, when tag values need to 
be specified for a certain stereotype, a note is also attached 
(b in Figure 2). In sequence diagrams, event stereotypes 
are displayed over the events, while method invocation and 
execution stereotypes are displayed in notes (c in Figure 2). 
In activity diagrams, notes are also used to indicate the ap-
plication of a stereotype on an activity, state or transition 
(d in Figure 2).

ClassName
<<StereotypeName>>

ClassName
<<StereotypeName>> <<StereotypeName>>

{tag1=value1,
tag2=value2, ...}

ObjectA ObjectB

<<EventStereotype>>

<<Method
Invocation
Stereotype>>

<<Method
Execution
Stereotype>>

Activity

State1

State2

<<ActivityStereotype>>

<<StateStereotype>>

<<TransitionStereotype>>

(a) (b)

(c) (d)

Figure 2: RT-UML notation

The RT-UML stereotypes used in this paper focus on 
timing, concurrency and synchronization issues, providing 
considerable precision in the specified model. In class dia-
grams of this paper we use the CRconcurrent and RTtimer 
stereotypes. CRconcurrent is used for classes of objects 
that may be executed concurrently. A CRmain tag holds a 

reference to the method that should be invoked once the 
object moves to “executing” state. RTtimer models a timer 
mechanism. Tag RTduration specifies the duration of the 
timer mechanism, while RTperiodic indicates whether the 
timer is periodic or not.

In sequence diagrams we use the RTevent, CRimme-
diate, CRsynch, CRasynch, RTnewTimer, RTstart and 
RTaction. RTevent models events of message dispatches, 
specifying the time instance they occur (through the RTat 
tag). CRimmediate is also used for message dispatches to 
indicate that no time is consumed until the message 
reaches its destination. The CRthreading tag of this stereo-
type defines the thread that will execute a method (as a re-
sult of the message): the thread of the receiver (value “lo-
cal”) or the thread of the sender (value “remote”). CRsynch 
and CRasynch are used to indicate whether a method is in-
voked synchronously or not. Stereotype RTnewTimer 
models methods that create new timers and RTstart is used 
for events that start timing mechanisms. Finally, RTaction 
is used for methods, specifying the instance they start (tag 
RTstart) and their duration (tag RTduration).

In activity diagrams we use the RTaction and RTdelay 
stereotypes. RTaction was described earlier, while RTdelay 
is used for pure delay states, specifying their start, end and 
duration. Table 1 summarizes the RT-UML stereotypes 
used in the proposed FRTS model, their tags, the concepts 
applying to, and the diagram types they are used in.

Stereotype Tags Applied to Diagram 
type used in

RTaction RTstart, 
RTend, RTdu-
ration

Activity, 
Method

Activity and 
Sequence

RTdelay RTstart, 
RTend, RTdu-
ration

State Activity

RTevent RTat Event Sequence
RTnewTimer RTtimerPar Method Sequence
RTstart - Event Sequence
RTtimer RTduration, 

RTperiodic
Class Class

CRasynch - Method in-
vocation

Sequence

CRconcurrent CRmain Class Class
CRimmediate CRthreading Event Sequence 

diagram
CRsynch - Method in-

vocation
Sequence 
diagram

Table 1: RT-UML Notation

3 FRTS: A HIGH-LEVEL DESCRIPTION

An object-oriented specification of FRTS is provide in this 
section. In Figure 3, a UML use case diagram is depicted, 
including all entities involved in FRTS. Both the system 
and the model, are separate from the main module of FRTS 
and handled independently. System environment (SE) 
represents the actual system and a surrounding mechanism 



facilitating system monitoring. It is considered as a sepa-
rate entity that interacts with the FRTS system. Model envi-
ronment (ME) includes the model and its execution envi-
ronment (MEE), while the FRTS System process is the 
software module responsible for controlling FRTS. Finally, 
the user is the actor that enables the whole process, provid-
ing the case study.

The user provides the experiment specifications and 
manages the FRTS System process by starting or stopping 
the experiment.

System and model environment entities provide raw 
system data and raw model data, respectivelyThe FRTS 
System process performs auditing to identify potential de-
viations between the model and the system. In case such a 
deviation is indicated exceeding a respective remodeling 
threshold, remodeling is invoked (Remodeling), which re-
sults in the construction of a new model that replaces the 
one currently used (Model management).

Raw model data provision

Model Environment

System data provision

System Environment

Experiment specifications 
provision

User

RemodelingModel management Auditing

FRTS Management

start/stop FRTS

UsesUses Uses

FRTS System

Figure 3: FRTS detailed use case diagram

We focus on the FRTS System, as the FRTS coordinating 
entity. The activity diagram depicted in Figure 4 provides a 
description of FRTS System process. The user is obliged to 
provide experiment specifications to the process with the 
SetExperimentSpecifications command. Then, start initi-
ates the experiment, transiting to the Operational state.

As previously stated, system monitoring is considered 
to be performed autonomously by the real system with the 
aid of expert sensors that store monitoring information. 
The contribution of Start System Monitoring activity is re-
stricted in stimulating the aforementioned sensors to start 
collecting and recording data by sending the appropriate 
event to SE.

Uninitialized

Start

Initialized

Set Experiment Specifications

Operational

Remodel Resume Model

Audit

Pause ModelState Audit

Waiting (model is 
running)

Start Model 
Monitoring

Start Model

Initialize Model

Start System 
Monitoring

Remodel Resume Model

Audit

[ Valid ]
[ Invalid ]

Pause ModelState Audit

[ Invalid ]

Waiting (model is 
running)

Audit Interval
State Interval

[ Valid ]

Start Model 
Monitoring

Start Model

Initialize Model

Start System 
Monitoring

Start
Stop

Figure 4: FRTS System activity diagram 

Based on the experiment specifications, an initial model is 
being created (Initialize Model activity) using classes from 
predetermined libraries. Model environment is considered 
separate from the FRTS environment (e.g. it could be a 
DEVS-based execution environment). Therefore, Start 
Model activity simply tells ME to start simulation and is 
used for synchronization purposes. Model monitoring is 
considered to be performed by the ME which stores moni-
toring data. Thus, model and system monitoring are per-
formed concurrently and autonomously, collecting data 
from both. Model monitoring is executed for a time period 
equal to auditing interval, such as [tn-1, tn] in Figure 1, 
during which the FRTS System process mainly remains in 
state Waiting (Figure 4). Model execution is then paused 
and Audit is invoked. Audit determines if the model still 



provides a valid representation of the system. If invalid, 
Remodel is invoked. Otherwise, MEE is informed to re-
sume execution and monitoring of the model.

UML semantics were adequate to represent FRTS sys-
tem operation in a high-level of detail, since there was no 
need to represent timing constraints between FRTS spe-
cific activities and system/model environment.

In a smaller time interval (state interval) than the au-
diting interval, the FRTS System process leaves Waiting
state, to perform the State Audit activity. State Audit han-
dles critical, such as structural, modifications of the real 
system, where remodeling must be performed instantly to 
restore consistency between the model and the system. 
Model monitoring is disabled during Audit and Remodel. 
On the other hand, system monitoring is never terminated, 
so that system changes can always be perceived. The only 
modification it experiences is that it is restarted for syn-
chronization purposes after Remodel.

4 FRTS SYSTEM SPECIFICATION

In this section a specification for FRTS systems implemen-
tation is provided. First, FRTS system main classes and in-
terfaces are presented in a class diagram. Then, FRTS main 
operations are presented using activity and sequence dia-
grams. RT-UML semantics are included in the diagrams in 
both case mainly to indicate concurrent execution of activi-
ties, the need for synchronization and timing constraints.

4.1 FRTS Components

Figure 5 depicts the FRTS system design, based on a set of 
classes and interfaces. The classes are shortly described be-
low (detailed descriptions are given in following subsec-
tions):
• Context is a utility class, used for storing the experi-

ment specifications, references to the system monitor 
and the model environment, and monitoring variable 
values used for state auditing.

• Control class initiates the FRTS process.
• StateAuditor, Auditor, and Remodeller are responsible 

for performing the homonymous operations.
• Timer is responsible for producing StateAudit and Au-

dit events, necessary for triggering StateAuditor and 
Auditor.

• Class UserInterface is simply the means for introduc-
ing user requests and data and therefore, is not further 
explained.

The following interfaces are also used:
• IAuditor interface defines the abstract behavior of an 

auditor and is implemented via StateAuditor and Audi-
tor classes.

• Monitor interface models the abstract concept of a 
monitor for variables’ values. Interfaces SystemMoni-
tor and ModelExecutionEnvironment extend this inter-
face to capture specific behavioral characteristics, re-
quired for system and model monitoring, respectively.

Auditor

audit()
buildAuditTree()

<<CRConcurrent>>

Remodeller

remodel()

<<CRConcurrent>>

Control

start()

<<CRConcurrent>>

Monitor

startMonitoring()
getVals() : MonitoringVars ModelExecutionE

nvironment

initializeModel()
startModel()

pauseModel()
resumeModel()
deleteModel()

Timer
duration : Time
mult : Integer

<<RTnewTimer>> Timer()
start()

<<RTtimer, CRconcurrent>>

UserInterface

StateAuditor

audit()

<<CRConcurrent>>

<<CRconcurrent>>
{CRmain="start()"}
<<RTtimer>>
{RTduration=d,
RTperiodic=true}

<<CRconcurrent>>
{CRmain="audit()"}

<<CRconcurrent>>
{CRmain="stateAudit()"

<<CRconcurrent>>
{CRmain="remodel()"}

Context
expSpecs : ExperimentSpecs
systemMonitor : Monitor
modelMonitor : ModelExecutionEnvironment
lastStateMonVarsVals : MonitoringVars

setExperimentSpecs()
setModelInitializationParams()
getSpecsFor()
getStateVarVal()
setStateVarVal()

IAuditor

audit()

<<CRconcurrent>>
{CRmain="start()"}

SystemMon
itor

getStateVarsVals()

Figure 5: The main FRTS system classes
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Classes Control, Timer, StateAuditor, Auditor, and Remod-
eler are intended to run on separate threads and therefore 
have the CRconcurrent stereotype. Objects of each of these 
classes operate independently and occasionally concur-
rently. The CRmain tag of CRconcurrent stereotypes indi-
cates the method that is executed when objects of each 
class are activated. Class Timer has also the RTtimer
stereotype, indicating that it is a timing mechanism that 
generates an event. Tags RTduration and RTperiodic fur-
ther define the behavior of this timing mechanism, specify-
ing its duration and indicating whether it is periodic or not.

No classes are specified for the system monitor and 
the model environment, since they are not part of the FRTS 
system. FRTS components require only communication 
interfaces with the system monitor and the model environ-
ment, denoted by SystemMonitor and ModelExecutionEn-
vironment.

4.2 Initiation of the FRTS process

Figure 6 shows the sequence of messages exchanged by 
the FRTS system objects during initiation. This sequence 
diagram of the FRTS process starts when the user sends the 

start() event to the Control (through the UserInterface) at a 
random time instance ty. The start() event causes the im-
mediate execution of the homonymous method of the Con-
trol, as indicated by the CRimmediateExecution stereotype. 
Value ‘local’ of the tag CRthreading shows that the start()
method of Control is not executed by the thread of the in-
voking object (UserInterface), but by a separate, local 
thread of the Control. A ‘remote’ value on this tag would 
indicate execution of the method by the thread of the in-
voking object. The CRasynch stereotype indicates that the 
invocation of the start() method is asynchronous, i.e. the 
invoking object does not wait for the execution of the 
method to be completed. At this stage several initiation 
messages are exchanged until the FRTS process reaches its 
stable state of periodic audits and state audits. This hap-
pens when the last message (start()) is sent to the Timer
that will repeatedly produce state audit and audit events 
from this point on. All method executions are annotated 
with the appropriate RTaction stereotypes that indicate 
when each execution starts (tag RTstart) and its duration 
(tag RTduration).

ui : 
UserInterface

control : 
Control

timer : Timer
modelExEnv : 
ModelExec...

systemMonitor 
: Monitor

<<RTevent>> {RTat=(ty+b,'ms')} 
<<CRimmediateExecution>>

{CRthreading='local'} startMonitoring( )

<<RTevent>> {RTat=(ty+2*b,'ms')} 
<<CRimmediateExecution>>

{CRthreading='local'} 
initializeModel(ModelInitializationParams)

<<RTevent>> {RTat=(ty+3*b+c,'ms')} 
<<CRimmediateExecution>>

{CRthreading='local'} startModel( )

<<RTevent>> {RTat=(ty+5*b+c,'ms')} 
<<CRimmediateExecution>>

{CRthreading='local'}  startMonitoring( )

<<RTevent>> {RTat=(ty+6*b+c,'ms')} 
<<CRimmediateExecution>>

{CRthreading='remote'} <<RTnewTimer>> 
{RTtimerPar=x} Timer(RTtimeValue,Integer)

<<RTevent>> {RTat=(ty,'ms')} 
<<CRimmediateExecution>>
{CRthreading='local'} start( )

<<RTevent>> 
{RTat=(ty+9*b+c,'ms')} 

<<CRimmediateExecution>>
{CRthreading='local'}  

<<RTstart>> start()

<<CRasynch>>
<<CRasynch>>

<<CRsynch>>

<<CRsynch>>

<<CRasynch>>

<<CRsynch>>

<<CRasynch>>

<<RTaction>>
{RTstart=(ty+2*b,'ms'),
RTduration=(c,'ms')}

<<RTaction>>
{RTstart=(ty+3*b+c,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+6*b+c,'ms'),
RTduration=(2*b,'ms')}

Parameter 'b' is the 
time needed for a 
primitive operation 
to be performed

Parameter 'c' 
depends on 
modeling/remodeling 
etc.

<<RTaction>>
{RTstart=(ty+5*b+c,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+b,'ms'),
RTduration=(b,'ms')}

<<RTaction>>
{RTstart=(ty+9*b+c,'ms'),
RTduration=Infinite}

Figure 6: Sequence diagram for starting the FRTS process



The use of RT-UML in sequence diagram of Figure 6 clari-
fies thread synchronization and execution, determines 
event occurrence and action duration, and enhances its se-
mantics. Thus, an in-depth and comprehensive view of the 
FRTS system is obtained.

Τhe activity diagram of Figure 7 defines the function-
ality of the start() method of class Control. Each activity of 
the diagram is annotated with the appropriate RTaction 
stereotype note. Using this kind of stereotype and its 
RTduration tag, activities’ durations are specified. The 
lower part (do/) of each activity defines the actions exe-
cuted or messages sent. Message dispatches are denoted 
with the ^ symbol. The overall duration of start()method is 
9*b+c ms, where b is the time needed for a basic operation 
to be performed (arithmetic operation, method invocation, 
etc.). Parameter c is the duration of model’s initialization 
and depends on the experiment specification. The overall 
duration of start() refers to the duration from the time in-
stance when the user sends a start() event until everything 
has been initialized and Timer is started.

Start System Monitoring

do/ ^context.systemMonitor.startMonitoring()

Initialize Model

do/ ^control.modelMonitor.initializeModel(control.expSpecs.modelInitParams)

Start Model

do/ ^context.modelMonitor.startModel()

ModelInitialized

Start Model Monitoring

do/ ^context.modelMonitor.startMonitoring()

ModelStarted

Create Timer

do/ m=context.expSpecs.auditingInterval/context.expSpecs.stateInterval
do/ ^Timer.new(context.expSpecs.stateInterval,m)

Start Timer

do/ ^timer.start()

TimerCreated

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b+c,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(3*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'c' 
depends on 
modeling/remodeling 
etc.

Figure 7: Activity diagram for method start of class Con-
trol

4.3 Audit

Audit is the key experimentation activity determining 
model validity through comparing the corresponding sys-
tem and model monitoring variables. Auditing is activated 
either after a state interval or an audit interval. Two dis-
tinct cases are thus considered: standard auditing and state 
auditing. Throughout this paper, the term auditing refers to 
standard auditing. State auditing is explicitly referenced.

During auditing, system modifications, involving its input 
data, operation parameters and structure, as well as devia-
tions between the system and the model are examined to 
determine model validity. If remodeling is required, a re-
modeling indication is produced. All monitoring variables 
are used in this process.

Monitoring variable comparison is realized using the 
auditing tree, which is a conceptual tree structure. It is di-
vided into two subtrees and includes two corresponding 
types of end nodes, OR and AND, as depicted in Figure 8. 
The audit activity constructs the auditing tree retrieving 
system and model monitoring variable entries from the 
System Monitor and Model Execution Environment, 
respectively.

ORNode

rcname : String
tname : String
mvname : String
comp_params : Double
systemvalue : OutputValues
modelvalue : OutputValues

ANDNode

weight : Double

RootNode

orNum : Integer
andNum : Integer
ORsubtree : ORNode[]
ANDsubtree : ANDNode[]

Figure 8: Auditing tree class diagram

Both Audit and State Audit execution are restricted by 
strict timing concerns, since in both cases the auditing tree 
must be constructed in a small fraction of the audit/state 
audit interval. Furthermore, the auditing tree construction 
is bounded by system and model environments since moni-
toring variable values must be fetched from both of them. 
These restrictions are denoted in detail in corresponding 
sequence and activity diagrams, where RT-UML use offers 
the ability to estimate the time elapsed in separate activities 
or the whole auditing process in total. Hence, bottlenecks 
regarding the execution time of specific Auditing and 
Model/System Environment processes (e.g. comparing 
values of a monitoring variable) may be identified during 
analysis and Auditing implementation performance can be 
measured and validated with regard to Model/System En-
vironment operation. For example, since the FRTS Mod-
eler is able to realize the way the overall duration of audit 
depends on the number of monitoring variables or the 
fetching mechanism of System Environment, he/she may 
regulate the operation of all FRTS modules.

In figures 9 and 10, the State Audit RT-UML se-
quence and activity diagrams are presented. As shown in 
figure 9, state audit activity inspects the current system 
state to determine if reformations have occurred. In this 
case, the model no longer provides a valid representation 
and the relevant remodelling indication is produced. As in-
dicated in the activity diagram in figure 10, only variables 
designated as state monitoring variables are retrieved dur-



ing state audit. Each of these variables is compared to its 
previous known value and the newer is stored. If the devia-
tion between the two values supersedes the specified 
compParam, it is considered as invalid and the algorithm 
directly invokes remodeling to modify the model with 
minimum time overhead, without exhaustively examining 
the remaining state monitoring variables. Otherwise, the 

state auditor examines the remaining state monitoring vari-
ables.

As indicated in Figure 10, the overall duration of the 
state audit is 8*b+net1+f ms, where f belongs in [4*b+d, 
(4*b+d)*e], d is the mean time for the comparison for one 
variable and e is the number of state monitoring variables.

 : Timer  : StateAuditor System Monitor : 
SystemMonitor

<<RTevent>> {RTat=tz+b} <<CRimmediateExecution>>
{CRthreading='local'} getStateVarsVals( )

system state monitoring values

<<RTevent>> {RTat=tz} 
<<CRimmediateExecution>>

{CRthreading='local'} audit( )

<<CRasynch>>
<<CRsynch>> <<RTaction>>

{RTstart=(tz+b,'ms'),
RTduration=(b,'ms')}

tz = 
ty+9*b+c+x*duration

<<RTaction>>
{RTstart=(tz+2*b,'ms'),
RTduration=(net1,'ms')}

Parameter 'net1' 
depends on the 
number of state 
monitoring variables 
and their type

Parameter 'x' is a 
positive integer

Figure 9: State audit sequence diagram

Get System State Monitoring Values

do/ s = context.systemMonitor.getStateVarsVals()

Check all state monitoring variables until an invalid value is found

Check Alteration of Monitoring Value

do/ x=context.getStateVarVal(s[i].mv.mvname)
do/ comp=s[i].mv.ctechnique.compare(s[i].vals,x,s[i].mv.compParam)
do/ i++

Valid

Invalid

Valid 
Range

Check Alteration of Monitoring Value

do/ x=context.getStateVarVal(s[i].mv.mvname)
do/ comp=s[i].mv.ctechnique.compare(s[i].vals,x,s[i].mv.compParam)
do/ i++

Valid

Invalid

[ !comp ]

Valid 
Range

[ comp ]

[ i>=s.size ]

[ i<s.size ]

 / Integer i=0; Boolean comp=True

Store New State Value and Start Remodeling

do/ ^context.setStateVarVal(s[i].mv.mvname,s[i].vals)
do/ r = new Remodeler()
do/ ^r.remodel(ri)

<<RTaction>>
{RTduration=(2*b+net1,'ms')}

Parameter 'net1' 
depends on the 
number of state 
monitoring variables 
and their type

<<RTaction>>
{RTduration=(f*b+
e*(4*b+d),'ms')}

<<RTaction>>
{RTduration=(2*b+d,'ms')}

Parameter 'd' is an 
estimated mean 
time needed for the 
comparison

<<RTaction>>
{RTduration=(3*b,'ms')}

<<RTaction>>
{RTduration=(2*b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

<<RTaction>>
{RTduration=(b,'ms')}

Parameter 'e' is the 
final value of i and 
parameter 'f' is 0 if 
invalid or 1 if valid

<<RTaction>>
{RTduration=(b,'ms')}

[ Valid ]
[ Invalid ]

Figure 10: Activity diagram for method audit of class StateAuditor
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5 IMPLEMENTING A SIMPLE FRTS USING THE 
RT-UML MODEL 

In order to evaluate FRTS RT-UML model richness and 
flexibility, a simulator was built in Java using the diagrams 
analytically discussed in sections 3 and 4. To contact FRTS 
experiments successfully, the execution time of specific 
activities must be similar to the time estimations reported 
in the model. A simple FRTS experiment system is pre-
sented in the following for evaluation purposes. The Simu-
lation Environment (SE) and simulation models were con-
structed in Java, as well. The simulator was easily 
implemented using Rational Rose platform (programming 
effort was minimized).

In the following, FRTS is applied in a two node web 
site, where the second node is used only in cases of heavy 
load (that is when FRTS predicts that each node load is 
over a certain threshold). Suppose that visitor enquiries are 
two kind of processing jobs J1 and J2 that fill two separate 
queues Q1 and Q2 respectively. Each job has an inter-
arrival time λi and a predetermined service time εi (ε1 ≥ ε2). 
Both queues are connected with a server Si as illustrates 
Figure11. Thus, the web site can be modeled as a Multi-
Queue, Multi-Server System.

Figure 11: Example topology

Denoting as di, the average queue delay we may define 
the following scenario for our case study. In the beginning 
each server serves only its associated queue (Coupling 
does not exist). However, if d1 ≥ M1 and d2 ≤ M2 we acti-
vate the coupling among the first queue Q1 and the second 
server S2, activating a mechanism that enables S2 to serve 
one job from queue Q1 each time its queue (Q2) is empty. 
This mechanism is deactivated in case d1 ≤ M1 or d2 ≥ M2. 
Then again, each server serves only its associated queue 
(Coupling does not exist).

In order to conduct the experiment, detailed descrip-
tion of Monitoring Variables and Remodeling Conditions 
was needed during the initialization phase. As model ini-
tialization parameters, the following variables were used:

• 2 job types
• 2 queues
• 2 servers
• Inter-arrival parameter for job 1 = 3
• Inter-arrival parameter for job 2 = 3
• Service time for job 1 = 10 sec
• Service time for job 1 = 1 sec
• Average queue delay in queue 1 = 60 sec

• Average queue delay in queue 1 = 5 sec
thus, we have modelInitParams = (2, 2, 2, 3, 3, 10, 1, 60, 
5).

Having the model variables and the initialization pa-
rameters the MEE can now build the model and execute it. 

Checking values for both system and model of these 
monitoring variables during auditing we apply remodeling 
following the described scenario and in case a server is 
down.

The scenario just described is only a case study needed 
to be executed with our FRT Simulator implementation to 
test the validity of the proposed framework. Table 2 pre-
sents the results of the experimentation with the example 
described in this section and the FRTS simulator we built. 
Experimentation was conducted within Sun's Netbeans 
IDE and the Netbeans Profiler plugin. Measured times 
(third column) are presented against estimated durations 
(second column) by the RT-UML FRTS model analysis. 
The table contains the most important time periods:

a) Execution time of a basic operation. It entirely de-
pends on the computer configuration where the experimen-
tation is conducted. No theoretical estimation can be made. 
The measured value is substituted in the formulas that es-
timate other time periods.

b) Audit and state audit intervals.
c) Audit and state audit durations. A fundamental re-

quirement is that state audit duration is less than state audit 
interval.

For each time period both estimated and measured, an 
average, a minimum and a maximum value are given.

Duration 
(avg,min,max) 

in msec Theoretical Estimation Measured Time
Time for basic 

operation Computer depended (b) 0.0377,0.0011, 0.8229
Audit interval 5000, 5000, 5000 5004.09, 4871, 5278
Audit duration 5.479, 0.155, 123.441 2.700, 0.090, 53.400
State audit in-

terval 1000, 1000, 1000 999, 891, 1106
State audit dura-

tion 0.565, 0.017, 12.344 0.233, 0.087, 10.70

Table 2: Basic FRTS time attribute comparison

As far as the estimated time periods are concerned, 
audit and state audit intervals are explicitly defined rather 
than estimated. Also, since the basic operation duration (b) 
is not estimated, but the measured time is used in other 
formulas.

State audit duration is estimated by the formula 
8*b+net1+f, where f belongs in [4*b+d, (4*b+d)*e], d is 
the mean time for the comparison for one variable and e is 
the number of state monitoring variables. In our example 
there is only one state monitoring variable (e=1) and the 
mean time for the comparison of the integer variable is two 
basic operations (d=2*b). Also, as there isn't any factor 
that would introduce delays in the reception of state moni-
toring variable values from the system, parameter net1 can 



be estimated to be equal to one basic operation duration 
(net1=b). Therefore, the formula estimating the state audit 
duration becomes 15*b. The respective cell is filled using 
the measured value for the basic operation duration (b).

Similarly, for the estimation of the audit duration, the 
formula 14*b+g+net2+net3+k is used. Parameter g is the 
time for the audit tree to be built, net2 and net3 depend on 
the number (h=9) and the type of the monitoring variables, 
and k belongs in [b+h*(4*b+d), b+h*(5*b+d)]. Parameter 
g can be estimated to be 6*b times the number of monitor-
ing variables (6*b*h=54*b). Like net1 in state audit dura-
tion, net2 and net3 are considered to be equal to h*b=9*b
each. Considering that h=9 and d=2*b, k belongs in [55b, 
64*b].Therefore, audit duration belongs in [141*b, 150*b]. 
The respective cell is filled using the measured value fot 
the basic operation duration (b).

Comparing the theoretical estimations with the meas-
ured times in table 2, the following conclusions are 
reached: a) audit and state audit intervals are quite accu-
rate, b) estimated audit and state audit durations are com-
parable to the measured ones. Also, estimations for maxi-
mum audit and state audit durations are higher than the 
measured ones, indicating that the estimated maximum 
values may be used as the lower limit for audit and state 
audit duration. 

6 CONCLUSIONS

The main objective of the work presented in this paper was 
to introduce a specification for FRTS experimentation, 
which was not domain-oriented and establishes common 
guidelines for developing FRT simulators. We adopted 
RT-UML to provide a thorough and complete model for 
FRT simulators emphasizing timing and concurrency is-
sues. RT-UML enabled the description of time constraints 
imposed in FRTS, while modeling process was straight-
forward, and no extensions were needed to describe FRTS. 
Detailed RT-UML diagrams specify how each FRTS com-
ponent operates in terms of events, activities, and actions 
and infers estimations about time consistency and overall 
behavior of specific FRTS simulators. The behavior of 
FRTS simulators, apart from their implementation, 
strongly depends on the application domain and the ex-
periment specifications used. Thus, time consistency of 
FRTS simulators may be completely justified only in the 
context of an application domain and specific experiment 
specifications. To this direction the proposed model quanti-
fied this interdependence and facilitates the evaluation of 
FRTS simulators in certain contexts.
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